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Abstract—We have considered the use of the finite element method for calculating the thermophoresis veloc-
ity of two solid aerosol particles with allowance for their mutual influence on each other. It has been assumed
that the sizes of the particles are much larger than the mean free path of molecules in a gas. The proposed
approach has been employed to numerically calculate the thermophoresis velocities of axially symmetric par-
ticles moving along their rotation axes. The motion of the following particles has been considered: two spher-
ical particles, a spherical particle and a f lattened spheroid, and a spherical particle and a prolate spheroid. The
results of the calculations for two spherical particles have been compared with the known data obtained ana-
lytically.
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INTRODUCTION
In a medium with nonuniform temperature, aero-

sol particles are affected by thermophoretic forces,
which induce their motion. Particles located at a
rather short distance from each other may substan-
tially influence their mutual motion. In real aerosol
systems, aerosol particles are most likely to approach
each other in pairs [1]. The effect of the interaction
between aerosol particles on their thermophoretic
motion was, for the first time, investigated in [2]. The
motion of two spherical particles with equal radii
along the line passing through their centers was con-
sidered taking into account temperature jumps and
isothermal slip of a gas on their surfaces. The same
problem was considered in [3] for particles with differ-
ent radii. Note that, at present, more complete bound-
ary conditions have been obtained than those used in
[2, 3]. A corresponding problem was solved in [4] for
particles with equal radii under more generalized
boundary conditions comprising effects linear with
respect to the Knudsen number. The motion of two
spherical aerosol particles with the same radius was
considered in [5] taking into account temperature
jumps and isothermal slip of a gas on their surfaces at
an arbitrary direction of gas temperature gradient
specified far from the particles and with allowance for
their rotation. An approximate reflection method was
used in that work. An exact analytical solution of this
problem was obtained in [6] by the method of separa-
tion of variables for large particles, i.e., particles the
sizes of which were much larger than the mean free
path of molecules in a gas. The thermophoretic

motion of two large aerosol particles along a line pass-
ing through their centers was considered in the same
work taking into account the phase transition on their
surfaces. The thermophoresis of two large liquid drop-
lets without taking into account the phase transition
on their surfaces was studied in [7].

The aforementioned analysis shows that, at pres-
ent, the thermophoretic motion of two spherical par-
ticles has been considered in detail. In practice, the
shape of particles may, however, be arbitrary. There-
fore, it is of interest to study approaches that make it
possible to calculate the thermophoresis velocities for
two aerosol particles with arbitrary shapes. In this
work, an approach is proposed that enables one to per-
form numerical analysis of such problems by the finite
element method. In the analysis, we shall confine our-
selves to the cases in which the particle sizes are much
larger than the mean free path of molecules in a gas,

while Reynolds number  and Peclet thermal

number  may be considered to be equal to

zero. Here, U is the characteristic velocity of particles,
l is their characteristic size, ν is the kinematic viscosity
of a gas, and χ is its thermal diffusivity. Therewith, the
particle motion is supposed to be induced by a gas
temperature gradient specified at a large distance from
the particles. Moreover, we assume that, as is known
from some additional considerations, e.g., the consid-
erations of symmetry, particles move without rotation.
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PROBLEM FORMULATION
Under the aforementioned limitations, the distri-

butions of temperatures   and , respectively,
inside the first and second aerosol particles and in
their vicinities are described by the Laplace equations
[8, 9]

(1)
while the distributions of velocities u and gas pressures
p in the vicinities of the particles obey the Stokes equa-
tions

(2)
(3)

where  is the dynamic viscosity coefficient of the gas.
In the reference system related to the gas quiescent at
a large distance from the particles, the boundary con-
ditions on the surface of the first particle have the fol-
lowing form [8, 9]:

(4)

(5)

(6)

(7)

Here,  is a normal directed from the surface of an
aerosol particle inward it,  is an arbitrary unit tangen-
tial vector drawn from a considered point of the sur-
face,  is the thermal conductivity coefficient of the
gas,  is the thermal conductivity coefficient of the
material of the first particle,   is the
thermal slip coefficient of the gas on the surface of the
first particle,  is the average temperature of the gas
at the particle surface, and  is the first pharticle
thermophoresis velocity determined from the condi-
tion of the zero force applied to the particle from the
side of the gas. The boundary conditions on the sur-
face of the second particle are identical:

(8)

(9)

(10)

(11)

Here,  is the thermal conductivity coefficient of the
second particle,  is the thermophoresis velocity of
the second particle,   is the thermal
slip coefficient of the gas on the surface of the second
particle, and  is the average temperature of the gas
at the surface of the second particle. Note that, when
numerical calculations are carried out at equal values
of  and , the values of  and  may also be
taken equal, because  and  are close to one
another. In the finite element method, the distribution
of this or that value is always searched for in some
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finite region, with some boundary conditions being
imposed on the boundary of this region. In our case,
we propose to specify the temperature distribution at
this boundary. Moreover, we assume that the bound-
ary located in the gas is situated at such a distance from
the particle that we may, with a required accuracy,
believe that, in the vicinity of this boundary, the gas is
quiescent and its pressure is constant.

GENERAL CALCULATION SCHEME
According to the finite element method, the region

in which the distribution of any value is sought is
divided into a set of subregions. As a result, a compu-
tational grid is obtained that is used to generate a set of
basic functions employed for the approximation of the
desired distribution. Therewith, because of errors con-
cerning the rounding, the obtained distribution f luc-
tuates about some true distribution. During the calcu-
lation of the surface integrals of the functions contain-
ing these distributions, the effect of the f luctuations is
accumulated, and the values of these integrals may be
calculated with a substantial error. This leads to the
fact that, even at a rather accurate calculation of the
gas f low velocity distribution, the forces applied to an
aerosol particle that are calculated on the basis of this
distribution may be obtained with a rather large error.
Therefore, in this work, we propose an approach that
enables us to calculate the velocities of the steady
motion of particles without the direct calculation of
the forces applied to them.

Let us express the velocities of the particles in the
following form:

Here,  and  are the components of the velocities
of the first and second particles, respectively, with
these components being due to the thermal slip of the
gas on the surface of the first particle. That is, when
calculating these velocities, instead of conditions (6)
and (7), the following conditions are used on the sur-
face of the first particle:

(12)

(13)

while, on the surface of the second particle, the fol-
lowing condition are imposed instead of conditions (10)
and (11):

(14)

(15)

Analogously,  and  are the components of the
velocities of the second and first particles, respec-
tively, with these components being due to the thermal
slip of the gas on the surface of the second particle.
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They are calculated using, instead of conditions (6)
and (7), the conditions

(16)

(17)
while conditions (10) and (11) are replaced by

(18)

(19)
Let us consider the calculation scheme for the val-

ues of  and . After the temperature distributions
have been determined, we exclude the subregion cor-
responding to the interior of the first particle, and the
velocity distribution in the gas will be calculated on the
basis of a newly constructed computational grid. The
calculation will be performed in the reference system
related to the first particle. In this reference system,
boundary conditions (12) and (13) acquire the form of

They may be rewritten as follows [10]:

(20)

where  is a vector external with respect to the calcu-
lation region and normal to its boundary. At the exter-
nal boundary of the calculation region, the condition
of gas quiescence in its vicinity is transformed into the
condition of a uniform distribution of the gas velocity.
Taking into account the constancy of the pressure at
the aforementioned boundary (this pressure with no
violation of the generality may be taken equal to zero
when calculating the velocity distributions); this, in
turn, leads to zero components of the viscous stress
tensor of the gas at this boundary (see the description
of this tensor below). It is this condition that will be
used as the boundary one for the boundary under con-
sideration. At the same time, we may believe that the
thus-calculated gas velocity at this boundary has an
absolute value equal to  and a direction opposite to
it. In turn,

where  is the velocity of the second particle relative
to the first. Therewith, conditions (14) and (15) are
transformed into the condition of the equality between
the gas velocity on the second particle surface and par-
ticle velocity . To calculate numerically this veloc-
ity, we shall consider the region of the second particle
as a region filled with some gas, the viscosity of which
is so high that it moves as a whole, i.e., as a solid par-
ticle. We shall refer to it as a “pseudogas.” Under this
approach, Eqs. (2) and (3) are applicable to the
regions of both the gas and the pseudogas, provided
that  is the viscosity of a substance at a considered
point, which may be located in both the gas and the
pseudogas. In the numerical calculations, we shall just
specify the substance viscosity in the region of the
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pseudogas much higher than that in the region of the
gas. On the boundary of the second particle, the con-
dition of the equality between the velocities of this par-
ticle and the gas will be met automatically due to the
fulfillment of Eq. (3) for continuity at this boundary.
The velocity obtained for any point of the pseudogas
will be equal to . Since the gas f low is steady, its
momentum remains unchanged, thereby correspond-
ing to the zero force applied to the second particle
from the side of the gas. Taking into account that the
gas f low is also steady and conditions that do not
change the gas momentum have been imposed on the
external boundaries other than the surface of the first
particle, we come to the conclusion that the first par-
ticle also does not change this momentum; hence, the
total force of the interaction between the first particle
and the gas is equal to zero.

Velocities  and  are calculated analogously.
The only difference is that, in this case, the computa-
tional grid is obtained by eliminating the subregion
corresponding to the interior of the second particle,
the calculation is carried out in the reference system
related to this particle, while the region corresponding
to the first particle is considered as a region filled with
the pseudogas.

CALCULATION OF THERMOPHORESIS 
VELOCITIES OF AEROSOL PARTICLES USING 
A WEAK FORM OF PROBLEM FORMULATION

Now, let us describe the scheme for calculating
desired distributions of temperatures and velocities by
the finite element method. This scheme is similar to
that described in [10]; therefore, some features that
may be found in the cited work will be omitted. At
present, several computer programs are available that
allow one to solve numerically the initial set of differ-
ential equations by the finite element method using a
weak form of the formulation of this set. It is natural
that the obtained expressions are desirable to be repre-
sented in a form convenient for using in an applied
program. In this work, the calculations are performed
using the freefem++ program [11]. According to this
program, it is assumed that only first-order derivatives
of the desired functions of coordinates will be used in
the expression describing the formulation of the prob-
lem in the weak form. This is associated with the fact
that the solution is sought as an expansion into a series
in terms of basic functions that belong to the Sobolev
first-order space.

Let us initially consider the calculation of the tem-
perature distribution. For this purpose, we write Eqs.
(1) as follows:

(21)

Here,  and  are the temperature and thermal
conductivity, respectively, of a substance at a consid-
ered point, which may be located both in the gas and
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in this or that particle. Following the traditional
approach [12], let us multiply the right- and left-hand
sides of Eq. (21) by some test function , which is
smooth in each subregion, and use the Green equation
for each subregion assuming that the desired distribu-
tion is also described by a smooth function inside of
each subregion. As a result, taking into account the
properties of the basic functions used for the extrapo-
lation of the desired distribution, we obtain the follow-
ing [12]:

where V is the volume of considered region ,  is
the boundary of the considered region, and S is its
area. As has been mentioned above, the distributions
of the desired values are searched for as expansions
into series in terms of basic functions with unknown
coefficients. The test functions are successively substi-
tuted into the final expressions to derive a set of equa-
tions for calculating these unknown coefficients.
According to the traditional approach [12], a desired
value distribution preset in some portions of the calcu-
lation region boundary is taken into account directly
when constructing the set of equations, while the value
of the test function in these portions is taken equal to
zero. This approach is used in the freefem++ program
[11]. Therefore, the w function is equal to zero at the
boundaries with preset temperatures, and, hence, the
integrand in the right-hand side of the obtained
expression is equal to zero as well. Consequently, the
right-hand side of this equation is equal to zero and
the final weak form is as follows [10]:

(22)

Note that the use of the Sobolev functional space for
the approximation of the desired solution automati-
cally ensures the continuity of the temperature distri-
bution and, hence, the fulfillment of conditions (4)
and (8). This, in turn, together with Eq. (21) provides
the fulfillment of conditions (5) and (9).

Let us now consider the calculation of velocity dis-
tribution. To obtain a corresponding weak form of the
problem concerning the velocity distribution, we pass
from Eq. (2) to the expression

(23)

which is equivalent to the former, provided that condi-
tion (3) is met [13]. Here,  is the viscous stress
tensor [14]:

where  is the unit tensor and  is the deformation
rate tensor,
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Multiplying Eqs. (23) and (3) by vector  and scalar 
test functions, respectively; integrating over the con-
sidered region; and carrying out a number of transfor-
mations [14], we derive the following:

By specifying the values of  in a portion of the
calculation region boundary, we may ensure the
uniqueness of the solution of this equation for the
velocity field, provided that the velocity has been
unambiguously specified for the rest of the boundary
[14]. The integration over the portions in which the
velocity has been preset is not performed, because the
value of the test function in such portions is taken to be
zero (see above). As has been mentioned above, com-
ponents  are equal to zero in all other portions.
Therefore, the first term in the last equation may be
omitted; as a result, we arrive at the following final
weak form:

(24)

Remember that, in this equation, , u, and p are,
respectively, the viscosity, velocity, and pressure of the
gas or the pseudogas at the point under consideration.

CALCULATION OF THERMOPHORESIS 
VELOCITIES FOR SPHERICAL

AND SPHEROIDAL PARTICLES
Let us employ the developed scheme for calculat-

ing the thermophoresis velocities of axially symmetric
particles moving along their common symmetry axis.
As a specific example, we consider the motion of a
spherical particle, which is referred to as the first one,
and a spheroidal particle, which is denoted as the sec-
ond one, along their common symmetry axis. A con-
stant gas temperature gradient  directed along
the symmetry axis is preset at a large distance from the
particles. Since, according to the finite element
method, the calculations are always carried out within
a finite region, the boundaries of this region are sup-
posed to be located rather far from the particles, while
the specification of the temperature gradient at infin-
ity is simulated by presetting a corresponding tem-
perature distribution at these boundaries. If the
desired distributions are axially symmetric, which is
the case, the requirements to computational resources
may be decreased many times by passing to cylindrical
coordinates, with this passage reducing the three-
dimensional problem to the two-dimensional one, in
which all distributions depend only on polar radius r
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and applicate z of the cylindrical coordinate system.
The data necessary for the passage to the cylindrical
coordinate system are available from [12] and the
manual for the freefem++ program.

Let us now consider the construction of the com-
putational grid and the procedure of the calculation
involving the grid. To be more specific, we shall sug-
gest the second particle to have the shape of a f lattened
spheroid. The structure of the initial calculation
region is shown for this case in Fig. 1. To make the rep-
resentation of individual elements more convenient,
the relations between their sizes differ from real ones.
Let symbol  denote the distance from the center of
the second particle to its surface along the  axis, while
symbol  reflects the distance from the center of this
particle to its surface in the direction perpendicular to
this axis. The latter distance was taken as the radius of
the first particle. When constructing the computa-
tional grid, distance  was taken as unity. At , the
distances from the center of the first particle to the
left-hand boundary of the calculation region, from the
center of the second particle to the right-hand bound-
ary, and from the  axis to the upper boundary were
supposed to be 25b; in the opposite case, they were
taken to be 25a. The calculations showed that a further
increase in the sizes of the considered region had
almost no effect on the results obtained. The region
under consideration was divided into subregions using
the Delone–Voronoi algorithm [16]. The freefem++
program performs this division automatically in accor-
dance with the number of points preset at the bound-
aries. The temperature distribution over the ABCD
boundary (Fig. 1) of the calculation region in the gas
was assumed to be equal to  The veloc-
ity distribution described by Eq. (20) was preset at the
calculation region boundary corresponding to the sur-
face of the first particle, and the distribution at the
boundary corresponding to the surface of the second
particle was determined by an analogous equation. Let
us pay attention to the fact that no explicit conditions
are imposed on the AOD boundary, which coincides
with the symmetry axis. As follows from the derivation
of expressions (22) and (24), this indicates the exis-
tence of implicit boundary conditions, which mean
the impermeability of this boundary for the heat f luxes
and gas f lows. The viscosity of the pseudogas was sup-
posed to be 106 times higher than the viscosity of the
gas. At this viscosity of the pseudogas, its velocities at
different points appear to be the same within the error
of the freefem++ program. The calculations yielded
the values of  and :
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Here, subscript z denotes the projection of a corre-
sponding vector onto the z axis, while  is the ther-
mophoresis velocity of a solid spherical aerosol parti-
cle in an infinite medium [15],

The following accuracy criteria were used in the calcu-
lations [10]:

Here,  and  are the boundaries coinciding with the
surfaces of the first and second particles, respectively;

 is the length of the boundary that corresponds to the
surface of a particle;  is the relative error in the calcu-
lations of  and ; and  is the relative error in the
calculations of  and . In addition, the accuracy
at different elements of the calculation region bound-
ary was controlled by varying the number of points, on
the basis of which this region was divided into the sub-
regions. As a result, the number of the subregions for
the initial region varied from 28 × 103 to 56 × 103. The
maximum possible number of the subregions was
determined by the capacity of the RAM available for
the calculation; in our case, this size was four gigabyte.
This memory capacity was sufficient for calculating
the particle velocities with an accuracy of three signif-
icant digits. The time of one calculation with the use of
an Intel® Core® i3-210 processor was as long as
1.5 min. Basic functions derived from the third-order
Legendre polynomials were used to approximate the
desired temperature distribution. For the maximum
number of subregions, the total number of the degrees
of freedom for the space of finite elements was, in this
case, as large as 25 × 104. The velocity and pressure
fields were approximated using the Legendre polyno-
mials of the third and second orders, respectively.
Moreover, as was done in [10], the left-hand side of
weak-form equation (23) was supplemented with an
additional stabilizing term [12],

which is in fact the condition of vanishing the average
value of the pressure. Here, ε is a positive small param-
eter. It may be selected using the following simple
approach: if, upon a decrease in a selected value of ε by
several orders of magnitude, the velocity calculated via
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Fig. 1. The structure of the initial calculation region.
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Table 2. Normalized thermophoresis velocities of particles hav-

ing the shapes of a sphere ( ) and a spheroid with ( )1U = 2a
b 2U

h b 1U 2U

κ κ= =i1 i2 10
this algorithm remains unchanged, the selected 1ε value
can be used for the calculation. In our case, this value
was taken equal to 10–10. In all cases, the derived sets
of equations with unknown coefficients in the expan-
sions in terms of the basic functions were solved using
the UMFPACK iteration algorithm supported by the
freefem++ program [17].

The tables presented below list the values of  and
 for different  ratios. The accuracy of the pre-

sented results does not exceed the accuracy, at which
they were obtained according to the aforementioned

1U
2U a b
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Table 1. Normalized thermophoresis velocities of spherical
particles

0.1 1.20 1.20
1 1.08 1.08
2 1.04 1.04

0.1 1.28 0.105
1 1.07 0.148
2 1.03 0.134

0.1 1.27 1.27
1 1.10 1.10
2 1.04 1.04

h b 1U 2U

κ κ= =
κ κ

i1 i2

e e
10

κ κ= =
κ κ

i1 i2

e e
10,   100

κ κ= =
κ κ

i1 i2

e e
100
accuracy criteria. Table 1 shows the  and  values
calculated for two spherical particles. Within the
attained accuracy, the presented data coincide with
the results of work [6], in which these velocities were

1U 2U
0.1 1.18 2.03
1 1.14 2.01
2 1.07 1.97

0.1 1.65 0.120
1 1.15 0.288
2 1.07 0.283

0.1 0.831 19.4
1 1.45 17.2
2 1.25 16.8

0.1 1.60 2.64
1 1.20 2.43
2 1.10 2.37

κ κe e

κ κ= =
κ κ

i1 i2

e e
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κ κ

i1 i2

e e
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Table 3. Normalized thermophoresis velocities of particles hav-

ing the shapes of a sphere ( ) and a spheroid with ( )

0.1 0.997 0.758
1 1.03 0.573
2 1.02 0.528

0.1 1.08 0.182
1 1.03 0.101
2 1.01 0.0744

0.1 0.282 5.94
1 1.08 4.63
2 1.06 4.38

0.1 1.01 0.742
1 1.04 0.539
2 1.02 0.491

1U = 1
2

a
b 2U

h b 1U 2U

κ κ= =
κ κ

i1 i2

e e
10

κ κ= =
κ κ

i1 i2

e e
10,   100

κ κ= =
κ κ

i1 i2

e e
100,   10

κ κ= =
κ κ

i1 i2

e e
100
found analytically at . Let us pay attention to
the fact that, as the distance between the particles
increases,  tends to unity, as might be expected for
this case.

CONCLUSIONS

An approach has been described that enables one to
employ the finite element method for calculating the
thermophoresis velocities of two solid aerosol particles
with arbitrary shapes taking into account their inter-
ference. The numerical comparison of the results of

=1 2g g

1U
this approach with the data obtained on the basis of a
known analytical solution for spherical particles has
indicated that the proposed approach is applicable for
the numerical analysis of the thermophoretic motion
of two particles, the sizes of which are much larger
than the mean free path of molecules in a gas.
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