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Abstract—Analytical derivations of the second order of smallness with respect to dimensionless amplitude 
of oscillations of an uncharged electroconducting droplet in an external electric field have yielded an analyt-
ical expression for the intensity of its dipole electromagnetic radiation related to the oscillations, with this
expression enabling one to study the radiation intensity as depending on the physical parameters of the prob-
lem. This problem is of interest in connection with radio-locating probing meteorological objects, such as
clouds, fogs, and tornados. The time evolution of the electromagnetic radiation intensity and its components,
i.e., the magnitude of the induced charge and dipole moment, of the droplet has been studied. The dipole
radiation intensity has been determined in the second order of smallness with respect to the squared ratio
between the characteristic linear size of the droplet and the wavelength of the emitted radiation. The intensity
has appeared to be higher by a value of  than the intensity obtained by the calculations linear with respect
to . However, a correction (quadratic with respect to ) to the radiation of the droplet is realized in another
frequency range, thereby affecting the spectrum of the electromagnetic radiation.
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INTRODUCTION

In the below-presented consideration performed
within analytical asymptotic calculations of the sec-
ond order of smallness with respect to the dimension-
less oscillation amplitude, we calculate the intensity of
the dipole electromagnetic radiation of an uncharged
electroconducting droplet, which is subjected to non-
linear oscillations with a finite amplitude in an exter-
nal electrostatic field.

It is well known that field-induced charges arise on
the surface of an uncharged electroconducting droplet
subjected to an external electrostatic field. The charges
have opposite signs, i.e., negative ones on the droplet
side facing the field and positive signs on the opposite
side [1]. Capillary waves always take place in a liquid
droplet. Such waves are associated with the thermal
motion of molecules [2] and perturb the equilibrium
droplet shape in an electrostatic field, with this shape
being nearly spheroidal [3, 4]. Capillary waves differ
from ordinary gravitational ones only in the fact that
they have markedly shorter lengths and are realized
under the action of surface tension forces (capillary
forces) rather than the gravity force. The amplitude of
thermal capillary waves (which are realized in a drop-

let) is rather small: , where  is the Boltz-
mann constant,  is the absolute temperature, and 
is the surface tension coefficient [2]. For all liquids,
including liquid metals, their amplitude is no larger
than 0.1 nm. However, it is of importance for the
below-presented consideration that, moving with
acceleration together with the surface of an oscillating
droplet, the charges induced in the droplet by an exter-
nal electrostatic field will radiate electromagnetic
waves [1, 5–7].

The theory of electromagnetic waves emitted upon
the accelerated motion of electric charges has been
well developed [8, 9]. According to the multipole ideas
[8, 9], the total electromagnetic radiation of a system
of charges moving with acceleration, as measured at
large distances from the radiating system, may be rep-
resented as the sum of the dipole, quadrupole, and
magnetodipole components. These components have
greatly different intensities. For example, in the case of
a water droplet oscillating in an external uniform elec-
trostatic field, the intensity of the dipole radiation
from the droplet is nearly  times higher than the
intensity of the quadrupole and magnetodipole radia-
tions [10].
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In the theory of electromagnetic radiation, small
parameter  is introduced, i.e., the squared ratio
between the characteristic linear size of the system and
the length of the emitted wave [8, 9]. It is this param-
eter that is used to classify the entire radiation into the
multipole components.

For an oscillating conducting liquid droplet, which
carries induced charges, one more small parameter 
should be used, i.e., the ratio between the oscillation
amplitude and the droplet radius.

The problem concerning the fact of the existence of
electromagnetic radiation emitted by an oscillating
droplet in thunderstorm clouds was for the first time
formulated previously [5] in connection with the study
of electromagnetic interference, which is caused by
convective clouds, and the distant electromagnetic
probing of such clouds [11–13]. In [5], a method was
proposed for the determination of radiation intensity
using a model of an oscillating and radiating charged
droplet of an ideal liquid, with this method being
based on the solution of the electrohydrodynamic
problem concerning the oscillations of a charged
droplet and the energy conservation law.

In [14], we considered the problem of calculating
the intensity of the dipole component of the total radi-
ation of an oscillating charged droplet in an electro-
static field, while, in [15], we solved the problem con-
cerning the intensity of the quadrupole component of
the total radiation. In this work, the intensity of the
dipole component of the total radiation emitted by an
uncharged droplet oscillating in an electrostatic field
of a thunderstorm cloud will be qualitatively estimated
within the framework of the asymptotic analytical
approach using a model droplet of an ideal incom-
pressible electroconducting liquid within the second
order of smallness.

MAIN SECTION

1. Problem formulation. Assume that we have an
uncharged oscillating droplet of an ideal incompress-
ible liquid, which has ideal conductivity and density 
and is subjected to a uniform electrostatic field with
strength . Suppose that a medium surrounding the
droplet may be simulated by vacuum, and its volume is
equisized with the volume of a sphere having radius .
In the linear approximation with respect to the ampli-
tude of stationary deformation, the equilibrium shape
of the droplet in an electrostatic field may be consid-
ered to be spheroidal [16]. Such a spheroidal droplet
will be used to simulate a droplet in a thunderstorm
cloud.

The numerical values of the droplet sizes and the
intracloud electric field strengths, which are necessary
for qualitative assessments, will be taken in accordance
with [17, 18].
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All calculations within the problem will be carried
out in a spherical coordinate system , the ori-
gin of which is placed into the mass center of the drop-
let, and in dimensionless variables, in which

 (ε0 is the electric constant).
The other parameters of the problem will be expressed
in the fractions of their characteristic values:

, ,

, , and .

The equilibrium droplet eccentricity (the ratio of
the interfocal distance of a spheroidal droplet to the
length of its major axis) is determined in the afore-

mentioned dimensionless variables as , i.e.,

 [16]. The equation for the generating line of
the spheroidal droplet surface is written as

(1)

 is the order symbol [19] and

 is the second Legendre

polynomial [8, 16]. The equilibrium spheroidal shape
of the droplet will be used in the subsequent qualitative
calculations.

Strictly speaking, in the quadratic approximation
with respect to , a deviation of the equilibrium shape
from the spheroidal one takes place, with this devia-
tion being proportional to the third Legendre polyno-

mial  [16]. However,

first, the amplitude of this deviation is rather small (an
order of magnitude smaller than the correction that is
proportional to the second Legendre polynomial),
and, second, there is an obvious advantage of using a
spheroidal shape in analytical calculations: in the case
of this shape, analytical solutions are available for the
electric potential distribution in the vicinity of a drop-
let in diverse situations [20–22].

It should be noted that the correction to the asymp-
totically exact solution of the first order with respect to

 takes place in another frequency range, as compared
with the first-order solution, provided that the correc-
tion is quadratic with respect to . Although this cor-
rection is not quite adequate (according to all of the
mentioned in the previous paragraph), it should be
taken into account if for no other reason that, in the
total radiation intensity, it is 1013 times higher that the
intensities of the quadrupole and magnetodipole radi-
ations [10].

Let the equilibrium spheroidal shape of a droplet
with eccentricity e is, at initial time moment ,
subjected to virtual axially symmetric perturbation
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 of a fixed amplitude. The  ratio

between  and radius  (in the dimensional
form) will be used as a small parameter.

Since the initial perturbation of the equilibrium
droplet surface is axially symmetric, it is obvious that
this symmetry will also remain preserved at ,
while the equation for its generating line in the spher-
ical coordinate system, with its origin being placed
into the mass center of the droplet, will, in the dimen-
sionless variables, have the following form:

(2)

The motion of the liquid in the droplet is supposed
to be potential, while field  of the
liquid motion velocities in the droplet is assumed to be
completely determined by velocity potential 
[23]. Since the liquid f low in the droplet is generated
by the surface perturbation, the value of the f low
velocity field for the liquid in the droplet has the same
order of smallness as the amplitude of the capillary
waves in it. In other words, all three aforementioned
values have the same order of smallness:

.
The mathematical formulation for the problem of

the electromagnetic radiation emitted by an
uncharged droplet in an external electrostatic field is
as follows:

(3)

(4)

(5)

(6)

(7)

(8)

where  is the electric potential [9];  is the
electric potential, which is constant along the droplet
surface; and  is the unit vector of the z coordinate.

The above-written set of equations is closed by
introducing the following integral conditions: the con-
stancy of the total volume (the consequence of liquid
incompressibility), the immobility of the mass center,
and the uncharged state of the droplet.

(9)
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where  is the unit vector of the external normal to the
droplet surface;  and  are the droplet volume and
surface area, which result from the rotation of the gen-
erating line determined by Eq. (2) around the droplet
symmetry axis; and the regularities of variations in
angles  and  are determined by Eqs. (9) and (10).

In the general case, the initial conditions are spec-
ified by an initial deformation of the spheroidal drop-
let shape and the zero initial velocity of the surface
motion as follows:

(11)

where  is the set of the values of numbers of initially
excited oscillation modes,  is the j-order Legen-
dre polynomial,  is an integral number, and

.
The following denotations have been introduced in

expressions (6)–(11):  denotes the drops of the
constant pressures inside and outside of the droplet at
equilibrium;  is the electric field strength vector;

 is the electric field pressure;  is the

capillary pressure (note that, according to [23, p. 334],
 is the Laplace pressure defined as the product of

the surface tension coefficient and the doubled aver-
age curvature of a liquid surface at a given point deter-
mined as the divergence of  [24, p. 179]);  is the unit
vector of the external normal to the liquid surface
described by expression (2);  refers to the coeffi-
cients that determine the partial contributions of jth
oscillation modes to the total initial perturbation; 
and  are constants (amplitudes of the zero and first
oscillation modes, respectively), which are equal to
zero in the first-order calculations and, in the calcula-
tions of the second-order of smallness with respect to

, are determined from the conditions of the constant
volume and quiescent mass center at the initial time
moment and, with an accuracy of terms  and ,
are equal to

(12)

where  is the Kronecker symbol.
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Note that there are two small parameters in the for-
mulated problem: squared droplet eccentricity  and

dimensionless amplitude . According

to [25, 26], freely falling oscillating rain droplets are
subjected to spheroidal oscillations with an amplitude
as large 60% of their radii. In other words, it is reason-
able to consider a situation, in which small parameters

 and  have the same order of magnitude .
This will somewhat simplify the cumbersome calcula-
tions, but will make narrower the range of applicability
of the results obtained, with this circumstance being
insubstantial for the qualitative assessment being per-
formed. Confining the consideration of the formu-
lated problem to the quadratic approximation, the
subsequent calculations will be carried out retaining
terms  and . To be more specific, we take

, thus reducing the problem to single small
parameter .

The assumption made in the previous paragraph is
accepted because the intracloud electrostatic field
strength is, as a rule, low [18, p. 440] (Table 1). How-
ever, the electrostatic field strength determines the
eccentricity values of droplets, which are, in turn,
small. Thus, the value of squared eccentricity  may
be comparable with dimensionless amplitudes  of
oscillation modes of a cloud droplet blown around
with an ascending air f low.

Taking into account that the deviation of the equi-
librium spheroidal shape of a droplet from the spheri-
cal one is due to the presence of an electric field, we
take . Thus, terms having the order of 
must be taken into account in the subsequent calcula-
tions of the electric potential in the vicinity of a per-
turbed charged spheroid, which is subjected to an
external field, and the value of the charge induced on
the perturbed droplet surface. These terms are related
to the nonlinear interaction of excited oscillation
modes with both stationary droplet deformation

 and with each other, as well as
with stationary droplet deformation

.
Let us introduce formal parameters  and  in

accordance with expressions  and ,
to have opportunity to distinguish between contribu-
tions from  and  in the final expressions. To get rid
of formal denotations in the final result, we take

.
2. Asymptotic expansions of the desired values. We

shall solve the problem with an accuracy of  by the
method of many time scales [19]. Let us present
desired functions , , and  as power
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expansions in terms of  and consider them to be not
dependent just on time , but rather on its different
scales determined as , where  is an integral
number: :

(13)

Here, the electric field potential is expanded in
terms of the half-integral powers of parameter ,
because . As a result, the expansion for elec-
tric potential  in the vicinity of an equilib-
rium uncharged spheroid in an external field is also
carried out in terms of the half-integral powers of
parameter  and is written as

(14)

The time derivatives will be calculated taking into
account the entire set of different time scales accord-
ing to the following rule [19]:

Substituting expansions (13) into relations (3)–
(10) and equating the terms of the same order of small-
ness in each equation, we isolate the problems of the
consecutive determination of unknown functions

, , and . In these expres-
sions, parenthetic superscripts  and  denote the
expansion orders of smallness and are integral and
half-integral numbers, respectively.

Solutions of Laplace equations (3) for the correc-
tions to hydrodynamic  and electric 
potentials satisfying conditions (4) and (5), as well as
corrections to equilibrium droplet surface shape

 are written as series in terms of Legendre
polynomials:
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(16)

(17)

3. Problem of the first order of smallness with
respect to ε. For determining amplitude coefficients

 and  in the first order of smallness with
respect to ε in solutions (15) and (17) (at ),

Eqs. (6), (7), and (9) yield the following set of equa-
tions:

(18)

Expressions for the first-order corrections to the
coefficients of expansions (15) and (17) are easily
found from set (18) as

(19)

To find coefficients  at , it is necessary to solve the following second-order homogeneous
differential equation:

(20)

where  is the frequency of intrinsic oscillations of
an uncharged sphere surface.

The solution of Eq. (20) is represented by harmonic
functions of time  with coefficients, which depend
on time :
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Abbreviation “c.c.” denotes terms that are complex
conjugates of the written ones. The dependences of 
and  on parameter  is determined in the subse-
quent orders of smallness.

4. The problem of the 3/2 order with respect to ε.

The set of equations for determining coefficients 
in solution (16) is derived from conditions (8) and (10)
by grouping terms ~ε3/2 :
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(23)

The expressions obtained for desired values ,
, and  may be used to find the analytical

expression for the dipole radiation intensity of an
uncharged droplet oscillating in an external electro-
static field in the first order of smallness, as was done
in, e.g., [10]. However, since the goal of the work is to
determine the nonlinear correction revealed in the
approximation quadratic with respect to the small
parameter, we shall below solve the electrohydrody-
namic problem of the second order of smallness with
respect to ε.

5. The problem of the second order of smallness with
respect to ε. To determine the corrections of the sec-
ond order of smallness to the found solution (i.e., to
find the  and ) functions, we present
the set of equations that is derived from Eqs. (6)–(10)
by equating the terms at ε2:

(24)

Substituting expansions (15) at m = 1; 2 and the
3/2-order solution from Eq. (23) into set of equations
(24), we derive expressions for coefficients 

and  as
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amplitude coefficients  at  in the follow-
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(26)

The horizontal line above  in (26) denotes the
complex conjugation.

The requirement to exclude the secular terms from
the solutions of Eq. (25) indicates that  is indepen-
dent of , while  linearly depends on :

, where  is a constant,

which is determined from the initial conditions.

Hence, the general solution of Eq. (26) at  will
be as follows:
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(27)

After expansions (13) are substituted into initial
conditions (11), the latter are transformed into a set of
equations for functions of the first and second orders
of smallness:

with this set making it possible to determine real con-
stants , , , and  in solutions (21) and (27).

Satisfying the initial conditions, we, under the first
approximation with respect to ε, obtain

(28)

in the second approximation with respect to ε we
derive

(29)

As a result, using expressions (28) and (29), we
write the amplitudes of the first and second orders of

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )[ ]
( ) ( ) ( ) ( ) ( ) ( )[ ]

( ) ( )

( )
( )

2 2
0 0

1
2 1 2 0

1
2 1 2 0

1 1
, , 1 1

0 0

0

1 1
, , 1 1 0

,1 ,2
2 2 2 2

2 2

, ,
, , 2

exp

exp

exp

exp

exp c.с.,

, ,

n n n

n n n

n n n

m k n m k
m k

m k

m k n m k m k

n n
n n

n n n n

m k n
m k n

n m

M T A i T

N A T i T

N A T i T

N A T A T

i T

N A T A T i T

L L
N N

N

−
− −

+
+ +

∞ ∞
+

= =

−

− +

− +
±

±

= ω

+ ω

+ ω

+ 


× ω + ω
+ ω − ω +


≡ ≡
ω − ω ω − ω

λ
≡
ω − ω ±



( )2 .
kω

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1
1

0

2
0 0 1 1

2 1

0 1

,
0: , , 0,

, ,

, ,
,

j j
j

t
t t h P

T

t P P

t t
T T

∈Ξ

∂ξ θ= ξ θ = μ =
∂

ξ θ = ξ μ + ξ μ

∂ξ θ ∂ξ θ= −
∂ ∂



( )1
na ( )1

nb ( )2
na ( )2

nb

( ) ( )1 1
,

1 0; ( , 0,1,2, );;
2n j n j n

j

a h b j n
∈Ξ

= δ = ∈ Ξ = …

( ) ( ) ( )( )
( ) ( )( ) ( )

2
2, 2,

2
, , , ,

1
2

, 0.
4

n j n n j n n j
j

j q
j q n j q n n

j q

a h N N

h h
N N b

− +
− +

∈Ξ

+ −

∈Ξ ∈Ξ

= − δ + δ

− + =




COLLOID JOURNAL  Vol. 84  No. 2  2022



CAPILLARY WAVES AND DIPOLE ELECTROMAGNETIC RADIATION GENERATED 147
smallness in solution (17) for the perturbed droplet
surface as follows:

(30)

Thus using relations (2), (13), and (17), we derive
an analytical expression that describes the shape of the
perturbed surface of an uncharged droplet oscillating
in an external electrostatic field with an accuracy of
the terms of the second order of smallness in the
form of

(31)

where amplitude coefficients  are determined
by Eqs. (30).

6. The problem of the 5/2 order with respect to ε. To

find coefficients  in solution (16), let us present
the set of equations obtained from conditions (8) and

(10) by grouping tems :
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Here,  is the correction of the 5/2 order of small-
ness to the value of the droplet surface potential.

Substituting expansions (17) at m = 1; 2 and solu-
tion (16) at k = 3/2; 5/2 into relation (32), we obtain
expressions for  as

(33)

with numerical coefficients – , which depend
only on , being presented in the Appendix.

7. Surface charge density. Let us determine surface
density  of charges, which are induced by an
external electrostatic field and distributed over a per-
turbed surface of a nonlinearly oscillating conducting
droplet, by the following known equation:
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(34)

where  is determined by relation (30).

Substituting expansion (13) with account of rela-
tions (2) and (14) and the vector of the normal to the
perturbed droplet surface in the form of the power
expansion in terms of small parameter ε with an accu-
racy of terms :

(35)

into Eq. (34), we derive the surface density of the in-
duced charge with an accuracy of terms :

In Eq. (35),  and  are the unit vectors of the
spherical coordinate system.

Taking into account the pattern of the  and

 functions from relation (31) and the solution
for the corrections of the 3/2 and 5/2 orders to the
electric potential:
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we write the surface charge density as the expansion in
terms of the Legendre polynomials:

(37)

Numerical coefficients – , which
depend only on , and  and , which
depend on  and , are presented in the Appendix to
avoid overloading the text with trivial expressions.

It follows from the pattern of relation (37) that, in
the absence of perturbation, the surface density of an
induced charge is determined by the two first terms in
the curly brackets.

8. The values of induced charges. The values of the
opposite induced charges on different halves of a per-
turbed droplet surface  are determined by the
following equations:
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(38)

Here,  and  are the positive and negative
induced charges, respectively, while  is specified
by expression (30).

The induced charge is expanded in terms of the
half-integral powers of parameter ε, because .
In this way, we determine relation (38) with an accu-
racy of the terms of the  order.

Since the induced charge distribution is symmetric
with respect to the equatorial plane, let us consider
positively charged half S1 of the perturbed spheroidal
droplet.

Substituting surface charge density (37), normal
vector (35), and perturbed droplet surface shape (31)
into expression (38) and integrating the obtained
expression over surface , we find the value of the
positive induced charge as the power expansion in
terms of small parameter ε with an accuracy of terms

:

(39)

where numerical coefficients  and , which
depend only on , and  and , which
depend on , , and , are presented in the Appendix,
because their expressions are cumbersome.

As a result, taking into account expressions for
amplitude coefficients  and  from rela-
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tion (30) and passing from formal parameters  and
 to physical denotations, we derive the following

analytical equation for the opposite induced charges in
the dimensional form:

(40)

where  is written with sign minus. The time depen-
dences for the values of the charge induced in the
droplet are presented in Fig. 1 in the dimensional
form. Note that all subsequent plots will also be pre-
sented in the dimensional form.

The dependences in Figs. 1a and 1b have been cal-
culated for different droplet radii, because a change in
the radius causes noticeable quantitative changes in
the plots along both the ordinate and abscissa axes.
This fact deserves attention, because it affects both the
width and intensity of radiation emitted by a real
cloud.

Numerical (depending only on ) coefficients
–  and coefficients – ,

which depend on not only , , and , but also initial
amplitudes , , and , are presented in the
Appendix.

Figure 2 illustrates the dependences of deviation
 in the value of the induced positive charge of

the droplet from its stationary value

 on time . It is seen that

the asymptotic calculations of the second order of
smallness with respect to ε lead to an insubstantial
nonlinear correction to the value of .

9. The model of an oscillating dipole. Let us replace
equal opposite induced charges  and  by equal
point charges (the values of which depend on time)
spaced from each other at some distance, which is
smaller than the droplet diameter. These charges are
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Fig. 1. Time dependences  of the positive charge
induced in a droplet in an electrostatic field at an initial
excitation of the equilibrium droplet surface shape having

the form of , ,

 kg/m3, and  V/cm ( ).
Curves 1 and 2 correspond to linear and nonlinear droplet
oscillations, respectively: R = (a) 10 and (b) 30 μm. 
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Fig. 2. Time dependences  of deviations of the pos-
itive charge induced in a droplet from its equilibrium value
in an electrostatic field. The dependences have been calcu-
lated at the values of the physical parameters the same as
in Fig 1: R = (a) 10 and (b) 30 μm. 
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located in the symmetry axis of a spheroid at the posi-
tions of the “effective” centers of the positive and neg-
ative charges, with these positions being determined
by the following relations:

The capillary oscillations of the spheroid surface
will be accompanied by the oscillations of the values of
the “effective” induced charges and the distance
between the centers of thereof. As a result, we obtain
“effective” dipole

(41)
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which will oscillate and radiate electromagnetic
waves in accordance with the following known expres-
sion [8, 9]:

(42)

According to Eq. (42), it is easy to write an analyt-
ical expression for the electromagnetic radiation
intensity of a single droplet taking into account
Eq. (41). To do this, we only need analytical expres-
sions of radius vectors  for the displacements of
the “effective” centers of the charges induced in the
spheroidal droplet.

Note that the expansions for the displacements of
the centers of the opposite induced charges are per-
formed in terms of the integral powers of small param-
eter ε; therefore, subsequent calculations of  will
be carried out with an accuracy of terms on the order
of ~ ε2.
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To determine the position of the “effective” center
of the induced charge on a half of a droplet, we take
into account that radial unit vector  in the spherical
coordinate system is related to unit vectors , ,  of
the Cartesian coordinate system as follows:

(43)

Since the electric field strength vector is directed
along the  axis, the centers of the opposite induced
charges of the droplet are not displaced in the 
plane:

Taking into account relation (43), we determine
the projection of the displacement vector for the cen-
ter of the positive induced charge along the  axis as

Calculating the integral over the half of the spher-
oid surface area  with regard to expressions (31),
(35), and (37) and substituting the value of the positive
induced charge from Eq. (39) into the obtained rela-
tion, we determine  as a power expansion in terms
of small parameter ε with an accuracy of terms on the
order of :
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, and , which depend on , , and ,
being presented in the Appendix.

Finally, using the expressions for amplitudes

 and  from relation (30) and passing
from formal parameters  and  to physical denota-
tions, we determine the position of the “effective”
center of the positive induced charge of the droplet in
the dimensional form as

(44)

Numerical coefficients – , which
depend only on , and coefficients –

, which depend not only on , , and , but
also on initial amplitudes , , , and , are pre-
sented in the Appendix, because the expressions for
them are very cumbersome.

Figure 3 illustrates displacements  of the
center of the positive charge induced in the droplet
from its stationary equilibrium position

 as functions of time . It is clearly

seen that the nonlinear correction to the  value
determined by the calculations of the first order of
smallness makes no substantial contribution to this
value.
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Fig. 3. Time dependences  of displacements of the
center of the positive charge induced in a droplet from its
equilibrium position. The dependences have been calcu-
lated at the values of the physical parameters the same as
in Fig. 1. Curves 1 and 2 correspond to  functions
at linear and nonlinear droplet oscillations, respectively:
R = (a) 10 and (b) 30 μm. 
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The analytical expression for the position of the
“effective” center of the negative induced charge is
found in the dimensional form for the other half of the
spheroidal droplet in a similar way:

(45)

where the sign of function  in Eq. (44) differs from
that of  only for the odd values of initially excited
oscillation modes .

Substituting expressions (40), (44), and (45) into
relation (41), we find the projection of the dipole
moment onto the  axis as follows:
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Fig. 4. Time dependences  of dipole moment projec-
tion onto the z axis. The dependences have been calculated
at the values of the physical parameters the same as in Fig. 1.
Curves 1 and 2 correspond to  functions at linear and
nonlinear droplet oscillations, respectively: R = (a) 10 and
(b) 30 μm. 
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Fig. 5. Time dependences  of the correction to the
stationary projection of the dipole moment onto the z axis.
The dependences have been calculated at the values of the
physical parameters the same as in Fig. 1. Curves 1 and 2
correspond to corrections  of the first and second
orders of smallness with respect to ε, respectively: R = (a)
10 and (b) 30 μm. 
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Figure 4 shows projections  of the dipole
moment onto the z axis as functions of time t. It is seen
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that nonlinear oscillations of the droplet give a small
correction to the  value, which is related to the
linear droplet oscillations.

In particular, it is distinctly seen in Fig. 5
that the correction of the second order of
smallness with respect to ε to stationary value

 in Eq. (46) is

determined by higher frequencies than the correction
of the first order of smallness.

Figures 6 and 7 show the dependences of the drop-
let oscillation frequencies on the droplet radius for the
linear and nonlinear corrections to the  value. It is
seen that, as the droplet size increases, its oscillation
frequencies decrease according to a nearly hyperbolic
law. 

Proceeding from relation (42), taking into account
Eq. (46), and replacing the cosines and sines in the
functions by their maximum values for the qualitative
analysis being performed, we obtain the following
dimensional analytical expression for the intensity of
the dipole radiation of an uncharged droplet nonlin-
early oscillating in an external electrostatic field:

( )zd t

( ) ( ) ( )eq 3 2 2
0 0

1 14 1 1
3 15zd E R e e= πε + +

( )eq
zd
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Fig. 6. Droplet oscillation frequency  as depending on

the droplet radius for the correction to  having the
first order of smallness with respect to ε. The dependence
has been calculated at the values of the physical parameters
the same as in Fig. 1. 
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Fig. 7. Droplet oscillation frequencies  as depending on
the droplet radius for the correction to the stationary value

of  having the second order of smallness with respect
to ε. The dependences have been calculated at the values of
the physical parameters the same as in Fig. 1. Droplet
oscillation frequencies are (1) , (2) , (3) ,
(4) , (5) , (6) , (7) , and (8) . 
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(47)

Equation (47) enables one to estimate the intensity
of the background noise electromagnetic radiation of
various artificial and natural liquid-droplet systems,
such as convective clouds.

Large-amplitude oscillations of cloud droplets can
be caused by different reasons, such as coagulation,
disintegration into smaller droplets due to collisions or
realization of electrostatic instability, hydrodynamic
and electric interactions between closely f lying drop-
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lets, and aerodynamic interactions with a developed
small-scale turbulence inherent in thunderstorm
clouds. According to the data of natural observations
[25, 26], oscillation amplitudes of cloud droplets may
reach several tens of percents of a droplet radius. In the
subsequent estimations, dimensionless oscillation
amplitude ε will be taken equal to 0.1. The value of
Taylor parameter  in the electrostatic
fields of thunderstorm clouds [18] is much lower than
the critical value of parameter wcr [4]; i.e., the majority
of the cloud droplets are rather far from the limit of
instability with respect to the induced charge.

Figure 8 shows the dependence of radiation inten-
sity  on external electric field strength , with this
dependence being calculated by Eq. (47). It is seen that
the radiation intensity rapidly increases with .

Figure 9 illustrates the dependence of  on droplet
radius . This dependence is seen to be rather weak.

Figure 10 shows the dependences of radiation
intensity  on time , with these dependences being
calculated at fixed values of  and  by exact expres-
sion (42) taking into account Eqs. (40) and (46) (with-
out replacing the cosines and sines by their maximum
values).

In Fig. 10, the scale of variations in time is rather
large, and the shapes of individual peaks are difficult
to guess. Therefore, the shapes of individual peaks pre-
sented in Fig. 11 have been taken from the initial part
of Fig. 10 (the very left-hand part of it).

2
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Fig. 8. Dipole electromagnetic radiation intensity  as
depending on external electrostatic field strength for an
uncharged droplet nonlinearly oscillating in a uniform
electrostatic field. The dependence has been calculated at
the values of the physical parameters the same as in Fig. 1. 
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Fig. 9. Dipole electromagnetic radiation intensity  as
depending on the droplet radius for an uncharged droplet
nonlinearly oscillating in a uniform electrostatic field. The
dependence has been calculated at the values of the physi-
cal parameters the same as in Fig. 1. 
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CONCLUSIONS

Dipole electromagnetic radiation emitted by an
uncharged droplet in an external electromagnetic field
is caused by nonuniform time variations in the value of
its oscillating dipole moment, which is induced by the
field. Quadratic calculations of dipole radiation inten-
sity performed within the method of many time scales
have shown that the results obtained exhibit qualitative
similarity to the previously studied dipole radiation of
an oscillating charged droplet and some quantitative
difference from the latter [14]. It has appeared that the
frequency of the quadratic corrections to the frequen-
COLLOID JOURNAL  Vol. 84  No. 2  2022
cies for a droplet in an electric field is several times
higher than the frequency of the linear oscillations, as
well as it is for a charged droplet. However, the depen-
dence of the electromagnetic radiation intensity on the
radius of a droplet oscillating in an electrostatic field is
manyfold weaker than that for an oscillating charged
droplet. The study of the time evolution of the inten-
sity of the electromagnetic radiation emitted by an
individual droplet has shown that the radiation has the
character of “beats;” i.e., the pattern of packets com-
posed of elementary (carrier) waves.

APPENDIX
Expressions for coefficients –  in Eq. (33):

Expressions for coefficients – , , and  in Eq. (37):
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Fig. 10. Dipole electromagnetic radiation intensities as
depending on time t for an uncharged droplet nonlinearly
oscillating in a uniform electrostatic field. The depen-
dences have been calculated by Eq. (42) taking into
account relations (4) and (46) and the values of the physi-
cal parameters the same as in Fig. 1: R = (a) 10 and
(b) 30 μm. 
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Fig. 11. Dipole electromagnetic radiation intensities  as
depending on time t for an uncharged droplet nonlinearly
oscillating in a uniform electrostatic field. The depen-
dences have been calculated at the values of the physical
parameters the same as in Fig. 1 for the first three peaks in
Fig. 10. 
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Expressions for coefficients , ,  and  in Eq. (39):
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Expressions for coefficients – , and –  in Eq. (40):
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Expressions for coefficients , , , – , , and  in Eq. (44):
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Expressions for coefficients –  and –  in Eq. (44):
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Expressions for coefficients –  and –  in Eq. (45):
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