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The application of independent component analy�
sis becomes more common in the practice of spectro�
scopic analysis of various processes [1–8]. ICA meth�
ods solve mathematically the problem of separation of
individual sources and their relative contributions
from the total spectroscopic signal without making
any assumptions about the number of mixture compo�
nents, their molecular structure, or type of spectrum.
The underlying hypothesis, first applied to spectral
analysis in [9], is the assumption of independence of
the spectra of the mixture components. Improved ICA
algorithms have been recently developed, enabling to
find the least dependent (as opposed to fully indepen�
dent) components, which gives a definite advantage
when modeling systems with strongly overlapping sig�
nals [1, 2, 10–12].

Based on the statistical fundamentals of the
method, it is obvious that ICA is rather efficient to
recover the sources of signals contained in total over�
lapping spectra available for recording. Therefore, it is
not surprising that this method is already widely used
for multicomponent analysis of objects of complex
composition based on various spectroscopic signals,
including electronic (absorption and emission), IR,
and 1H NMR spectra [1–8]. It is found that the uncer�
tainty in determining the concentrations of com�
pounds in the mixtures normally does not exceed 10%,
and the correlation coefficients between the recovered
and experimental spectrum are not less than 0.90 [1, 2,
6–8]. It is also important in the modern business envi�

ronment that the duration of ICA modeling is not
more than 5 min, making it suitable for screening
analysis.

Recently, works are carried out on testing ICA to
solve other problems in analytical chemistry, for
example, the study of acid�base and tautomeric equi�
libria and complexation reactions, including those
involving hydrogen bonds [13–15].

On the other hand, the possibility of using ICA for
solving discrimination problems is poorly studied. The
idea is to apply the resulting matrix of the spectra of
individual components and their relative contribution
to the total signal as an alternative to the loadings
matrix in principal component analysis (PCA) and the
PCA score matrix, respectively. The usability of ICA
for solving classification problems is shown by an
example of discrimination of orange and grapefruit
juices and their mixtures, based on 1H NMR spectros�
copy [16, 17]. However, in this case, the use of ICA
modeling is logical, as two selected individual compo�
nent reflected mainly the spectra of individual orange
and grapefruit juices, and the mixtures of juices repre�
sented their linear combinations.

In another recent study, ICA in conjunction with
conventional chemometric methods, such as PCA,
linear discriminant analysis (LDA), factorial discrim�
inant analysis (FDA), projections to latent structures
discriminant analysis (PLS–DA), soft independent
modeling of class analogy (SIMCA), has been used for
discriminating samples of rice regarding their varieties
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and geographical origin on the basis of 1H NMR spec�
troscopy [18]. ICA modeling enabled a complete sep�
aration Basmati rice from other varieties of long�grain
rice, which is impossible with conventional PCA.
Moreover, ICA exhibits excellent sensitivity and selec�
tivity of the classification model, being outperformed
only by PLS–DA [18].

The above examples demonstrate the prospects of
using ICA for discrimination of NMR spectroscopic
data. It is obvious, however, that further work is
required on the testing of ICA algorithms for solving
classification problems of spectroscopic experiment of
other types.

In this work, we selected for analysis X�ray fluores�
cence (XRF) data for base enamels, IR spectra of
automotive lacquers, and 1H NMR spectra of wines
from four closely spaced wine regions of Germany.
One of the above datasets (1H NMR spectra) had been
previously processed with PCA, which gives the possi�
bility to compare the effectiveness of both methods
[19].

EXPERIMENTAL

Equipment and samples. We studied samples of
black base enamels: n = 21, catalog number 490, man�
ufacturers: Vika (n = 6), Dynacoat (n = 6), Quickline
(n = 3), and Duxone (n = 6). Transparent two�compo�
nent lacquers were also studied: n = 18, manufactur�
ers: Vika (n = 6), Helios (n = 3), OTRIX (n = 6), and
RAND (n = 3). These materials are presented in the
Saratov retail chain as products for repair painting of
vehicles. The set of objects can be considered as repre�
sentative for the Saratov region.

Sample preparation of lacquer samples for record�
ing their IR spectra included the preparation of a mix�
ture of lacquer with a hardener in the recommended
proportions (3 : 1) and the application of the mixture
with a spatula to form films on KBr crystals followed
by drying under an IR lamp (60°C, 2.5 h). The spectra
of the lacquer samples were recorded using an
Infralum FT�801 FTIR spectrometer in the wave�
number range of 4000–500 cm–1 with a scanning step
of 2 cm–1.

Sample preparation of enamels included the appli�
cation of a layer of enamel with a spatula on a polyeth�
ylene terephthalate (lavsan) film and drying under an
IR lamp. The spectra of base enamels were recorded
using a Shimadzu Rayny EDX�720 X�ray fluorescence
spectrometer. Scanning was performed within 0.00–
40.96 keV with an increment of 0.02 keV.

We selected 111 authentic samples of wines from
four wine regions of Germany: Nahe (15), Moselle
(31), Rheinhessen (35), and Pfalz (30). We recorded
1H NMR spectra of wines by means of a Bruker
Avance 400 Ultrashield spectrometer. A detailed
description of the sample preparation and recording of
the NMR spectra of signals is given in [19]. The test

samples of wines included white and red grape variet�
ies of Pinot Blanc (23), Pinot Noir (22), Riesling (33),
Kerner (14), Müller�Thurgau (10), and Pinot Gris (9),
gathered during the period from September 15 to
November 11, 2009.

Preliminary processing of spectral data. Chemo�
metric analysis of the spectral data was performed
using the Matlab 2013b software package (The Math
Works, United States) and a SAISIR toolbox [20].
Ellipsoids with a 95% probability were plotted using
additional calculations with the SAISIR software
package.

Bucketing was used to reduce the size of 1H NMR
spectroscopic data and to level the shift of the position
of maxima in the spectra of wines [19, 21]. Further�
more, two methods for the pretreatment (autoscaling
and Pareto scaling) [22] were tested for each of the
three datasets to eliminate variations in the intensities
of various signals.

ICA modeling. While PCA is based on finding the
orthogonal axes describing the maximum variance in
the data in multidimensional space of variables, the
goal of ICA is to restore the “pure” sources from the
observed sum signals [23]. We used the least dependent
component analysis based on the mutual information
based least dependent component analysis (MILCA).
The MILCA algorithm has a MATLAB interface and
is available on the Internet for free [24].

Full cross�validation [25] was used to determine
the number of principal components (PCs) required
for the development of optimal PCA models. On the
other hand, before ICA decomposition, the number of
significant independent components (sources) is
determined by the ICA�by�Blocks procedure [26].
The method consists in dividing the original data
matrix to B blocks (in this case, B = 2), consisting of
approximately the same numbers of spectra of sam�
ples. Next, the ICA modeling of each block is per�
formed with a different number of independent com�
ponents, and then the models with the same number
of independent components are compared with each
other by calculating the correlation coefficients
between each pair of selected signals. The optimal
number of components is determined by a sharp
decline in the correlation coefficients [26]. In this
work, samples were randomly split 30 times.

The following procedure of chemometric data pro�
cessing was used. The matrix of experimental spectra X,
in which the number of rows corresponds to the number
of samples in the dataset, and the columns represent
variables (for example, the wave numbers for IR spec�
troscopy or chemical shifts for NMR spectroscopy),
was set at the input for the ICA algorithm. ICA decom�
position was carried out for the number of independent
components, found by ICA�by�Blocks, and the num�
ber of nearest neighbors ranged from 5 to 15.

The result of the application of ICA are the signals
of individual sources and their corresponding relative
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concentrations (the contribution of a component in
the total spectrum). Further, a matrix is derived, where
each object corresponds to the vector of the relative
contributions of all independent components found.
In other words, the mixing matrix can be regarded as
an analogue of the PCA score matrix. Therefore, the
procedure for discriminating the samples on the basis
ICA modeling coincides with the sequence of actions
in the analysis of the PCA score matrix; namely, such
a combination of independent components is visually
found, where the presentation of their relative contri�
butions in the two�dimensional coordinate system
leads to the best discrimination of the groups of
objects. Thus, in the use of ICA, any additional oper�
ations in the classification of the objects, with respect
to PCA, are not required. Further information can be
obtained by studying the recovered spectra of individ�
ual sources, which are similar to the PCA load matrix.

Discriminant algorithms. To model the most repre�
sentative set of data (NMR spectra of wines), we also
used LDA, FDA, and PLS–DA. These methods refer
to the classification methods with training, the basis of
which is to construct a mathematical model for each of
the desired groups using the calibration dataset. In dis�
tinction from PCA, these methods are specifically
designed for predicting the characteristics of new sam�
ples not included in the model. The models developed
by ICA, LDA, FDA, and PLC–DA are validated using
full cross�validation and a test set (25 of 111 samples).

RESULTS AND DISCUSSION

The need for chemometric analysis of the first two
of the three test datasets is caused by difficulties in
solving problems of identification in forensic expertise
of paints and coatings. The solution of such problems,
in particular, suggests an answer to the question of
attribution of separately represented fragments of
coatings of a specific object (for example, a motorcar)
to a particular manufacturer at the group or type
assignment. On the other hand, different nature of
XRF and IR spectra is of some interest for testing ICA
as a new approach for processing experimental data.

XRF spectra of base enamels. The XRF spectra of
base enamels were the first analyzed dataset. The
selection of spectroscopic method is explained by that
the base enamels are metallized materials, which
determines the specific effects of visual perception of
the coatings [27, 28].

In preliminary studies, the XRF spectra of enamels
of various trademarks are identical to each other,
which makes it necessary to apply chemometric meth�
ods for modeling spectra for their classification. PCA
was used to discriminate groups of samples in accor�
dance with the manufacturer (Fig. 1a). Despite the
almost complete separation of clusters, ellipsoids of
groups Dynacoat and Duxone partially overlap each
other at a 95% probability, making the assignment of a

new sample to one of these two groups of producers
difficult.

As an alternative approach, ICA was applied to the
same dataset. Using ICA�by�Blocks, three significant
independent sources were identified in the system.
The resulting plot of scores in coordinates IC1–IC2
with the use of a three�component ICA model is pre�
sented in Fig. 1b. When comparing the data in Figs. 1a
and 1b, it becomes apparent that ICA is more effec�
tive, because it enables not only the distinguishing of
groups Dynacoat and Duxone but also a more reliable
discrimination of all four groups under consideration
because of the large distances between clusters.

IR spectra of automotive lacquers. Similar results
were obtained in the analysis of spectroscopic signals
of a different nature, namely, the IR spectra of auto�
motive lacquers of four different brands. The plot of
PCA scores is shown in Fig. 2a. As in the case of base
enamels, the clusters of two brands (OTRIX and
HELIOS) overlap, although only slightly. The com�
plete separation of four clusters, however, became pos�
sible using ICA modeling (Fig. 2b). As in the previous
case, the ICA model was developed based on the cal�
culation of three independent components.

Noteworthy that in the cases of both XRF and IR
data, ICA ellipsoids corresponding to different manu�
facturers, are significantly smaller than those obtained
by the results of PCA modeling with the same degree
of probability (95%) (Figs. 1 and 2). This means that
ICA models have greater stability and reliability: if the
values of ICA scores of a new object fall into an ellip�
soid of a smaller size, this indicates a higher probabil�
ity of identification of an object group affiliation in
comparison with the PCA model.

1Н NMR spectra of wines. Determination of stable
isotopes (2Н, 13С, 18О) is currently the official and stan�
dard method for determining the authenticity of many
foods and beverages, including wine products [29–31].
Recently, however, alternative innovative methods for
food control began to appear; one of them is NMR
spectroscopy [32–34]. NMR coupled with multivariate
data analysis is used to control grape varieties, geo�
graphical origin, and vintage of wines [34–37]. The
modeling of NMR results by means of conventional
methods of classification (LDA, PLS�DA) offered a
high percentage of correct predictions for these charac�
teristics [34–37].

To examine ICA, a representative set of NMR
spectra of 111 spectra of wines produced in four
regions of Germany (Nahe, Moselle, Rhainhessen,
and Pfalz) was selected for this study. It should be
noted that conventional PCA is principally suited for
the analysis of this dataset; however, it does not offer a
complete separation of clusters of Nahe and Rhein�
hessen (Fig. 3a). As in the case of IR and XPF spectro�
scopic data, ICA showed the best discriminative ability
by completely separating completely all four groups at
95% probability (Fig. 3b).



1058

JOURNAL OF ANALYTICAL CHEMISTRY  Vol. 70  No. 9  2015

MONAKHOVA et al.

After careful examination of Fig. 3, it is seen that the
best PCA model is obtained in region PC2–PC3, and
for ICA, the most significant for separation are IC1 and
IC2. Explanation of this fact can be found in the physi�
cal sense of PC and IC. The sequence of selection of PC
in the PCA modeling is strictly determined. Each sub�
sequent PC is orthogonal to the previous one and
describes the maximum variance in the data. In ICA the
order of components is random, but they all are signifi�
cant and have a physical meaning. Therefore, the first
PC may not correspond to the first IC. The best combi�
nation of PCs (ICs) should be determined visually using
a plot of corresponding scores.

Because of its representativeness, the NMR dataset
is useful to illustrate the algorithm of ICA�by�Blocks.
The average values of the correlation coefficients with
the standard deviation between the pairs of separated
signals for ICA models with different numbers of com�
ponents for 1H NMR spectra of wine are shown in

Fig. 4. Obviously, for models with up to six ICs, the
correlation coefficients between the corresponding
ICs of each block are high, indicating the separation of
similar spectral profiles of each block (Fig. 4). Further
addition of independent components to the model
leads to a rapid deterioration of correlation coefficient
themselves (and their reproducibility) between the
separated signals of two blocks, which means that the
seventh independent component is not significant and
represents the background noise. Therefore, ICA
decomposition was carried out considering six inde�
pendent components. This approach ensures the sep�
aration of significant sources and can serve as a mea�
sure of quality of the decomposition of spectra in the
discrimination of samples.

The undoubted advantage of ICA compared to
PCA is the fact that it can be used to classify new
objects, not included in the training set, using the fol�
lowing equation:

Fig. 1. Plot of (a) PCA and (b) ICA scores for the model of base enamels (n = 21, XRF spectroscopy); ellipsoids represent a 95%
probability.
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Scores = X × S × inv(S' × S),

where X is the matrix of signals of new samples and S is
the matrix of calculated independent components. The
sample is considered to be correctly classified if its
scores are inside the ellipsoid of the desired groups with
a 95% probability [18, 19]. Due to the small size of the
IR and XRF data, the validation of the ICA model is
held only by the example of the classification of geo�
graphical origin of wines by their 1H NMR spectra.

The results of the full cross�validation indicate that
ICA can correctly identify 92% of wine samples with
respect to their geographical origin (n = 111). Further
examination of the resulting ICA model showed that
90% of the samples from the test dataset (n = 25) are
correctly classified correctly. Thus, the developed ICA
model is accurate and stable. When analyzing a new
model, the values of its scores falling in a particular
cluster is an objective sign to assign this object to a par�

ticular group. It should be noted that this model
enables us to distinguish the geographical origin of red
and white wines from the 2009 harvest of early and late
varieties. However, for other vintages, separate models
must be developed.

It is interesting to compare the discriminatory abil�
ity of ICA with classification methods commonly used
by analysts to model the spectroscopic data. For this
dataset, the following values of correct predictions are
obtained (cross�validation, %/test set, %): LDA,
93/89; PLS–DA, 93/84; and FDA, 88/76. We can
conclude that ICA is superior to FDA and comparable
to PLS–DA and LDA for both calibration and test
datasets.

CONCLUSIONS

Thus, our calculations on real data have shown that
ICA is effective enough to discriminate objects based

Fig. 2. Graph of (a) PCA and (b) ICA scores for the model of lacquers (n = 18, IR spectroscopy); ellipsoids represent a 95% prob�
ability.
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on spectrometric data of different types (NMR, IR,
and XRF) and represents a serious alternative to PCA.
In particular, ICA can solve classification problems on
the assignment of lacquers and base enamels to a par�
ticular brand in the expertise of coatings and on the
determination of the geographical origin of wine. ICA
enables the separation of a group of objects that over�
lap in the space of PCA scores. The ICA “load” matrix
is much easier to interpret, as it reflects the true spectra
of components that contain only positive intensity,
while PCA loads are abstract and difficult to find
chemical interpretation [18].

It is also important that ICA shows results in the
classification of new samples, comparable with con�
ventional discriminant methods (LDA, PLS–DA, and
FDA). Obviously, ICA is useful for the solutions for
classification tasks in NMR, IR, and XRF spectros�
copy, differing by the nature and characteristics of
spectral bands, and the area of its application can be
extended to other analytic signals.

A further stage of the work is to compare the effec�
tiveness of different ICA algorithms (for example,
RADICAL, JADE, or FastICA) regarding the dis�
crimination of spectroscopic data. Moreover, ICA
models should be tested with larger datasets to provide
a complete validation using the test set. In�depth the�
oretical analysis of the ICA and PCA methods is
required to find the reasons for their different effi�
ciency for solving classification problems.
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