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Abstract—The equilibrium nucleus-size distribution determined by the method of statistical physics has been
analyzed. The analysis has shown that nuclei composed of 1000 or fewer molecules are microscopic objects.
They are described by partition functions and cannot be described by thermodynamic methods. An approach
has been proposed that makes it possible to determine a partition function over internal degrees of freedom
of a nucleus and express the aforementioned distribution via commonly accepted thermodynamic parame-
ters. The solution of the problem is reduced to the determination of the evaporation rate of clusters by extrap-
olating the evaporation rate, which has been calculated for a macroscopic droplet of an incompressible liquid
in terms of thermodynamic concepts with allowance for f luctuations, to the sizes of nuclei. As a result, a the-
ory has been formulated for homogeneous stationary nucleation. The comparison of the proposed theory
with experimental data has shown that the calculated sizes of critical nuclei coincide with the measured ones
and that the theoretical nucleation rates either coincide with the measured rates or agree with them within
one or two decimal orders of magnitude.
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INTRODUCTION
Nucleation of a new liquid phase in a supersatu-

rated vapor is the first stage, which, to a great extent,
determines the total rate of condensation. The classi-
cal theory of the stationary isothermal nucleation,
which was formulated almost a century ago by Folmer
and Veber [1], Becker and D�ring [2], and Zel’dovich
[3], has, up to the present, been most widely used for
the prediction and qualitative and quantitative
description of this phenomenon. According to the
classical theory, nuclei are quiescent and nonrotating
spherical droplets possessing all the properties of a
macroscopic liquid, while their size is only a few times
larger than the sizes of individual molecules. However,
the improvement of experimental equipment and
methods has resulted in finding that the classical
nucleation theory (CNT) is not quite true. In some
cases, the differences between the measured and pre-
dicted nucleation rates reach five to seven decimal
orders of magnitude. In the opinion of Lothe and
Pound [4], the incorrectness of the CNT is associated
with “assigning macroscopic thermodynamic proper-
ties to the critical nuclei, a practice which is permissi-
ble for sufficiently large nuclei but constitutes a dan-
gerous assumption in dealing with small clusters of the
order of 100 molecules” or less. The aforementioned
researchers [4], Frenkel’ [5], and their successors [6–
15] made a great effort to take into account the micro-
scopic character of nuclei, thereby improving the

nucleation theory. They did not refuse to engage in a
thermodynamic consideration of nuclei, but rather
preferred to introduce various microscopic corrections
into the free energy of nuclei depending on the consid-
eration of a nucleus: e.g., it may be considered to be a
“macromolecule” subjected to thermal motion or a
volume, which is “cut” out of a bulk liquid, is bounded
by rigid walls, and has a f luctuating center of mass, etc.
However, the variants of the nucleation theory elabo-
rated in this way have not improved the relationship
between the theoretical and experimental data as a
whole. Moreover, the question remains open as to the
relation between the corrected “free energies” of
nuclei and the true free energy of droplets composed
of large numbers (on the order of 1020) of molecules,
and whether they possess all the properties of real free
energy.

In this work, another approach, which has been
partly described elsewhere [16, 17], has been pro-
posed. The approach is based on the nucleus-size dis-
tribution in a supersaturated vapor, following from
statistical physics, which, in the opinion of Zel’dovich
[3], may be used to solve the problem of nucleation.
The analysis of the distribution has led to the conclu-
sion that clusters containing less than 1000 molecules
are microscopic objects and, therefore, cannot be
described by thermodynamic potentials, but rather are
characterized by their partition functions. A method
has been described, which makes it possible to express
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the nucleus-size distribution via experimentally mea-
sured degree of supersaturation (hereafter, supersatu-
ration) and temperature. It has been shown that, in
order to find required partition functions, it is neces-
sary to know the evaporation rate of nuclei as depend-
ing on their sizes. It is supposed that the difference
between the evaporation rates of real nuclei and simi-
lar classical droplets is due to f luctuations of their
parameters. The evaporation rate of macroscopic
droplets has been calculated taking into account the
corrections for the f luctuations in their shapes and
temperatures. The evaporation rate of clusters is deter-
mined by extrapolating the obtained dependences to
the sizes of nuclei. The nucleus-size distribution and
the rate of stationary isothermal nucleation have been
calculated and compared with new and/or refined
experimental data and predictions of the CNT.

1. ON APPLICABILITY 
OF THERMODYNAMICS 

TO NUCLEUS CLUSTERS
Let us consider the metastable state of a supersatu-

rated vapor as an equilibrium mixture of interacting
gases occurring at constant temperature T and pres-
sure P following Frenkel’ [5]. Assume that clusters
consisting of g molecules compose a gas of some type
in the mixture, i.e., a gas of g-mers, Аg. The following
elementary reactions proceed in a system with volume
Vs:

The equilibrium in such a mixture is characterized by
the following set of equations [18]:

μg = gμ1, 2 ≤ g ≤ G, (1)

where μ1 and μg are the chemical potentials of the
gases consisting of monomers and g-mers, respec-
tively. Substituting the values of the chemical poten-
tials of the gases μg(Pg,T) = kT ln(Pg/P0) + χg(T) into
set (1) and considering the gases to be ideal, we obtain
partial pressure Pg and number density ng of g-mers in
the mixture:

(2)

Here, k is the Boltzmann constant and  =

 is the pressure-independent compo-

nent of chemical potential μg(Pg, T), where Zg is
the partition function over all degrees of freedom of a
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g-mer and P0 is the pressure equal to one unit of pres-
sure; e.g., in the CGS system of units, P0 =
1 dyne/cm2. Pressure P0 has been introduced to avoid
the presence of dimensional functions under the loga-
rithm. Analogously to polyatomic gases, the χg(Т)
function may be represented as a sum of terms corre-
sponding to translational , rotational ,

and vibrational  degrees of freedom: χg(Т) =

  +  +   Taking this into account,
we, from relations (2), obtain the following:

(3)

Substituting  and  in the explicit form,

(3a)

where m is the mass of a molecule;  and  are
the translational and rotational partition functions of a
g-mer, respectively;  is the Planck constant;

 is the product of principal moments of
inertia, which are assumed to be the same for a liquid
cluster; and γg is the symmetry number of a g-mer, we
arrive at

(4)

Expression (4), as well as equivalent relations

derived by Band [19]  and Frenkel’

[5] , where Ng = ngVs and N1= n1Vs are the

equilibrium numbers of clusters and molecules of a
vapor in a system, is used to solve a problem relevant
to the determination of the size distribution of nucleus
clusters (g-mers), when it is possible to calculate the

 function, where  is the partition
function over the vibrational degrees of freedom of a g-
mer, and relate the obtained distribution to the exper-
imentally measured supersaturation. Commonly, this
is performed using the so-called “replacement proce-
dure” [9–13], which consists in the use of formulas
relating free energy Fg to the partition functions of a
nucleus as follows:
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 (5a)

The determination of the exponential term in Eq. (2)
or (4), respectively, is then reduced to calculating the
work of g-mer formation from g bulk liquid phase mol-
ecules. The use of the replacement procedure (rela-
tions (5a)) to nuclei is generally accepted and, at the
same time, disputed. For example, Dillmann and
Meier [14] used the former of the relations, while
Frenkel’ [5] and Lothe and Pound [4] employed the
latter. In the macroscopic limiting case g → ∞, in
which relations (5а) are valid, the free energy of a
droplet is represented by the sum of the bulk and sur-
face terms: Fg = f∞g + αg2/3, where f∞ is the free energy
as calculated per a liquid molecule, and α =
4πσ(3v/4π)2/3, where σ and v are the surface tension
and the volume of a liquid molecule, respectively.
Here, the free energy may also be equated to the sums
of functions   +   + kT ln(kT/VsР0) and 

(5b)

It is worth noting that almost all relations (5) with dif-
ferent replacement factors were used to specify the free
energy of a nucleus in the course of the aforemen-
tioned discussion of the definition of a nucleus [5–15].

Why is the free energy of a droplet introduced so
ambiguously? The contributions from three or six
external degrees of freedom to the free energy of a
droplet are negligible as compared with the contribu-
tion from a huge number (on the order of 1020−1023)
of vibrational degrees of freedom; therefore, all rela-
tions (5) are exact. The free energy of a macroscopic
droplet is unambiguously determined by any of equal-
ities (5). However, the situation fundamentally
changes upon decreasing the number of molecules in
a droplet. The free energy rapidly decreases in accor-
dance with a power law, while contributions  and

 of external degrees of freedom, which are in a log-
arithmic dependence on g, decrease very slowly;
therefore, their relative fractions in the free energies
determined by expressions (5) increase. When the
number of molecules in a droplet becomes so small
that the contribution from the external degrees of free-
dom becomes comparable with the free energy, the
values of the latter calculated by different relations (5)
become unequal to each other. The distortion of the
relations suggests that the object has become micro-
scopic. Thus, by comparing the contribution from the
external degrees of freedom  +  + kT ln(kT/VsP0)
with the surface term of the free energy αg2/3, which
varies most slowly, we may determine the region of
applicability of thermodynamics to the problem of
nucleation. This contribution turns out to be equal to
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(0.00045−0.0018)αg2/3 at g = 106, nearly
(0.008−0.034)αg2/3 at g = 104, (0.035−0.14)αg2/3 at
g = 103, and comparable with the value of αg2/3 at
smaller sizes of a nucleus, at which thermodynamics is
obviously inapplicable.

The explicit forms of the  and  functions
(3а), as well as the fact that, for the majority of the
studied liquids, the value of α is equal to (7−30)kT,
were used when performing the estimations. It was
assumed that Vs = 1. When calculating the rotational
partition function, and the moments of inertia of clus-
ters were taken to be equal to the moments of inertia of
droplets having the density of an ordinary liquid.

Finally, let us determine the effect of the replace-
ment procedure on number density ng of nuclei. Ini-

tially, we replace the  function, which takes into
account only the internal degrees of freedom, by the
free energy in Eq. (4), as Frenkel’ [5] and Lothe and
Pound [4] did. Then, let us replace the χg function that
corresponds to the total partition function by the same
free energy in Eqs. (2) according to relations (5a), as
Dillmann and Meier did in [14], and compare the
obtained results. It has appeared that, in the first case,
the number density of nuclei is a huge number of times
(≈1030 g4) higher than that obtained in the second case.
For the spontaneous nucleation of supersaturated
water vapor, this difference amounts to nearly 1038.
Note that the effect of the replacement procedure
underlies the Lothe–Pound paradox. Comparison
between number density ng determined in the first case
by Eq. (4) and the prediction of CNT, which differs
from the second case in the presence of factor n1 ≈
1018, shows that the difference, with allowance for the
factor of the replacement, is 17 decimal orders of mag-
nitude.

To complete the discussion of this question, it
should be recollected once more that the nuclei with
which experimenters work are composed of a hundred
or fewer molecules and are microscopic objects.
Therefore, the only correct method for solving the
problem of nucleation consists in the direct determi-
nation of the  or χg function.

2. EQUILIBRIUM NUCLEUS-SIZE 
DISTRIBUTION

In this work, we calculate the nucleus-size distri-
bution and the nucleation rate via the well-known
physicochemical characteristics of substances by cal-
culating the (T) function determined at all g ≥ 1. We
shall search for this function in the following form:

(6)
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Here, μliq(T) is the chemical potential of a liquid, P∞ is
the saturation pressure of a vapor over a planar
liquid surface, f(g) is some correction function, and C
is a g-independent constant. This representation of the

(T) function is quite reasonable. In the macro-

scopic limiting case, at g → ∞, (T) is, by definition,
the macroscopic-droplet free energy, which is, as
usual, equal to f∞g + αg2/3 = gμliq − P∞vg + αg2/3. Cor-
rection function f(g) is selected in such a manner that
it is negligible at g → ∞, lim[f(g)/g2/3] = 0, and, in
addition to constant C, ensures the fulfillment of
equality (6) at low g values. For now, we shall not con-
sider the question as to the form of the f(g) function,
but rather determine constant C. For this purpose, let

us take advantage of the fact that, at g = 1, the (T)

function is equal to the vibrational component of
vapor chemical potential . From this,

(7)
Substituting Eq. (7) into Eq. (6), we obtain

(8)

The determination of constant C in Eq. (7) has
enabled us to “bind” the (T) function in the
range of low g values, and, now, in order to solve
the problem, it is necessary to calculate the f(g) cor-
rection function, which is, as yet, unknown. Equilib-
rium nucleus-size distribution n(g) is derived from
relation (3) by substituting the (T) function (8) and

the  and  functions in explicit form (3а) into it:

(9)

where  is the vapor supersaturation and

 is the volume per molecule in the

saturated vapor. As  ! 1 ≤ lnSv, this term will be

omitted below. When Eq. (9) was derived, it was taken
into account that liquid clusters have no symmetry
axes, γg = 1; however, their shape is almost spherical
and the moments of inertia are Ig ≅ I1g5/3 [5].

Note that relation (9) can be used to completely
solve the problem concerning the determination of the
equilibrium nucleus-size distribution for the macro-
scopic case (g → ∞). Indeed, the pre-exponential fac-
tor is, here, determined, while the exponent is, after
ignoring the correction function, a logarithmic term,
unities as compared with g are equal to the classical
formation work of a droplet, and we have the follow-
ing:

In the region of microscopic nuclei and the transition
region, distribution (9) is somewhat similar to the
result obtained in [20] and resembles the relation for
the self-consistent correction to the classical theory
(SCCCT) [21, 22] (the former classical theory with
the Barnard correction [23]), but, in contrast to them,

it comprises the as yet unknown correction function
f(g) and the term with lng.

A simple molecular-kinetic analysis has shown
that, because of the deficiency of neighbors, the
energy of molecule binding on a droplet surface or in a
cluster is lower than that for a molecule on a planar
liquid surface and, the smaller an object, the lower the
energy [5, 9]. For any vapor supersaturation, there is a
critical size of a nucleus occurring at unstable equilib-
rium with a vapor; nuclei with smaller sizes occur in
the medium of an unsaturated vapor and evaporate,
while supercritical nuclei are in the medium of a
supersaturated vapor and, therefore, grow. Nucleus-
size distributions are known to have a minimum at a
point corresponding to the critical size. Therefore,
calculating logarithmic distribution (9), differentiat-
ing it with respect to g, and equating the derivative to
zero, we find the minimum of the distribution, which
determines number g* of molecules in a critical
nucleus:
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Expression (10) is valid for both macroscopic and
microscopic nuclei. The comparison of Eq. (10) with
the Thomson equation
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shows that the supersaturation of a vapor occurring at
unstable equilibrium with a critical nucleus of size g*
somewhat differs from the supersaturation over a clas-
sical droplet with the same size in the existence of fac-

tors containing derivative  and Lothe−Pound

correction 4/g*. Hence, both the f lux of molecules
condensing on the surface of a critical nucleus and the
equal f lux of evaporating molecules are changed.
Therewith, the evaporation rate of a quiescent and
nonrotating nucleus differs from the evaporation rate

of an equisized classical droplet by 

times because of the small sizes. Let us use this fact for
the determination of the f(g) function.

It should also be noted that the same conclusions
regarding different evaporation rates of a nucleus and
an equisized classical droplet and on the fact that the
true evaporation rate of clusters leads to solving the
problem of nucleation also directly follow from analy-
sis of the Becker and D�ring work [2].

3. THE EFFECT OF FLUCTUATIONS 
ON DROPLET EVAPORATION RATE

Traditionally, the difference between small nucleus
clusters and macroscopic droplets is related only to an
increased role of the surface energy when describing
their properties. This difference is, or course, import-
ant, but it is not the only one. It is known that the
physical parameters of a macroscopic body occurring
at equilibrium are, with a high accuracy, equal to their
average values. Nevertheless, deviations from the aver-
age values do take place (indicating that the parame-
ters f luctuate). The relative magnitude of the f luctua-
tions increases with decreasing number of molecules
in a body [18]. Therewith, the average physical values,
the functions of thermodynamic parameters, are,
already, noncoincident with their functions of aver-
ages, in contrast to the state of affairs that always holds
in thermodynamics. Therefore, another essential dif-
ference between small and macroscopic bodies is the
modification of their properties under the action of
fluctuations. The probability distribution of small
f luctuations obeys the Gauss law

(12)

where x = X − 〈X〉 is the amplitude of f luctuations of
any physical value Х (the angle brackets denote averag-
ing). Equation (12) may be used to calculate the aver-
age value of any physical parameter. In particular, the
average squared temperature f luctuation 〈(ΔТ)2〉 is
equal to
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here, C
v
 = c

v
g is the specific heat of a body at a con-

stant volume, g is the number of molecules in the
body, and c

v
 is the specific heat of a molecule. As can

be seen from Eq. (13), the root-mean-square tempera-
ture f luctuation increases inversely to the square root
of the number of particles upon decreasing body sizes.

In addition to the thermodynamic values, a body is
characterized by the momentum of its macroscopic
motion relative to a medium. In an equilibrium state,
there is no motion and the momentum is equal to zero.
However, the motion arises due to f luctuations. The
average squared fluctuation for each of Cartesian

components of velocity vi is equal to ; how-

ever, it is also inversely proportional to the number of
molecules in the body. Velocity f luctuations are statis-
tically independent of the f luctuations of other ther-
modynamic values, and, when body sizes decrease to
values comparable with molecular sizes, continuous
velocity f luctuations manifest themselves as the usual
thermal motion. The same is valid for average squared

angular velocities of body rotations, , with

extrapolation of the average squared translational and
angular velocities to molecular sizes (to g = 1), yielding
values exactly equal to those obtained using the equi-
partition law of statistical physics. Thus, the f luctua-
tions turn out to be an instrument that enables one to
rather precisely predict the behavior of microphysical
objects in terms of thermodynamics.

When considering the above nucleus clusters as
macromolecules undergone translational and rota-
tional motions, we, from the point of view of thermo-
dynamics, have taken into account variations in the
equilibrium distribution of clusters and in the size of a
critical nucleus caused by f luctuations in their transla-
tional and angular velocities. However, f luctuations
not only are responsible for the development of ther-
mal motion but also affect the internal energy of a
nucleus as a whole via time variations in its tempera-
ture and intermolecular interaction energy. In partic-
ular, we would like to determine fluctuation-induced
variations in the evaporation rate of nuclei, as com-
pared with the evaporation rate of equisized classical
droplets, because this would enable us to find deriva-

tive from Eq. (10) and obtain correction function

f(g). Since, so far, no one knows how to calculate the
properties of clusters, it is proposed, initially, to calcu-
late the droplet-evaporation rate taking into account
the corrections for the f luctuations (not only a droplet
itself, but also any small deformation is considered to
be macroscopic!) and, then, to determine the rate of
cluster evaporation by extrapolating the obtained
dependence to the region of nucleus sizes. It is sup-
posed that the rate of cluster evaporation found in this
way will be close to the true one, because the size
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(radius) of critical nuclei is only a few times smaller
than the radius of the smallest droplets to which ther-
modynamics is applicable.

The rate of the isothermal evaporation of a macro-
scopic spherical droplet Q0(g,T) is determined by the
number of molecules leaving the droplet surface per
unit time [18]:

(14)

where aac is the accommodation coefficient. Because
of f luctuations, the droplet temperature at each
moment slightly differs from medium temperature T;
the droplet is not quite spherical, and its shape and
surface area ξ continuously somewhat vary. The drop-
let-evaporation rate also f luctuates following varia-
tions in its temperature, shape, and surface area. The
effect of f luctuations in the temperature and shape of
clusters on the rate of their evaporation was distinctly
seen in molecular dynamic experiments [24].

If the probability distribution is known for f luctua-
tions of droplet parameters, the evaporation rate may
be found by averaging over this distribution, the deter-
mination of which is our immediate problem. Proba-
bility w that a droplet is in a state with (T + ΔТ) and
(ξ + Δξ) [18] is proportional to

(15)

Here ΔSa = −Rmin/kT is the f luctuation-related change
in the total entropy of a closed system and Rmin = ΔE −
TΔS + PΔV is the minimum work required for the pre-
set reversible change in the droplet parameters, where
ΔE, ΔS, and ΔV are the changes in the energy, entropy,
and volume of the droplet, respectively. Further, let
us, in the minimum work, omit term PΔV, which
describes the work of a medium for f luctuation
changes in the droplet volume, thereby supposing that
the system temperature is far from the critical one,
and, therefore, the liquid compressibility may be
ignored and the droplet volume may be considered to
be constant, ΔV = 0. Expression (15) is valid for both
large and small f luctuations. Since we are interested
only in the most probable small f luctuations, we
expand ΔE into a series to the second-order terms
(inclusive) to find Rmin in the following form:

The bracketed expression may be represented as the
following sum of the products of differentials:
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Thus, we obtain the probability of f luctuation (15) as
follows:

(16)

Expressing ΔS and Δσ via variables T and ξ, we derive

and, substituting these expressions into relation (16),
we arrive at

(17)

The obtained probability distribution desintegrates
into two factors, which depend only on ΔT or only Δξ.
Hence, the shape and temperature f luctuations are
statistically independent; i.e., 〈ΔTΔξ〉 = 0. This
enables us to take into account these f luctuations sep-
arately.

Let us begin with the shape f luctuations of an
incompressible liquid droplet containing a preset
number of molecules. The surface area per se provides
no information on the droplet shape, because many
droplets with different shapes correspond to the same
surface area. Small droplet shape f luctuations mani-
fest themselves as diverse convexities, indentations,
flattenings, etc., with different sizes and shapes arising
and disappearing on a spherical surface. According to
relation (17), configurations with a minimum incre-
ment of the surface area, as compared with the initial
spherical droplet, are most probable, and these con-
figurations must primarily be taken into account.

If small volume ΔV is subtracted from a spherical
droplet composed of g molecules, the residual droplet
volume and this small volume form new spherical
droplets under the action of surface tension. In this sit-
uation, their surface areas will be minimum. If com-
plete separation has not been reached and the body of
the droplet and small volume ΔV have a common base,
surface tensions will compress them into ball segments
constructed on the common circular base. The surface
area of this construction will, obviously, be minimum
for the preset deformation volume ΔV and the base
area. If the droplet surface contains a dent with vol-
ume ΔV, it may be concluded that the configuration
consisting of the ball segments of the droplet body and
the dent will have the minimum surface area for preset
volume ΔV and the base area. Deformed droplets with
any other segment shapes other than spherical are
characterized by larger surface area increments; there-
fore, the probability of their formation is negligibly low
because of the strong exponential w(Δξ) dependence
of the probability on the increment (17). So, we may
ignore the contribution of all other droplet configura-
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Fig. 1. Schematic representation of deformed droplets.
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r2
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h2

h1
tions to the evaporation process and consider only the
most probable deformed droplets composed of two
ball segments. This approach simplifies the calcula-
tions, while making it possible to take into account the
effect of droplet-shape f luctuations on the rate of
droplet evaporation.

Imagine that, as a result of f luctuations, a spherical
droplet with radius r = r0g acquires the shape of a fig-
ure consisting of two ball segments. The first segment
with a larger volume (mass) and curvature radius r1,
which slightly differs from r, is bonded to the second
ball segment in the form of a convexity or a dent with
radius r2 via a common base with radius a (Fig. 1).
Surface area ξ of this deformed droplet composed of g
molecules is equal to [25]

(18)

where  denotes the heights of the
segments. The incompressibility of the liquid makes it
possible to express r2 via r1 and a as follows:

1 2 1 1 2 2
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(19)

Here and below, the signs “+” and “−” correspond to
droplets deformed via the formation of a convexity or a
dent, respectively. Introducing denotations ρ1 = r1/r =
r1/r0g1/3, ρ2 = r2/r0g1/3, λ = a/r0g1/3, and η = ξ/4πr2 =

ξ/4π g2/3, Eqs. (18) and (19) may be written, respec-
tively, as follows:

(20)

(21)

Equations (20) and (21) were solved numerically,
and ρ2 and η were found as functions of their variables
ρ1 and λ. Analysis of the solution shows that, for any
value of ρ1, the surface area of the deformed droplet
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rapidly increases, while the probability of the
deformed droplet formation drastically decreases with
a reduction in base radius λ from 1 to 0. An important
consequence of this phenomenon is the fact that the
probability of the formation of a deformed droplet that
has two or more convexities or dents or convexities and
dents simultaneously is negligibly low, with the excep-
tion of the range of 0.9 < λ ≤ 1, which, however, does
not noticeably contribute to the correction to the
evaporation rate of a droplet subjected to f luctuations.

According to relation (17), the probability of find-
ing a deformed droplet with reduced radii of the large
segment and base equal to ρ1 and λ, respectively, may
be written in the following form:

(22)

where A(g) is determined from the following normal-
ization condition:

(23)

The integration is, here, carried out over all possible ρ1
and λ values. Using Eq. (14), the evaporation rate of a
deformed droplet may be represented as follows:

(24)

Averaging Q(g, ρ1, λ) over distribution (22), we obtain
the following equation for evaporation rate Qc(g) of a
droplet subjected to shape f luctuations:

(25)

where ϕ(g) = Qc(g)/Q0(g) is the evaporation rate ratio
between a droplet consisting of g molecules and sub-
jected to shape f luctuations and an identical “classi-
cal” droplet. It can be easily seen from
relations (23)−(25) that ϕ(g) depends on the sole
dimensionless parameter, which characterizes the
substance of a droplet, namely, α/kT = 3σv/r0kT. The
ϕ(g, α/kT) value was numerically calculated by rela-
tions (22)−(25) for droplets composed of 4, 6, 8, 15,
27, 64, 125, 250, and 512 molecules and α/kT values

1 1
2 3

1
1

( , , )

( ( , , ) 1)( )exp ,

w g d d

g gA g d d
kT

ρ λ ρ λ
⎛ ⎞α η ρ λ −= − ρ λ⎜ ⎟
⎝ ⎠

( )
1

2 3
1

1
,

( , , ) 1
( ) exp 1.

g g
A g d d

kTρ λ

⎡ ⎤α η ρ λ −− ρ λ =⎢ ⎥
⎣ ⎦

∫∫

( ){

( )

2 2
1 1 11 0

1 3
1

2 2
1 1 1 1

1 3
2

1 ρ ρ ρ λ( ,ρ ,λ) ( )
2

2α 1exp 1
ρ3

1η( ,ρ ,λ) ρ ρ ρ λ
2

2α 1exp 1 .
ρ3

Q g Q g

g kT

g

g kT

+ −=

⎡ ⎤⎛ ⎞× −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

⎡ ⎤+ − + −
⎢ ⎥⎣ ⎦

⎡ ⎤⎫⎛ ⎞× − ⎬⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦⎭

1

с
2 3

1
1 1

,

0

( ) ( ) ( )

( ( , , ) 1)( , , )exp

( ) ( ),

Q g Q g A g

g gQ g d d
kT

Q g g
ρ λ

= 〈 〉 =
⎡ ⎤α η ρ λ −× ρ λ − ρ λ⎢ ⎥
⎣ ⎦

= ϕ

∫∫
from 7 to 36; the ϕ(g, α/kT) values refined as com-
pared with those presented in [16] are listed in Table 1.

As follows from Table 1, shape fluctuations notice-
ably affect the evaporation rate of clusters containing
up to 512 molecules. The highest evaporation rates are
reached at high α/kT values, i.e., for high-molecular-
mass substances possessing a high surface tension at
decreased temperatures.

Now, let us consider the effect of temperature f luc-
tuations on the evaporation rate of droplets. The dis-
tribution of temperature f luctuations has a Gaussian
form, with its normalization constant being calculated
analytically and finally written in the form of Eq. (12).
The evaporation rate of a droplet subjected to f luctua-
tions of its shape and temperature may be found by
simple averaging of the obtained rate Qc = ϕQ0 over
distribution (12) with 〈(ΔT)2〉 from (13). However, a
more intelligent method consists in the Taylor expan-
sion of droplet evaporation rate Qc =  in terms
of ΔT to the second-order terms (inclusive) [26],

(26)

followed by averaging. In the latter expression, we have
ignored the temperature dependence of ϕ as compared
with exponential Q0(T) dependence (14); it can be eas-
ily shown that allowance for the former dependence
does not lead to significant changes in Qc(T + ΔT). By
averaging the latter expression and taking into account
that , we find evaporation rate Qf(g,T) of a
droplet subjected to f luctuations of its shape and tem-
perature as follows:

(27)

Substituting 〈(ΔТ)2〉 from Eq. (13) into Eq. (27) and
calculating the second derivative, we have

(28)

The analysis of Eq. (28) shows that the evaporation
rate of a quiescent and nonrotating cluster with f luctu-
ating shape and temperature is higher than that of a
classical droplet with the same size, because ϕ ≥ 1 and
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Table 1. Calculated values of the ϕ(g, α/kT) function

α/kT

g

2 4 6 8 15 27 64 125 250 512

ϕ(g, α/kT)

7 1.0 0.883 1.012 1.050 1.058 1.042 1.022 1.012 1.007 1.004

8 1.0 0.898 1.030 1.067 1.069 1.049 1.024 1.014 1.007 1.004

9 1.0 0.910 1.050 1.086 1.081 1.056 1.027 1.015 1.008 1.005

10 1.0 0.925 1.072 1.105 1.093 1.063 1.030 1.016 1.009 1.005

11 1.0 0.943 1.094 1.125 1.107 1.071 1.033 1.018 1.010 1.006

12 1.0 0.962 1.118 1.146 1.122 1.080 1.037 1.020 1.011 1.006

13 1.0 0.982 1.143 1.168 1.137 1.090 1.041 1.022 1.012 1.007

14 1.0 1.004 1.169 1.191 1.155 1.101 1.046 1.025 1.013 1.008

15 1.0 1.027 1.196 1.216 1.174 1.113 1.052 1.028 1.015 1.008

16 1.0 1.052 1.224 1.249 1.195 1.126 1.058 1.031 1.017 1.009

17 1.0 1.077 1.253 1.270 1.219 1.142 1.065 1.035 1.019 1.010

18 1.0 1.104 1.284 1.299 1.244 1.159 1.073 1.040 1.022 1.011

19 1.0 1.132 1.316 1.331 1.273 1.178 1.083 1.046 1.025 1.013

20 1.0 1.161 1.350 1.365 1.306 1.200 1.094 1.052 1.029 1.015

21 1.0 1.191 1.386 1.401 1.342 1.225 1.108 1.060 1.034 1.017

22 1.0 1.223 1.424 1.440 1.382 1.253 1.124 1.070 1.041 1.020

23 1.0 1.255 1.465 1.483 1.428 1.286 1.142 1.083 1.049 1.023

24 1.0 1.290 1.507 1.529 1.479 1.324 1.165 1.098 1.059 1.028

25 1.0 1.325 1.553 1.58 1.538 1.368 1.192 1.116 1.072 1.034

26 1.0 1.363 1.601 1.634 1.605 1.419 1.225 1.139 1.088 1.041

27 1.0 1.402 1.653 1.694 1.681 1.479 1.265 1.168 1.110 1.051

28 1.0 1.442 1.708 1.759 1.767 1.549 1.314 1.204 1.138 1.064

29 1.0 1.485 1.768 1.831 1.866 1.631 1.373 1.249 1.174 1.081

30 1.0 1.530 1.831 1.910 1.980 1.727 1.446 1.306 1.221 1.103

31 1.0 1.577 1.890 1.996 2.111 1.840 1.535 1.379 1.283 1.132

32 1.0 1.626 1.973 2.092 2.261 1.974 1.645 1.470 1.363 1.171

33 1.0 1.677 2.052 2.197 2.435 2.132 1.780 1.586 1.468 1.222

34 1.0 1.737 2.137 2.313 2.635 2.319 1.948 1.733 1.606 1.291

35 1.0 1.788 2.228 2.442 2.866 2.542 2.155 1.921 1.786 1.382

36 1.0 1.848 2.328 2.585 3.134 2.806 2.413 2.159 2.023 1.502
ψ ≥ 1. A noticeably higher evaporation rate than that of
the classical one (Qf(g,T) ≈ 10Q0(g,T)) is reached only
for small clusters consisting of 5−15 molecules and at
relatively low temperatures. As the droplet size and
temperature are increased, the evaporation rate of a
cluster subjected to f luctuations approaches the evap-
oration rate of a classical droplet because of a rapid
decrease in ϕ(g) and a slower reduction in ψ(g) to
unity.
COLLOID JOURNAL  Vol. 80  No. 2  2018
4. FORMATION RATE OF MICROSCOPIC 
NUCLEI. COMPARISON OF PROPOSED 
THEORY WITH EXPERIMENTAL DATA 

AND PREDICTIONS OF THE CLASSICAL 
NUCLEATION THEORY

In the previous section, we have determined the
difference between the evaporation rates of quiescent
and nonrotating clusters composed of g molecules and
the evaporation rate of classical droplets consisting of
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the same number of molecules, with this difference
being due to the small sizes of the objects, thereby

finding derivative  of the correction function enter-

ing into Eq. (10):

(29)

Correction coefficients ϕ(g) and ψ(g) have been calcu-
lated in terms of the f luctuation theory for macro-
scopic droplets and extrapolated to the region of small
sizes (no more than 100 molecules in a cluster). Rela-
tion (29) is strict for macroscopic droplets (composed
of 1000 or more molecules); its accuracy for nucleus
microscopic clusters is to be additionally verified by
comparison with reliable experimental data.

Equation (10), which relates the critical nucleus
size to vapor supersaturation, is, now, written in the
following form:

(30)

As follows from Eq. (30), at low temperatures, the size
of a critical nucleus is noticeably larger than that of a
classical droplet predicted by Thomson equation (11);
however, the nucleus size may be even somewhat
smaller than the classical one because of the
Lothe−Pound correction (−4/g*) at high tempera-
tures, when ϕ ≅ 1 and ψ ≅ 1.

Integrating Eq. (29) over g at T = const and substi-
tuting the obtained f(g) function into relation (9), we
arrive at the following final expression for the equilib-
rium size distribution of nucleus clusters:

(31)

Since variations in the shape at a constant volume are
possible only for clusters consisting of three and more
molecules, the lower limit was taken to be two when
integrating ln[ϕ(g)] in Eq. (31). At a known nucleus
size distribution, the rate of nucleation has the follow-
ing form [3, 15]:

 (32)

where  is the Zel’dovich

factor and β(g*) is the rate of vapor molecule attach-
ment to a critical nucleus. Here, in contrast to the
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CNT, it has been taken into account in β(g*) that
vapor molecules are condensed on nuclei subjected to
thermal motion.

Having selected a ϕ(g) function suitable for
approximating the data presented in Table 1 (see
Appendix) and using relations (30)–(32) with the ψ(g)
function determined by expression (28), we may easily
calculate nucleation rate J [cm–3 s–1] and supersatura-
tion Sv of a vapor occurring at equilibrium with clus-
ters of the critical size at preset temperature T and
compare them with experimental data. For these cal-
culations, it is necessary to know the parameters of a
studied liquid, such as surface tension σ(Т), saturation
vapor pressure P∞(Т), liquid density ρ(Т), latent heat
of evaporation q(Т), liquid specific heat с, and the
approximate cp/c ratio between vapor specific heat
cp at a constant pressure and the specific heat of the
liquid.

Well-studied water, as well as dibutyl phthalate
(DBP) and n-propanol, were used as the objects for
comparing the proposed theory with experimental
data on nucleation. Water nucleation at temperatures
below 0°C is being intensely studied because of its role
in atmospheric processes. DBP and alcohols, in par-
ticular, propanol, have appeared convenient objects
for investigating nucleation in a so-called “laminar
flow diffusion chamber,” where supersaturation is cre-
ated in a cooling laminar f low of a carrier gas prelimi-
narily saturated with the vapor of a studied substance.
The physicochemical parameters presented in Table 2
were used in the calculations. Latent heats of evapora-
tion q were determined from the known temperature
dependences of saturation vapor pressure:

while masses of molecules and specific heats were
taken from handbook [27].

4.1. Water
Figure 2 illustrates the results of measuring the rate

of water nucleation in a Wilson chamber performed by
Viisanen et al. [30] in comparison with the data of cal-
culations by expressions (31) and (32) proposed in this
work and the predictions of the CNT for temperatures
of 259, 253.7, 248.5, 244.1, and 238.8 К. It can be seen
that the results of this work coincide with the mea-
sured nucleation rates within the experiment error,
while the nucleation rates predicted by the CNT are,
in all cases, nearly two decimal orders of magnitude
higher than the measured ones. Unfortunately, we
failed to calculate the nucleation rates and compare
the theory with experimental data obtained at lower
temperatures because of the abnormal behavior of
supercooled water. At temperatures below 250 K, its
density rapidly decreases and its specific heat rapidly
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1
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Table 2. Physicochemical properties of the used substances: mole mass M [g/mol], saturation vapor pressure P∞
[dyne/cm2], liquid density ρ [g/cm3], surface tension σ [dyne/cm], liquid specific heat c [erg/(mol K)], and ratio between
specific heats of a vapor at a constant pressure and a liquid cp/c

Substance and its characteristics Reference

Supercooled water
M = 18.02  [27]

lnP∞(T) = 26 − 4050/T − 184000/T 2  [27]

ρ(Т) = 1.004 – 0.22/(T − 230)  [28]

σ(Т) = 93.6635 + 0.009133T – 0.275 × 10–3Т 2  [14, 35]

c(T) = 1.8 × 108[4.06 + 475/(T − 217)2]  [29]

cp/c = 0.45  [27]

Dibutyl phthalate
М = 278.35  [27]

logP∞(T) = 10.1899 – 1666/T – 547700/T 2  [33]

σ(Т) = 33.93 – 0.0894(Т – 293.15)  [33]

ρ(Т) = 1.0492 – 0.67 × 10–3(Т – 293.15)  [33]

c(T) = 4.577 × 109 + 7.528 × 106(T – 273.15)  [34]

cp/c = 0.8  [27]

n-Propanol
M = 60.09  [27]
lnP∞(T) = 84.6957 − 8559.6064/T – 9.29lnT + ln1333.22  [14]

ρ(T) = 0.82 – 0.818 × 10–3(T − 273.15) + 1.08 × 10–6(T − 273.15) − 16.5 × 10–9(T − 273.15)3  [14]

σ(T) = 25.28 – 0.0839(T − 273.15)  [14]

c(T) = 2.518 × 109[0.526 + 0.0024(T − 273.15)]  [27]

cp/c = 0.59  [27]
increases with decreasing temperature [31]. It is
assumed that, in a range of 225−230 K, the specific
heat passes through a maximum, while the density of
supercooled water dramatically decreases. Because of
the strong uncertainty in the values of the specific heat
and density at low temperatures, the comparison
between the predictions of the theory and the experi-
mental data was limited from below by the region suit-
able for the direct measurements of these parameters,
namely, by temperature values above 236 K.

4.2. Dibutyl Phthalate
Now, let us consider DBP. Figure 3 shows the

dependences measured in [32, 33] for supersaturation
Sv of DBP vapor occurring at equilibrium with critical
nuclei composed of g* molecules in comparison with
the data calculated by relation (3) and Thomson equa-
tion (11) at nucleation temperatures of 249.65, 259.65,
269.15, and 279.65 K. It can be seen that the logarith-
mic values of supersaturation calculated for DBP
vapor by Eq. (30) agree with the measured data within
the experiment error for a temperature range of
249.65−269.15 K; at 279.65 K the calculation under-
COLLOID JOURNAL  Vol. 80  No. 2  2018
estimates the experimental values by 5%. At the same
time, the Thomson equation predicts logarithmic val-
ues of the supersaturation 12−15% lower than the
experimental data. Accordingly, the numbers of mole-
cules in critical nuclei calculated by Eq. (30) for these
temperatures turn out to be 1.35−1.5 times larger than
those in classical “Thomson” nuclei.

Comparison between the predictions of the pro-
posed theory and the nucleation rates measured by
Hämeri and Kulmala for DBP vapors in a laminar
flow diffusion chamber [36] has shown (Fig. 4) that, at
temperatures higher than 300 K, the calculated nucle-
ation rates (solid lines) coincide with the experimental
data (symbols). At 296.9 K, the calculation overesti-
mates the nucleation rates by two to three times.
Quantitative agreement between the CNT (dashed
lines) and experimental data is absent. Below room
temperature, the differences between the predictions
of this work and the measurement results [36] increase
with decreasing temperature. The contemporary rela-
tion between the theoretical and experimental data on
the nucleation of supersaturated DBP vapor is illus-
trated in Fig. 5, where the dependences of critical
supersaturation on nucleation temperature are pre-
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Fig. 2. Dependences of water-vapor nucleation rate J on
supersaturation Sv measured in [30] (symbols) in compar-
ison with data calculated by Eqs. (31) and (32) of this work
(solid lines) and in terms of the CNT (dashed lines) for
temperatures of 259, 253.7, 248.5, 244.1 and 238.8 K.
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sented. Here, supersaturation, at which the nucleation
rate is equal to 106 cm–3 s–1, is considered to be critical.
The critical supersaturation values measured in [32,
33] and by Hämeri and Kulmala [36] and Mikheev
et al. [37] are shown in Fig. 5 as compared with the
predictions of the theory that we propose, CNT,
SCCCT [21, 22], and Dillmann−Meier theory [14].

It can be seen that the experimental data markedly
differ from each other. In the vicinity of room tem-
perature, the data of [36, 37] are almost the same;
however, as the temperature decreases, the critical
supersaturation values measured by Hämeri and Kul-
mala [36] are several times higher than the values
obtained in, e.g., [33]. At T = 250 K, the critical super-
saturation values and nucleation rates differ by 3 times
and 3.5 orders of magnitude, respectively. The reasons
for the discrepancies are obviously experiment errors
and the use of not quite correct reference data. The
main drawback of the experiments carried out by
Vaganov et al. [33] was associated with the incorrect
measurement of aerosol concentration, which resulted
in the systematic underestimation of the nucleation
rate by more than two orders of magnitude. In subse-
quent works [36, 37], this drawback was eliminated;
however, they had other errors. In [36], they are
(1) the use of an incorrect equation for the saturation
pressure of DBP vapor and (2) ignorance of the effect
of obtained aerosol evaporation during its delivery into
the measurement volume of a particle counter. Let us
consider these problems in greater detail.

(1) According to [38], an incorrect Antoine equa-
tion was used in [36] to calculate saturation vapor
pressure P∞ of DBP (in mm Hg), 

(33)( )5099ln 16.27 ,
109.65

P
T∞ = −

−

which is an approximation of the expression presented
in Table 2 of this work and had been applied in [32,
33]. According to [39], the constant in the denomina-
tor of Eq. (33) is equal to (0.19Tb − 18) K, where Tb is
the boiling temperature of a substance at the normal
pressure. For DBP, this constant is 98.47 K (rather
than 109.65 K!). With this constant, the Antoine equa-
tion adequately reproduces the initial expression in
Table 2: the predicted vapor pressure at T = 246 К dif-
fers from that calculated by the equation from Table 2
by no more than 10%. The critical supersaturation val-
ues, which were reported in [36], recalculated by the
initial expression presented in Table 2 are denoted in
Fig. 6 by rhombs. It can be seen that the critical super-
saturation values reported in [36, 37] coincide after the
recalculation; futhermore, these supersaturation val-
ues at temperatures higher than 290 K in a rather good
agreement with the results of the proposed theory.

(2) It was noted in [33] that the study of nucleation
at low temperatures was limited by the evaporation of
an ultradispersed DBP aerosol during its transport to
the region of enlargement and registration at tempera-
tures close to the room temperature. In particular, the
majority of an aerosol obtained at 249.65 K was evap-
orated when the transport time was ≥0.7 s, i.e., about
95% of particles with an average radius of about 3 nm
disappeared within 0.7 s upon heating by 40−45 K. In
[33, 36, 37], the experimental conditions were similar
and the sizes of the obtained particles were almost
equal. Therefore, the authors of the aforementioned
works could not avoid the evaporation induced loss of
a substantial part of an aerosol formed at decreased
temperatures. The problem relevant to the evaporation
of an aerosol formed at low temperatures and trans-
ported to the region of registration must be in the focus
of researchers’ attention. The matter is that a formed
condensation aerosol is rather polydisperse. In the
opinion of Fuks and Sutugin [40], the particle size dis-
tribution is most adequately described by the lognor-
mal law. At a slight heating of an aerosol containing
flow by 10−30 K, a relatively small number of the
smallest particles are lost. Upon heating by 40−100 K,
the majority of the aerosol is lost, and a fraction of 0.1,
0.01, etc., of the aerosol is registered. Aerosol evapora-
tion is difficult to notice in an experiment, because
some amount, albeit small, of a nonevaporated aero-
sol always enters the counter.

Mikheev et al. [37] discussed a possible loss of
aerosol particles due to evaporation and presented the
layout of a TSI Model 3025A counter, which was used
in the work. The layout enables one to conclude that
the counter plays the decisive role in aerosol evapora-
tion. Indeed, the layout shows that the aerosol con-
taining f low entering the counter is divided in a ratio of
1 : 10 and the minor f low is directed to the registration
through the evaporator of the enlarging unit of the
counter, with the evaporator being heated 40−50 K
higher than the room temperature. The heating of the
flow to only 30 K higher than room temperature
COLLOID JOURNAL  Vol. 80  No. 2  2018
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Fig. 3. Supersaturation Sv of DBP vapor occurring at equilibrium with critical nuclei composed of g molecules at temperatures of
(a) 279.65, (b) 269.15, (c) 259.65, and (d) 249.65 K. Symbols denote experimental data of [32, 33], solid lines refer to results cal-
culated by Eq. (30) of this work, and dashed lines reflect data calculated by Thomson equation (11).
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Fig. 4. Comparison between dependences of DBP vapor nucleation rates on supersaturation measured in [36] (symbols) and cal-
culated by Eqs. (31) and (32) of this work (solid lines) and in terms of the CNT (dashed lines) at temperatures of 317.45, 306.97,
and 296.9 K.

3.0

7.0

6.5

6.0

5.5

5.0

4.5

4.0

3.5

7.5
317.45 K

306.97 K

296.9 K

2.2 2.4 2.6 2.8 3.0 3.2 3.42.0
log Sv

log J [cm–3 s–1]



180 KODENEV

Fig. 5. Temperature dependences of critical supersaturation of DBP vapor (J = 106 cm–3 s–1): (1) data from [33], (2) data from
[36], (3) recalculation of data from [36], and (4) data from [37] compared with results of this work (solid line 5) and predictions
of the CNT (dashed line 6), SCCCT (dots 7), and Dillmann–Meier theory (dash-and-dot line 8).
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increases the DBP evaporation rate by ≈50 times. If
such or higher heating (30 + 43 = 73 K) lasts at least
0.014 s or longer, the fraction of the evaporated aerosol
will a fortiori be larger than that disappearing over
0.7 s at the room temperature. It should, in particular,
be noted that the partial aerosol evaporation in the
particle counter may explain the decrease in the DBP
nucleation rate measured at 296.9 K as compared with
the predictions of the proposed theory (see Fig. 4).

It is obvious that evaporation of aerosol particles
leads to overestimating the critical supersaturation val-
ues measured in [36, 37] at temperatures below 290 K
(see Fig. 5). The elimination of the effect of evapora-
tion will make the temperature behavior of the critical
supersaturation observed in these studies similar to
that in [32, 33], thereby undoubtedly improving the
agreement between experimental data and the pro-
posed theory at low temperatures.

4.3. n-Propanol

Figure 6 illustrates experimental data obtained by
G�rke et al. [41] on the isothermal nucleation of
supersaturated n-propanol vapor in helium, with these
data being obtained in a laminar f low diffusion cham-
ber at temperatures of 270, 280, 290, and 300 K, in
comparison with the predictions of the theory pro-
posed in this work and the CNT. For each tempera-
ture, the measurements were performed at different
pressures of the carrier gas (helium): 50−60, 100, and
200 kPa. As can be seen in the figure, the experimental
nucleation rates and those calculated in terms of the
proposed theory at 270 K lie below the data predicted
by the CNT; in the range between 280 and 290 K, they
cross over the results of the CNT; and, at 300 K, they
appear to lie higher than those predicted by the CNT.
As for the quantitative state of affairs, the results
obtained in terms of the proposed theory at 270 K
coincide with the measured data at a carrier gas pres-
sure of 200 kPa and exceed them by one to two orders
of magnitude at pressures of 50 and 100 kPa. At tem-
peratures of 280 and 290 K, the measured and calcu-
lated nucleation rates coincide with each other within
the experiment error. At 300 K, the calculation yields
rates underestimated approximately ten times.

A similar state of affairs, namely, a discrepancy
between the measured nucleation velocities and the
predictions of the proposed theory by as many as ten
times, was also observed for ibuprofen [17].

The reasons for the quantitative discrepancies are
anybody’s guess. They may be explained by, on the
one hand, the inaccuracy of the proposed theory and,
on the other hand, any systematic errors in experi-
ments.

CONCLUSIONS
Analysis of equilibrium nucleus-size distribution

found in supersaturated vapor by the methods of sta-
tistical physics has shown that clusters consisting of
1000 or less numbers of molecules are microscopic
objects. They are characterized by partition functions
and cannot be described by thermodynamic methods.
An approach has been proposed, which enables one to
directly determine the partition function over the
internal degrees of freedom of a cluster and express the
nucleus size distribution via habitual temperature and
supersaturation. It has been shown that, to find the
partition function and the equilibrium nucleus size
distribution, it is necessary to know the evaporation
rate of the clusters. This rate has been approximately
determined by extrapolating the refined evaporation
rate obtained in terms of the f luctuation theory for
incompressible liquid droplets to the region of nucleus
sizes. As a result, a homogeneous stationary nucle-
ation theory was formulated without the use of adjust-
able parameters. The theory employs ordinary ther-
modynamic values the same as those used in the CNT,
as well as the specific heats of a studied liquid and its
vapor at a constant pressure. The results of this work
COLLOID JOURNAL  Vol. 80  No. 2  2018
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Fig. 6. Dependences of the n-propanol nucleation rate on supersaturation plotted by G�rke et al. [41] at temperatures of (a) 300,
(b) 290, (c) 280, and (d) 270 K and carrier gas pressures of (1) 50−60, (2) 100, and (3) 200 kPa. The data obtained in terms of the
proposed theory and the CNT are shown by the solid and dashed lines, respectively.
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have been compared with verified experimental data
on nucleation in supersaturated vapors of different
substances and with predictions of the CNT. The
comparison has shown that the sizes of critical nuclei
calculated at preset temperature and supersaturation
agree with the measured ones and that the nucleation
rates obtained in this work either coincide with the
measured ones or agree with them within one or two
decimal orders of magnitude. The nucleation rates
obtained in terms of the proposed theory are in better
COLLOID JOURNAL  Vol. 80  No. 2  2018
agreement with experimental data that those found
within other versions of the theory.

The accumulation of more accurate and reliable
experimental data will make it possible to determine
the accuracy of the proposed nucleation theory and
suggest methods for its improvement.
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APPENDIX
The data of Table 1 are approximated using the fol-

lowing expressions:

(1) for 

(2) for 
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