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Abstract—This work acquaints readers with the contemporary apparatus of chemical thermodynamics in the
surface and colloid science. The J potential is a new parameter, which represents a series of thermodynamic
potentials and is determined for f luid systems as a grand thermodynamic potential in combination with the
product of a system volume and some pressure  A classification has been given with discrimination of the
classical J potential (when  is an external pressure) and special J potentials (at other values of ). For both
classes, hybrid types of the potentials have been considered, when chemical potentials are chosen as variables
for one group of components, while the number of molecules or moles is selected as such for another group.
The main attention has been focused on the application of all considered types of the J potential to a system
containing a planar thin film. In particular, a case has been analyzed in which the pressure in the mother
phase of a thin film plays the role of . Resulting fundamental equations have been formulated in terms of
the disjoining pressure.
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INTRODUCTION
Of the two components of thermodynamics, i.e.,

heat and work, the latter is incomparably more com-
plex and multifaceted for description; therefore, it may
be said that a type of thermodynamics is primarily
determined by the manner in which the work is calcu-
lated. Gibbs’ thermodynamics differs from previous
methods in the fact that the work is calculated with the
use of thermodynamic potentials, i.e., special thermo-
dynamic functions having the dimensionality of
energy, with the work being determined by variations
in these functions under preset external conditions. In
addition to the heat and work, Gibbs’ development of
the chemical potential, which symbolizes the chemi-
cal component of thermodynamics, was a still larger
step in this field. Thus, the chemical thermodynamics,
within the framework of which we operate, was devel-
oped.

Initially, the thermodynamic potentials were for-
mulated for homogeneous (one-phase) systems. They
were, e.g., energy

(1)

free energy

(2)

grand thermodynamic potential

(3)

and Gibbs free energy

(4)

where T is the temperature, S is the entropy, p is the
external pressure, V is the volume, and  and  are
the chemical potential and the number of molecules
(or moles) of an ith component. Thermodynamic
potentials (1)–(4) are most widely used in the thermo-
dynamics of solutions.

We should also note hybrid thermodynamic poten-
tial

(5)

in which the summation over i is not extended to all
components of a system.

Such a potential was, for the first time, introduced
in the solid-state thermodynamics [1], where i and j
denoted mobile and immobile components of a solid.
However, the components may, in the general case, be
divided into the i and j groups arbitrarily, and it is this
manner in which hybrid potential (5) should be inter-
preted. Then, it may be stated that potential  plays
the role of the grand thermodynamic potential
for the i-group components and the free energy for the
j-group ones.

We have noted that, when passing to the grand
thermodynamic potential, the sum comprising the
chemical potentials is subtracted from the free energy,
while, when passing to the Gibbs free energy, the
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term –pV is subtracted. What will be obtained if we
subtract both of them? For an ordinary (nonhybrid)
potential, we shall obtain zero and the sense will be
lost. However, this concerns only a homogeneous sys-
tem. Colloid science deals with complex heteroge-
neous systems comprising a number of phases, inter-
faces, and lines; therefore, the introduction of a new
thermodynamic potential may appear to be useful.
The author has realized this idea in [2, 3]. This new
thermodynamic potential has not name yet; however,
it has been denoted by character J (this is natural tak-
ing into account that energy E, enthalpy H, and ther-
modynamic potentials are, mainly, denoted by initial
letters of the Roman alphabet). It may be referred to as
the “J pоtential” for short.

Taking into account that a system may contain
solid phases, the J potential under an arbitrary external
load may be determined in the most general form as
follows [2, 3]:

(6)

where P is an external force (stress) applied to unit sur-
face area of a system as a function of the position on
the surface (A), u the local vector of surface displace-
ment, and A is the surface area. The integration is per-
formed throughout the system surface. If the system is
surrounded by a f luid medium, and external pressure
p is the only mechanical action, the determination of
the J potential may be simplified to [3]

(7)
where V is the total volume of the system (proponents
of rigor should be reminded that any thermodynamic
potential is determined with an accuracy of a con-
stant). According to Eq. (3), for a homogeneous sys-
tem, definition (7) yields zero; however, we shall deal
with complex systems. The J potential was somewhat
approved in [3], where the derivations of the classical
Neumann equation (for the mechanical surface ten-
sion) and Young equation (for the thermodynamic
surface tension) were rather strikingly simplified.

In this communication, we would like to introduce
the J potential into the thermodynamics of thin films.
However, let us initially generalize the definition of the
J potential (7) to the following form:

(8)

where  is some chosen pressure. This may be a pres-
sure external with respect to a heterogeneous system as
a whole, a pressure in a phase of a heterogeneous sys-
tem, or any other pressure. In version (8), the term
“J potential” already means a number of potentials of
certain types. Similarly to the passage to the Gibbs
energy, in the classical approach,  is taken to be an
external pressure  For short, we shall refer to
this type of the J potential as “classical” (denoted as

 while all other types originating from Eq. (8) will
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be called “special” J potentials (denoted as  Now,
we may state that definition (7) introduced in [3] refers
only to the classical J potential, while definition (8)
refers to the special J potentials.

The thermodynamics of thin films is a relatively
new scope of chemical thermodynamics. This scope
goes beyond the limits of the Gibbs thermodynamics
and was formulated in the mid-20th century [4–9]
(see [10, 11] for a modern review). A thin film is dis-
tinguished by the existence of disjoining pressure [12]:

(9)

where  is the external pressure applied to the film
and  is the pressure in equilibrium mother bulk
phase β of the thin film. Being in contact with the film
edge, phase β may be at equilibrium with the film;
however, the real presence of this phase is not neces-
sary (  may be a pressure calculated for phase β at
values of temperature and chemical potentials equal to
those in the film). The discovery of the disjoining
pressure and its subsequent study by Derjaguin’s
school have been described in detail in monograph
[13].

GENERAL RELATIONS 
FOR THE J POTENTIAL

Although solid substrates often appear in film the-
ory, this is of no importance for thermodynamics. For
simplicity, we shall deal with the thermodynamic for-
malism of liquid phases and use definition (8). Let us
initially write an equation for the grand thermody-
namic potential as applied to an arbitrary multiphase
multicomponent system:

(10)

where k is the number of a phase with pressure  and
volume  s is the number of a surface with surface
tension  and area , and t is the number of a line
with line tension  and length  Now, let us write a
differential fundamental equation for the grand ther-
modynamic potential. In the simplest case of a homo-
geneous system, the following is written for grand
potential (3):

(11)

However, we consider a complex heterogeneous sys-
tem. In an equilibrium state, the temperatures and
chemical potentials in all regions of a system are equal
irrespective of its complexity. Therefore, the first two
terms in the right-hand side of Eq. (11) always remain
preserved. At the same time, the pressures may be dif-
ferent in different regions of the system; however,
when a system is in an equilibrium state, a change in
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any thermodynamic potential due to work is possible
only when the work of external forces is concerned. In
this case, the third term in the right-hand side of
Eq. (11) remains preserved, provided that parameter p
denotes the external pressure. In addition, external
forces may cause changes in the surface areas and line
lengths (of course, those that reach system boundar-
ies; surfaces and lines limited inside of the system may
be beyond their number), so that corresponding terms
are trivially added to the right-hand side of Eq. (11).
As a result, differential fundamental equation (10) for
the grand potential acquires the following form:

(12)

To make the picture complete, let us, meantime, pres-
ent the following fundamental equation for hybrid
potential 

(13)

Now, let us find the fundamental equations for the
J potential. Using definition (8) and taking into
account the obvious condition

(14)

we, from Eqs. (10) and (12), obtain

(15)

(16)

Remember that the value of р in Eq. (16) is the external
pressure. If  is also the external pressure (the case of
the classical J potential), Eqs. (15) and (16) are trans-
formed as follows:

(17)

(18)

Equation (18) may be simplified. For this purpose,
using again Eq. (14), we add to and subtract from the
right-hand side of Eq. (18) expression ,
while keeping in mind that, for each bulk phase, the
Gibbs–Duhem equation,
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(19)

is valid. This equation eliminates the components of
the first two terms in the right-hand side of Eq. (18),
with these components being relevant to the bulk
phases. Then, Eq. (18) takes the following form:

(20)

where the bars denote excess values relevant to the sur-
faces and lines. It may be stated that Eq. (20) for the
classical J potential “suggests itself” to be used in sur-
face thermodynamics.

By analogy with Eq. (8), we may obtain the hybrid
J potential via hybrid grand thermodynamic potential

 as

(21)

and write the following fundamental equations:

(22)

(23)

Here, we may also distinguish between the classical
hybrid J potential (at ) and special hybrid J
potentials. For the classical hybrid J potential, funda-
mental equations (22) and (23) are simplified to the
following form:

(24)

(25)

For each special hybrid J potential, Eqs. (22) and (23)
are transformed in accordance with the selection of
pressure 

CLASSICAL J POTENTIAL OF A SYSTEM 
COMPRISING A THIN FILM

Assume that the thin film is located between phases
α and γ (denotation β will be saved for the mother
phase of the film). Both the αγ interface and the thin
film at it are assumed to be planar. Let us see how the
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Fig. 1. Phases, dividing surface, and surface tension in the
Gibbs method.

α
σαγ

γ

classical J potential looks for such an object in differ-
ent approaches.

Standard Gibbs’ Approach
In Gibbs’ thermodynamics, a thin film is not dis-

tinguished as a separate object and is considered as any
other part of an interface. For an α–γ two-phase sys-
tem containing a thin film (Fig. 1), the J potential is
formulated according to Eq. (17) as follows. Super-
script k acquires the meanings of α and γ. Therewith,

 because the only surface present in the sys-
tem is planar. It is obvious that, in this case,  plays
the role of an external pressure and, hence, is equal to
р; then, the first term in the right-hand side of Eq. (17)
vanishes. Lines are absent in our system and a single
surface is present; hence, according to Eq. (17), we
may write

(26)
or (since the areas of the parallel dividing surfaced are
equal, the index of the area may be omitted)

(27)

where  is the surface density of the classical J poten-
tial.

On the other hand, according to Eq. (20),

(28)

Equations (26) and (28) immediately yield the Gibbs
adsorption equation

(29)

or

(30)

where  is the excess entropy per unit surface
area and  is the absolute adsorption of com-
ponent i. Since excess values depend on the chosen
position of a dividing surface, Eq. (29) is considered in
combination with Gibbs–Duhem equation (19) for
the phases adjacent to the surface. By excluding one of
chemical potentials , coefficients at dT and  are
transformed into combinations of values that are
invariant with respect to displacements of the dividing
surface and are denoted as  and , respectively.
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Parameter  is referred to as the “relative adsorp-
tion” of component i (relative to component j) and
does not depend on the position of the dividing sur-
face. Numerically,  is equal to  for a position of
the dividing surface in which the condition  is
fulfilled. The passage from the absolute to relative
adsorption values is a very simple operation in Gibbs’
thermodynamics of surfaces. This is a way to trans-
form Gibbs adsorption equation (30) into the real
physical relation

(31)

which is also called “Gibbs’ adsorption equation.” No
relation with a thin film is seen in Eqs. (26) and (28),
but it is hidden in the value of  For example, some
terms of the Gibbs adsorption equation for  may be
relevant to the components of the thin film.

Gibbs Method with Two Dividing Surfaces

To transform a thin film into an explicit object of
an interface, it is necessary to introduce two dividing
surfaces [8–10]. This approach follows from the idea
of the existence of a third bulk phase (mother phase β
of the film), the thinning of which has resulted in the
formation of the thin film. A real or imaginary phase β
must be at equilibrium with the thin film (i.e., it must
have the same values of temperature and chemical
potentials). Hence, it is clear that definition (9) of dis-
joining pressure has a thermodynamic character,
although it comprises mechanical parameters. Now
the Gibbs excesses are determined as follows. The
space between two parallel interfaces is mentally filled
with phase β, thereby passing to a three-phase system
with interfaces αβ and βγ (Fig. 2). For the αβ inter-
face, the excesses are taken from the sides of phases α
and β, while they are taken from the sides of phases β
and γ for the βγ interface. It is essential that, in the case
of a thin film, excesses (of, e.g., adsorption) on both
sides of phase β are not independent and must be con-
sidered jointly. This also concerns, in particular, sur-
face tensions  (between phases α and β) and 
(between phases γ and β) presented in Fig. 2.

Now, let us formulate an expression for the
J potential in accordance with Eq. (17). Obviously, it is
of no significance which phase (α or γ) is considered
to be external, because they both have the same pres-
sure  which is external pressure p. In this case, the
awkward terms for phases α and γ in Eq. (17) disappear
and only one term relevant to phase β remains pre-
served. On the contrary, two surface-related terms
remain, because we now have two dividing surfaces. As
a result, we, from Eq. (17), obtain

(32)
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Fig. 2. Arrangement of phases and the surface tensions in
the method of two dividing surfaces located at distance H
from one another.

α
σα

σγ
γ

βH
or, after disjoining pressure (9) is introduced,

(33)
Equation (33) yields the following expression for the
surface density of the J potential:

(34)

where  is the distance between the dividing
surfaces, which, after corresponding refinements, may
be taken to be the thin film thickness.

The comparison between Eqs. (26) and (34) leads
to relation

(35)
which has been known in the thermodynamics of thin
films since the publication of [4–8] and was obtained
there in another way. At , the disjoining pres-
sure more rapidly tends to zero, thereby leading prod-
uct  to zero. Thus, the right-hand sides of
Eqs. (34) and (35) are transformed into the sum of
now independent surface tensions  and  while
the thin film is transformed into a thick one. Let us
express this important result as follows:

(36)

Now, let us consider the differential fundamental
equation for the classical J potential. Once more,
assuming that  and taking into account the
existence of two surfaces and the absence of lines, we,
from Eq. (20), find

(37)

or, with allowance for definition of disjoining pressure
(9),

(38)

Now, comparing Eqs. (33) and (38), we derive the
Gibbs adsorption equation in the following form:

(39)

where  and  After dividing
by А, Eq. (39) is transformed as follows [10]:

(40)

or, using Eq. (35) [11], we obtain

(41)

After the standard passage from the absolute to rel-
ative adsorption values, Eqs. (40) and (41) acquire the
following form [10, 11]:
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(43)

The meaning of the values entering into Eqs. (42) and
(43) was discussed in detail in [10], including  as
the thermodynamic definition of the thickness of a
thin film, with this definition being related to the pas-
sage to relative adsorption and the pattern of the sur-
face with zero adsorption.

HYBRID CLASSICAL J POTENTIAL

Now, let us consider the use of the classical
J potential in the hybrid form. The general notation
that we used above does not exclude the possibility of
penetration of all system components into all phases,
and this is the most complex case for the identification
of a thin film. However, as a matter of fact, there is no
film in this case, but there is a surface layer, i.e., a tran-
sition interfacial zone. The term “film” implies a cer-
tain segregation of a substance. The simplest case is
represented by phases α and γ that are insoluble in
everything and dissolve nothing; i.e., they are abso-
lutely indifferent with respect to other substances in
the system. Such substrates are incapable of penetra-
tion and have distinct boundary surfaces, the distance
between which specifies the thickness of the thin film.
These substrates may be formally considered to be
one-component. Let the components of phases α and
γ have numbers m and n, respectively. As in the previ-
ous section, let us determine the pattern of the funda-
mental equations for the hybrid classical potential in
the cases of one and two dividing surfaces.

One Dividing Surface

In this case, we, from Eqs. (24) and (25), have

(44)
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where the only residual term with the summation sym-
bol obviously refers to the components of the thin
film. The differentiation of Eq. (44) and comparison
with Eq. (45) yields the relation

(46)

which is an analog of the Gibbs adsorption equation
for a surface layer with a finite thickness [8] (it must be

 however, since  and, at one
dividing surface,  this is ).

Phases α and γ obey the Gibbs–Duhem equations

(47)

allowance for which leads to the mutual cancellation
of all terms for both bulk phases in (46). This trans-
forms Eq. (46) into the Gibbs adsorption equation

(48)

where the bar denotes an excess generated at a given
dividing surface relative to phases α and γ. The last
term has remained unchanged; however, this does not
mean that we have not passed to excesses. The issue at
hand is that thin film components denoted by sub-
script i are absent in both phases α and γ; therefore,
their real amounts  simultaneously represent the
excesses with respect to these phases.

Two Dividing Surfaces

For this case (see Fig. 2), the same Eqs. (24) and
(25) yield

(49)

(50)

Using definition (9), condition (14), and equality
 we obtain

(51)

and, then, Eq. (50) acquires the form

(52)

Now, the differentiation of Eq. (49) and comparison
with (52) lead to the equation
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(53)

which represents an analog of the Gibbs adsorption
equation for a finite-thickness surface layer when two
dividing surfaces are used. When simplifying Eq. (53)
with the use of the Gibbs–Duhem equations, it should
be kept in mind that Eqs. (48) are supplemented with
their analogs for phase β:

(54)

Taking into account Eqs. (48) and (54), Eq. (53) is
transformed as follows:

(55)

Remember that, in the method of two dividing sur-
faces, the excesses are taken not only from the sides of
phases α and γ, as in the previous example, but also
from the side of phase β. As a consequence, instead of

, excess values  have appeared in Eq. (55). Equa-
tion (55) itself in fact coincides with Eq. (39), where
subscript i refers to all phases. Therefore, everything
that applied to Eq. (39) is applicable to Eq. (55).
Equation (48) occurs in an analogous situation, and,
to avoid repetition, the discussion of Eqs. (48) and
(55) in this context may be ended.

SPECIAL J POTENTIAL OF A THIN FILM
Let us return to fundamental equations (15) and

(16) and take  Since  is the pressure in the
mother phase of a thin film, this choice is distin-
guished by the fact it may refer only to the case in
which a thin film exists. When addressing to Figs. 1
and 2, we shall, as before, consider  to be an external
pressure  Accordingly, we rewrite
Eqs. (15) and (16) as follows:

(56)

(57)

Let us determine the pattern of Eqs. (56) and (57) in
approaches with different dividing surfaces.

One Dividing Surface
It is seen in Fig. 1 that there are only two phases (α

and γ) in this case, and the use of the pressure in a third
phase may seem to be strange. However, as we have
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mentioned above, phase β may be imaginary. Let us,
nevertheless, see what we shall have as a result. Taking
into account definition (9) and the absence of lines,
Eqs. (56) and (57) acquire the form

(58)

(59)

(remember that, in this approach, ).
Having added and subtracted  in the right-hand
side of Eq. (59) and using Gibbs–Duhem
equation (47), Eq. (59) is simplified to

(60)

Now, differentiating Eq. (58) and comparing with
Eq. (60), we, as might be expected, arrive at Gibbs
adsorption equation (29). This indicates that the for-
mulation of this approach is physically valid.

Two Dividing Surfaces
Now, we have two surfaces and three bulk phases

(Fig. 2). Therefore, Eqs. (56) and (57) are written in
the following form:

(61)

(62)

where  Taking into account this
relation and definition (9), Eq. (62) may be repre-
sented as

(63)

Now, using Gibbs–Duhem equations (47) and (54),
we reduce Eq. (63) to

(64)

Finally, differentiating Eq. (61) and comparing it with
Eq. (64), we obtain the above-considered variant of
Gibbs adsorption equation (39), which enables us to
interrupt the discussion of this approach.

HYBRID SPECIAL J POTENTIAL 
OF A THIN FILM

Let us return to general fundamental equations
(22) and (23) for the hybrid J potential and apply them

s ,J V Aαγ= −Π + σ

s i i
i

dJ SdT N d dV Vdp dAβ αγ= − − μ − Π + + σ

V V Vα γ= +
Vdpα

s ( ) .i i
i
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s

( ) ,
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i
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s
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( ) .
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β
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s

[ ( )] ( ) .
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i

dJ SdT N d dV

d V V dA

β

α γ α γ

= − − μ − Π

− Π + + σ + σ



to the hybrid special J potential at  and

(65)

(66)

As in the case of the hybrid classical J potential, we use
as an illustrative example

(67)

when phases α and γ are insoluble, impermeable, and
formally one-component. Now, let us monitor the
transformations of Eqs. (65) and (66) that occur in the
approaches with one and two dividing surfaces.

One Dividing Surface

Taking into account definition (9), condition (67),
and the existence of only two phases (
we have

(68)

(69)

It is convenient to transform Eq. (69) by adding and
subtracting  in the right-hand side and using defi-
nition of disjoining pressure (9):

(70)

Now, differentiating Eq. (68) and comparing it with
(70), we arrive at an analog of the Gibbs adsorption
equation for a finite-thickness surface layer [8] written
above as Eq. (46). Subsequent manipulations involv-
ing the Gibbs–Duhem equations transform Eq. (46)
into the traditional Gibbs adsorption equation.

Two Dividing Surfaces

In this case ( ), Eqs. (65) and (66)
acquire the form

(71)
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(72)

Similarly to the passage from (62) to (63), Eq. (72)
may be written as follows:

(73)

Now, differentiating Eqs. (71) and comparing them
with (73), we again arrive at Eq. (53) as an analog of
the Gibbs adsorption equation for the interfacial
region containing a thin film. All subsequent opera-
tions are the same as those performed for Eq. (53), and
they are omitted here.

CONCLUSIONS
This work has acquainted readers with the contem-

porary apparatus of chemical thermodynamics,
including the J potential, which symbolizes a number
of thermodynamic potentials. It is known that the
physical result must not depend on the choice of a
thermodynamic potential. In this work, we have
repeatedly illustrated this fact by the example of the
Gibbs adsorption equation. In our case, this was of
additional importance from the point of view of veri-
fying the adequacy of the formulation of the new ther-
modynamic potential. The usefulness of the latter is
determined by the convenience of its use and the
external conditions under which it manifests itself.
The J potential is convenient for use in colloid science,
because, being not an excess value itself, it comprises
the Gibbs excesses of the thermodynamic parameters
with respect to surfaces and lines.

Of course, the represented set of the J potentials is
not exhaustive. We have focused our attention on het-
erogeneous systems comprising thin films, but con-
fined ourselves to the case of planar films. However,
within this framework, the question arises as to the

reason for which the J potential was not formulated
implying the value of  to be the external pressure. In
reality, there are systems in which the external phase is
represented by a mother phase of a thin film (e.g., that
surrounding a wall-adherent bubble with a wetting
film [14]). The answer is as follows. Since we have
begun to search for the J potential from the grand ther-
modynamic potential, the spatial region (which deter-
mines the volume) of a system may be outlined on the
basis of considerations of convenience. For example,
the system boundaries may be chosen in a manner
such that the external phase would be represented by
phase α (or γ), as is shown in Figs. 1 and 2. Then, 
will always be the external pressure.
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