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Abstract—Models for f lows of a non-Newtonian liquid have been considered within the framework of the
micropolar theory. Different forms of constitutive equations and boundary conditions have been compared.
Available analytical solutions and possible applications of the micropolar theory have been reviewed. A
mechanically substantiated formulation of the problem relevant to the f low of a micropolar liquid in a Brink-
man porous medium has been considered. Formulations of the boundary problem have been proposed for a
micropolar liquid f lowing in a porous cell.
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INTRODUCTION
The study of the functional properties of new mate-

rials and the development of novel technologies at the
micro- and nanolevel gave substantial impetus to the
development of nonclassical hydrodynamic models
and the investigation of non-Newtonian liquid f lows.
It has rather long ago been established that some flow
properties cannot be explained in terms of the classical
theory of Newtonian liquids. Abnormal variations in
the rheological characteristics of liquids subjected to
external electromagnetic actions, formation of thin
films and boundary layers with properties distinctly
depending on a characteristic size, phenomena of a
drastic increase in a liquid f low velocity in thin capil-
laries, and deviations of filtration characteristics of
membranes from those expected within the classical
theory of Newtonian liquid filtration are among these
properties.

Classical hydrodynamics deals with symmetric
stress tensor and linear state equations. It means that,
a stress tensor is linearly related to a deformation rate
tensor, which is also symmetric. Medium particles are
considered to be material points, their motion is com-
pletely described by a field of linear velocities, and the
interaction between the medium particles is of a purely
force character.

One of ways in which hydromechanics is develop-
ing is associated with the introduction of new rheolog-
ical models and simulation of medium states by non-
linear stress–deformation rate dependences. Old-
royd’s eight-constant model [1] seems to be the most
complete nonlinear generalization of the state equa-
tion for a viscoelastic medium. It rather adequately
describes the behavior of some non-Newtonian liq-

uids, even when its markedly simplified versions are
used (because its complete version is difficult to ana-
lyze).

Within the framework of another approach, an
internal structure of a medium is considered taking
into account additional (rotational) degrees of free-
dom of particles composing a continuum. Together
with the proper microrotations of particles, the
moment interaction of medium elements and external
couple stresses that act on a medium together with
external forces are taken into account. As a result, in
addition to the tensor of force stresses, a couple-stress
tensor arises in the medium, with both tensors being
essentially asymmetric. Therefore, the micropolar-
liquid theory is sometimes referred to as an “asymmet-
ric theory.” Note that the micropolar-liquid theory
has a substantial potential as applied to describing col-
loidal systems, such as suspensions, emulsions, and
foams.

In the course of the development of the elasticity
theory, Voigt [2] was the first to try to take into
account the moments of forces and introduce, in addi-
tion to the tensor of force stresses, the couple-stress
tensor. However, the complete theory of asymmetric
elasticity and a medium with couple stresses and a
microstructure was formulated by the Cosserat broth-
ers [3]. Unfortunately, this fundamental work did not
receive proper recognition during their lifetimes. This
study comprised a generalized theory of mechanics,
optics, and electrodynamics; however, numerous
material constants and characteristics of the new
medium remained unknown. The theory was nonlin-
ear, because it took into account arbitrary deforma-
tions, while the mathematical apparatus was rather
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cumbersome and difficult to use for engineering prob-
lems.

The Cosserat model was developed and began to be
widely used in the 1960s, after the publication of a
number of articles devoted to the asymmetric-elastic-
ity theory followed by the development of the polar-
liquid theory. The works have been reviewed and the
micropolar-elasticity theory has been systematically
described in monograph by Nowacki [4]. A mathe-
matical apparatus for asymmetric hydrodynamics was
proposed by Aero et al. [5]; however, Eringen’s works
have become more popular in this field [6, 7]. Later,
he extended this theory and combined it with asym-
metric models of elastic media [8, 9]. A rigorous math-
ematical description of the theory and applications of
micropolar liquids was reported by Lukaszewicz in
[10]. The theoretical foundations and applications of
both the micropolar-elasticity theory and micropolar
hydrodynamics have been reviewed in Pabst’s work
[11] written in the engineering style.

The importance of correct use of the relevant ter-
minology should be noted. The Newtonian-liquid
model may be developed in two ways. The first one
entails allowance for the force moments acting in a
medium and the introduction of a couple-stress tensor
in addition to the tensor of force stresses. Such media
are referred to as “fluids with couple stresses.” The
second direction consists in allowance for the exis-
tence of an internal microstructure in a medium, with
this structure implying rotational motions of micro-
elements, as well as deformations and stresses inde-
pendent of translational motion. These liquids are
referred to as “microstructured” ones and may be
considered with no allowance for moments of forces.
The most complete models comprise both moments of
forces and medium microstructure. Depending on the
number of the degrees of freedom that are imparted to
medium microparticles, micromorphic, microstretch,
and micropolar media are distinguished. Particles
composing a micromorphic medium may perform
translational and rotational motions and be subjected
to diverse deformations. Microstretch media, which
consist of particles performing translational and rota-
tional motions, are subjected only to volume deforma-
tions; i.e., they “breathe.” Micropolar media are com-
posed of absolutely solid particles with three transla-
tional and three rotational degrees of freedom. All
three of the aforementioned microstructured media
were introduced by Eringen in the 1960s, and a hierar-
chical description and generalization of the theory of
such media are given in his two-volume book [8, 9]. A
unified description and the comparison between the
theories of liquids with couple stresses and micro-
structured liquids are presented in monograph by
Stokes [12]. Corresponding analytical solutions for
classical problems, i.e., planar and cylindrical f lows
and flows around spheres, may be found in the same
work.

Many studies have been devoted to the simulation
of heat-conducting micropolar liquids. Dieppe and
Listrov [13] revealed the following thermomechanical
effect: in a liquid with a nonuniform temperature field,
a relation arises between a heat f lux and couple
stresses. This leads to a transformation of the equation
of moments and the appearance of new terms in the
equation of heat conductivity, with these terms being
related to microrotations. The theory of heat conduc-
tivity of micropolar liquids was also developed by
Eringen in 1972 [14]. This theory is rather complex for
practical application; therefore, a simplified linear
version is, as a rule, used. The problem of heat
exchange in micropolar liquids has been considered in
detail in monograph by Migun and Prokhorenko [15].
The present review is devoted to the hydrodynamics of
isothermal micropolar liquids, for which thermal
effects are ignored.

One of the most complex aspects of the develop-
ment of the theory of microstructured media is the
derivation of the state equation. The dependences of
stress tensors on deformations or their rates (these
dependences are now governed by not only linear, but
also angular velocities), are, in the general case, non-
linear. Liquids characterized by linear dependences of
stress tensors on measures of deformation rates are
commonly referred to as simple microliquids. It has
appeared that, within the model of simple micropolar
liquids, many diverse problems may be solved analyti-
cally in spite of the fact that their theory is rather com-
plex as compared with classical hydrodynamics. In
this review, the attention is focused on specifically
analytical solutions in terms of the theory of simple
micropolar liquids. In the consideration, the accent
will be put on the mechanical sense of the used notions
and results, which is of importance for the correct use
of the models in applications. Since the number of
articles and books devoted to this field amounts to sev-
eral hundred, we did not intend to establish an exact
chronology of obtaining all presented solutions with
assignment of priorities. Many solutions and their
analysis and applications have been considered in
reviews [16, 17] and monographs [8–10, 12, 15, 18,
19]. Less attention has, as yet, been focused on f lows
of micropolar liquids in porous media. In this work, a
problem will be formulated concerning a filtration
flow of a micropolar liquid in a porous medium and
equations and boundary conditions will be derived for
the problem of a conjugate f low in a porous cell com-
posed of a solid core, a porous shell, and a region of
free f low. In conclusion, main applications of the the-
ory of micropolar liquids will be briefly considered.

MOTION AND STATE EQUATIONS 
FOR A MICROPOLAR MEDIUM

Before discussing available solutions and formulat-
ing new problems, let us pay our attention to the forms
of the main equations describing the dynamics of an
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isothermal micropolar liquid. As in classical hydrody-
namics, they are based on the mass conservation law
and the Euler laws for an elementary volume of a
medium. It should be emphasized that the energy-
conservation law and entropy balance may be ignored
in the system, provided that the specific internal
energy is proportional to the temperature of a liquid,
the Fourier law is fulfilled, and all material coeffi-
cients (viscosities) are constant [7, 9]. The aforemen-
tioned conditions are satisfied for isothermal f lows,
which will be considered below.

To determine surface forces  and moments of
forces  applied in a medium to an elemental area
with normal vector , stress tensor  and couple-stress
tensor  are introduced according to the following
rules:

here and below, the dot denotes a scalar product.
Hence,

As a result, we may write the differential form of the
laws of motion, namely
continuity equation

(1)
equation of momentum

(2)
and equation of moment of momentum

(3)

where  are the vectors of linear and angular
velocities, respectively;  is the density of a liquid;  is
the inertia tensor, which, for an isotropic simple
microfluid, has a spherical pattern;  are the
densities of volume forces and moments of forces
applied to the medium, respectively;  is the
Levy−Civita tensor; the dot over a symbol denotes the
total time derivative; and the colon denotes the convo-
lution over two indices.

Let us discuss the derivation of the state equation
for a micropolar medium at a qualitative level focusing
our attention, primarily, on the mechanical interpre-
tation of the used values. A rigorous mathematical der-
ivation may be found in [7–9, 12, 20]. Within the the-
ory of micropolar elasticity, this problem has been
accurately described in Nowacki’s book [4].

In order to write equations of state, it is necessary
to realize which values may serve as the measures of
deformation of a medium element and deformations
of which types may occur in a medium with the prop-
erties under consideration. As a limiting case, it is
desirable to obtain the Navier-Stokes law—

 used in the classical theory. Here, p is the
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hydrostatic pressure and  is a metric tensor. Tangen-
tial-stress tensor  is determined by the expression

, where  and  are the first and
second viscosity coefficients of a liquid, respectively;

 is the tensor of the rates of deformations, with the
components of this tensor in the Cartesian coordinates

having the form of . As it has been

shown in terms of classical thermodynamics, the
deformation-rate tensor completely determines the
deformation of a medium element. The diagonal and
off-diagonal components of  are responsible for vari-
ations in the volume and shape of the element, respec-
tively. The linear relation to the stress tensor yields
expressions for the normal and shear stresses of the
medium element, respectively. At the same time, anti-

symmetric tensor , which is

referred to as the “vorticity tensor,” determines the
rotation of the medium element as a solid body,

because the vector associated with it is equal to .

In the presence of an independent rotational motion
of medium elements with angular velocity , tensor

 acquires a correction associated with this vector
and takes the form of . Note that the sum of
tensors  and  represents transposed velocity gradi-
ent , while the components of the velocity gradi-
ent are determined as . Then, tensor

 characterizes the rates of the vol-
ume, shear, and rotational deformations of a micro-
polar medium. However, these are not all the possible
types of deformation to which an element of a micro-
polar continuum may be subjected. Owing to the
dependence of the angular velocity  on the spatial
coordinate, the medium element may undergo twist-
ing and bending. The rates of these two types of defor-
mation, which are inherent in micropolar media and
absent in nonpolar liquids, are characterized by curva-
ture–twist-rate tensor ,
introduced in [20]. Tensors  and  determine the
rates of all possible types of deformation in a microp-
olar liquid. Then, they should, in a linear manner, be
related to tensors  and .

In the Eringen theory, the expression for the stress
tensor is presented in the form of linear addends to the
classical terms:

The introduction of the transposed tensors is neces-
sary to ensure isotropy of the written function: the
term proportional to  is absent, because it is
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equal to zero. In addition to the classical viscosities of
a Newtonian liquid , Eringen introduced the
new viscosities . After a rearrangement of
the terms, the stress tensor was represented as

while the combinations of the viscosity coefficients
were denoted as follows:

Coefficient  has been called the “dynamic microro-
tation viscosity,” while the term “viscosity” has been
retained for coefficient . As a result, the stress tensor
for an incompressible liquid for which,

 takes the following form:

(4)
In Cartesian coordinates, its components are writ-

ten as follows:

In this form, the stress tensor is used for micropolar
liquids in the majority of studies.

Let us pay attention to the following important cir-
cumstance: viscosity coefficient  is, in the general
case, unequal to the dynamic viscosity of a Newtonian
liquid. They coincide with each other only in the case
of , which corresponds to the classical limiting
case and transforms the expression for the stress tensor
into the classical equation.

The couple stress tensor has been expressed in
Eringen’s works via the curvature–twist rate tensor as

(5)
or, in Cartesian coordinates, as

where coefficients , termed “angular vis-
cosity coefficients,” have been introduced.

After the expressions derived for stress tensors are
substituted into Eqs. (2) and (3), they, with allowance
for Eq. (1), acquire the following form:

(6)

In this form, the set of equations for liquid motion was
derived by Eringen; therefore, we shall refer to it as the
Eringen set of equations. At , the first and sec-
ond equations of set (6) form the Navier–Stokes set of
equations for a nonpolar liquid, with  reflecting the
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dynamic viscosity of this liquid. When set (6) is used at
, the necessity, as a rule, arises to compare the

obtained solutions with their classical analogs. There-
with, it should be taken into account that viscosity
coefficient  is unequal to dynamic viscosity  of a
Newtonian liquid. Otherwise, the quantitative esti-
mates and theoretical conclusions would be distorted.
Eringen himself has noted this circumstance in his
book [9]. In [12], Stokes proposed to redefine viscosity
coefficients in a manner such that the passage to the
model of a nonpolar liquid could be performed for-
mally. The possibility to take into account the relation
between these dependences using simple replacement

 in an obtained solution has been noted
in [21].

When deriving state equations for the theory of
micropolar elasticity, Nowacki [4] proposed to derive
an explicit dependence on symmetric and antisym-
metric components of deformation tensors. Realizing
this idea for liquids and deformation-rate tensors, we
obtain

(7)

(8)
where  and  are the first and second classical visco-
sity coefficients, respectively. This can be easily seen
after writing the symmetric component of the stress
tensor in Cartesian coordinates. For an incompres-
sible liquid, it has the form of

and completely coincides with the classical stress ten-
sor. The antisymmetric component of the deformation

rate tensor, , is related

only to the rotational motions, thereby justifying the
term “vorticity” or “microrotation” viscosity applied
for coefficient . Symbols  denote angular-
viscosity coefficients.

Substitution of Eqs. (7) and (8) into system (1)–(3)
yields the motion equations for a micropolar liquid:

(9)

These equations will be referred to as the “Nowacki set
of equations.”

It is obvious that, at  the first and second
equations of set (9) are reduced to the equations of
classical hydrodynamics, while viscosity of a micro-
polar liquid  remains equal to the dynamic viscosity
of a nonpolar liquid with no stipulations.
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It can be easily seen that, at  

, expressions (7) and (8) are

transformed into Eqs. (4) and (5), respectively, while
set of equations (9) coincides with system (6). That is,
the state equations and motion equations in the Erin-
gen and Nowacki forms are identical with an accuracy
of the denotations of viscosity coefficients.

In our opinion, Nowacki’s formulation of the
problem is advantageous in the fact that it explicitly
comprises the classical dynamic-viscosity coefficient,
thereby enabling one not only to perform the formal
passage to the classical limiting case in the obtained
solutions, but also to compare the obtained solutions
with the classical ones in a more convenient form.
Therefore, the subsequent consideration will concern
equations represented in Nowacki’s form. A less com-
pact notation of the moment equation, in particular,
the use of sum  instead of coefficient , which
appears in Eringen’s formulation, does not seem to be
inconvenient, because it additionally reminds us that
terms of both symmetric and antisymmetric compo-
nents of the curvature–twist-rate tensor are involved
in the solution.

Some arbitrariness in the notation of the dynamic
microrotation and angular-viscosity coefficients
seems to play no decisive role, because the definition
and evaluation of these parameters encounter, proba-
bly, the greatest difficulties when developing the the-
ory of micropolar liquids. The design of experiments
on the determination of these characteristics is a sepa-
rate complex problem. One of the few researchers to
have experimentally studied the properties of microp-
olar liquids was the Belarusian scientist Migun. In his
dissertation, he has developed and realized a method
for the experimental determination of micropolar liq-
uid parameters that combine the aforementioned vis-
cosities. His technique was presented in monograph
[15]. The characteristics of several liquids with micro-
polar properties have been reported in another mono-
graph by the same authors [22]. The values of the vis-
cosity coefficients for some micropolar liquids may be
found in [23, 24].

In view of the difficulties relevant to the determina-
tion of the viscosity coefficients for micropolar liq-
uids, all the analytical solutions that have been found
within the framework of this theory appear to be espe-
cially valuable. They enable one to explicitly study the
dependence of solution results on the coefficients or
their combinations, to realize the measure of the influ-
ence of each of them, and to advance in elaborating
procedures for experimental investigation of micropo-
lar media.

Let us note the determination of the total time
derivative, which is denoted by the dots over the sym-
bols in the left-hand sides of the motion and moment
equations. In classical hydrodynamics, it implies a

,
2

κκ = v ,
2

κμ = μ + v
v

and
2 2

γ + β γ − βδ = ς =

δ + ς γ

material or substantial derivative, which has the fol-
lowing form:  In this representa-
tion, it was used in Eringen’s works and subsequent
studies, a review of which may be found in [10, 16, 17].
A substantial derivative describes the evolution of a
polar field of vectors of linear velocities. At the same
time, in classical hydrodynamics, the evolution of the
axial vector of vorticity field  is described by
the Helmholtz equation. For a viscous incompressible

liquid, it has the form of  –

. In addition to the terms of the sub-

stantial derivative, the left-hand side of the equation
comprises the term . In [25], it has been ri-
gorously shown that the evolution of axial vector field

 in a micropolar liquid must be described by an
equation having a pattern the same as the Helmholtz
equation has; namely:

 “viscous terms”.

Thus, the left-hand sides of the moment equations
in sets (6) and (9) must be written as ,
where the dot over the symbol has the same meaning.
The set of equations for a micropolar liquid taking into
account the aforementioned correction has been con-
sidered as a modified set of equations for a micropolar
liquid [25].

Note that, in planar and axially symmetric cases,
the modified set of equations for a micropolar liquid
coincides with the initial one. Differences arise when
the f low is essentially three-dimensional. The Burgers
vortex is the most common three-dimensional prob-
lem, which has an exact solution. Problems concer-
ning the diffusion of vortex lines and vortex lattices
also belong to this class of problems. Their solutions
obtained for a micropolar liquid using the modified set
of equations are presented in a recently published
book by Brutyan [26].

A series of studies devoted to nonstationary micro-
polar f lows of different geometries have been pre-
sented in [27–30] and other communications by
the same authors. The authors used the Laplace trans-
form; however, the passage to the region of original
variables was performed numerically. In [31], the non-
stationary equations for a planar f low have been solved
in a completely analytical form; however, the depen-
dence of the unknown functions on coordinates has a
particular pattern.

Since, in the case of micropolar media, analytical
solutions can be obtained predominantly for linear
problems, slow flows will be considered below under
the Stokes approximation. Equations written with
allowance for inertial terms under the Oseen approxi-
mation are used much more seldom, although they
also imply analytical solutions. The Stokes and Oseen
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flows have been considered in the general vector form
in [32]; the characteristics of the f lows have been
obtained for two cases, i.e., at nonzero external forces
and zero moments and vice versa.

BOUNDARY CONDITIONS AT A SOLID WALL

Since, in contrast to the set of Navier–Stokes
equations, the set of constitutive equations for a
micropolar liquid contains one more unknown vector
function and one additional second-order vector
equation, additional boundary conditions are required
for its solution. The number of these conditions
depends on the dimensionality of a problem. Two con-
ditions are imposed on vector  for each independent
coordinate. For problems of an external f low, they are
conditions preset at a surface streamlined and at infin-
ity. For f lows inside closed areas, such as cylinders,
they are a condition imposed on a surface and a con-
dition of finiteness of the solution inside the f low
region. In other configurations, there are commonly
two different boundaries on which corresponding
conditions are imposed.

It should be noted that, even in classical thermody-
namics, the history of which is almost three centuries
long, there is no consensus about the presence or
absence of slip at solid surfaces and a distinct criterion
for the selection of this or that condition at a bound-
ary. From the point of view of formal mathematics,
one may provide a boundary with either the Dirichlet
condition, i.e., set the value of a desired function at a
boundary, or the Neuman condition, i.e., specify the
value of the derivative of the desired function. A mixed
condition may also be used in the form of a linear
combination of a function and its derivative with some
coefficient. The first condition is based on the idea of
sticking a liquid to a solid surface and has the form of

, where the subscript b denotes “boundary”
and  is the velocity of the boundary, which may, in
particular, be quiescent. This condition is most often
used due to the authority of Stokes, who has stated that
slip is impossible. At the same time, Navier [33] has
suggested to impose the slip condition for the velocity
component tangential to a surface, while retaining the
normal component equal to zero. According to
Navier’s idea, the tangential component of the f low
velocity at a solid surface is linearly related to the tan-
gential stress at it. From the mathematical point of
view, this condition is attributed to the mixed type,
where the coefficient has the dimensionality of length
and is referred to as the slip length. At the zero slip
length, the no-slip condition is realized, while, at the
infinite one, the stress tensor component, which, for a
Newtonian liquid, is expressed via derivatives of veloc-
ity, vanishes. Note that, even when the opinion of no-
slip at solid surface–liquid prevailed, some exceptions
to this rule took place, among which liquid polymers
were noted. They represent media that are adequately

ω

bb =v U

bU

described by the micropolar model. For a micropolar
liquid, the stress tensor is determined by relation (7),
and the Navier slip condition is somewhat more com-
plex; an example of its use will be presented below.
Brunn [34, 35] discussed in detail the necessity to use
the slip condition for polar liquids proceeding from
mechanical considerations and taking into account
experimental data.

Plane-parallel stretching is a boundary condition
of practical interest. It is realized when producing
polymer materials and, as a rule, implies the applica-
bility of the boundary layer approximation. Among-
numerous works devoted to such problems, an analy-
tical solution obtained within the framework of mag-
netic hydrodynamics of micropolar boundary layers
has been reported in [36].

The situation with boundary conditions for the
angular velocity of a micropolar liquid is still less clear.
The condition of the zero angular velocity at a quies-
cent boundary is most often used, because it yields a
simpler solution of the boundary value problem. It was
formulated by analogy with the no-slip condition for
the linear velocity; however, it has not received a reli-
able physicochemical justification. Moreover, Kirwan
[37] has shown that it is not universally applicable.

In some works, it has been proposed to impose

condition  on solid boundaries. From

the mechanical point of view, namely this condition
rather than condition  ensures the stop of the
microrotation, because it expresses the equality of the
angular velocity of a liquid to its solid-state rotation
rate. Note that the solid-state rotation rate may be
nonzero in a purely translational f low of a Newtonian
liquid. For example, the solution of the aforemen-
tioned equation for the evolution of vorticity for the
Poiseuille planar f low of a Newtonian liquid yields a
linear distribution of vorticity along a cross section of
a channel. Therewith, the maximum absolute values

of vorticity equal to  are reached at walls. One

can directly ascertain that the use of this boundary
condition in the absence of external couples of forces
leads to the disappearance of the effects of micropo-
larity by the example of the solution presented below

for the Poiseuille f low: taking , we, at

once, arrive at the coincidence of the obtained solu-
tion with the classical profile.

The detailed analysis of all possible mechanisms
for the appearance of vorticity may be found in
Smith’s book [38], in which it has been shown that
namely the interaction of a f low with solid boundaries
is responsible for the generation of vorticity. Thus a
correct formulation of boundary conditions may play
the key role when considering micropolar f lows.
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In [37] it was porposed a condition of rather general
form , where coefficient n may acquire

values strictly less than , [39]. At , we

obtain the aforementioned case of the possible degen-
eration of the micropolar f low into the classical one.
At , and, in particular, at , the f low slows
down relative to the classical one because of the brak-
ing action of a wall on its vorticity. At , an
opposite situation is observed, as has been shown in
[39], where different forms of the representation of the

 dependence and their possible applications
were proposed. Examples of the use of this condition
may be found in, e.g., [40–43]. However, the authors
have not presented a reliable mechanical substantia-
tion of the used conditions and have noted that there
is a marked discrepancy between the results obtained.

In monograph [12], it has been proposed to use, as
alternative boundary conditions for micropolar liq-
uids, the values of forces and moments that are deter-
mined via the tensors of force and couple stresses. Or,
passing to a more general mixed condition, this idea

may be formulated as , where the differ-

entiation is performed in the direction normal to a
wall, while coefficient m has the meaning of the slip
length. Taking into account the pattern of the compo-
nents of the couple-stress tensor, we arrive at a com-
plete analogy with the Navier slip law. At present, this
analogy is finding increasingly wide application for
studying f lows of micropolar media [28–30]. More-
over, the attention of researchers is focused on prob-
lems relevant to moving and, in particular, pulsing
boundaries. It has been proposed to introduce a velo-
city jump for them [44]. A planar f low with preset slip
velocity and normal stress was considered in [45].

Since the near-boundary interaction of a liquid
with a solid body is governed by surface phenomena,
the conditions at each boundary must depend on its
properties, such as roughness, hydrophobicity or
hydrophilicity, etc. For Newtonian liquids, these and
other factors of the interaction with solid surfaces have
been considered in detailed review [46] devoted to the
experimental study of slip. The results of simulating a
micropolar liquid f lowing in microchannels within the
framework of molecular dynamics have been pre-
sented in [47]. The calculations have shown essential
dependences of the f low parameters on the channel
width and materials of its walls. In addition, nonzero
values were obtained for the angular velocity at bound-
aries, and an obvious slip effect was found, the scale of
which depended on a wall material.

Hence, it is obvious that there is no universal
boundary condition and that criteria are necessary for
the selection of conditions for a specific medium and
a boundary. Moreover, experimental studies of the
interaction with solid surfaces at the micro- and na-
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nolevels are extremely urgent for both Newtonian and
non-Newtonian liquids.

ANALYTICAL SOLUTIONS AVAILABLE 
FOR SLOW FLOWS OF A MICROPOLAR 

LIQUID
In view of the peculiar properties of micropolar

media, microscale slow flows with low Reynolds num-
bers are of greatest interest for engineering applica-
tions. Stationary problems of creeping or Stokes f lows
are the most widely known problems of classical
hydrodynamics at low Reynolds numbers admitting
analytical solutions. The Poiseuille f low between par-
allel planes and in a cylindrical tube, the f low between
coaxial cylinders, the Couette f low, and the transverse
flow around a cylinder and a sphere are among them.
The generalizations of their solutions for micropolar
liquids will be presented in this review. In most cases,
these solutions may be obtained at nonzero external
forces and moments. Nevertheless, we shall take

, because, in this case, the represen-
tations of the solutions are much more compact, and
their features are more evident as compared with the
classical solutions, which were also obtained in the
absence of external forces.

Planar Flow
Let us consider a planar f low in a Cartesian coordi-

nate system oriented in a manner such that the xOz
plane coincides with the f low plane. The channel
width is denoted as 2R in order to make convenient the
comparison of the solution with an analogous f low in
a cylindrical channel with this diameter. Let the f low
be bounded by planes , directed along the
Oz axis and caused by constant pressure gradient

. Then, , the
continuity equation is identically fulfilled, and set of
equations (9) acquires the following form:

where the single and double prime symbols denote the
first and second derivatives of the unknown functions
over variable x, respectively.

Let us introduce dimensionless variables as follows:

(10)

Note that the dimensionless velocity formally coin-
cides with the definition of the Reynolds number for a
given flow. Thus, paying attention to the maximum
value of the f low velocity, we can monitor the accuracy
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of the used Stokes approximation. In dimensionless
variables, the set of equations is as follows:

(11)

Note that viscosity coefficients are still written in
dimensional form; however, ratios between them

appear everywhere. Expression  has the dimen-

sionality of squared length and may be used as a cha-
racteristic microscale of the problem. The presence of
the ratio between this value and squared characteristic
microscale  of the problem in the dimensionless
equations represents a fundamental difference
between the theory of micropolar liquids and classical
hydrodynamics.

The solution will be most compact and obvious, if
we introduce denotations for combinations of the con-
stants. We shall follow the denotations proposed by
Lukaszewicz [10]; namely:

(12)

So-called micropolarity number N is related to vortic-
ity viscosity . It characterizes the measure of the rela-
tion between the translational and rotational motions
of a continuum. Sometimes, it is interpreted as the
measure of engagement between particles forming a
medium and a measure of the efficiency of rotational
momentum transmission. The maximum N value cor-
responds to a strong micropolarity, while limiting
value N = 0 enables us to separate the motion and
moment equations and pass to the classical limiting
case, i.e., the motion equation for a Newtonian liquid.
Characteristic length  is, sometimes, associated with
“particles” forming a medium. The higher , the
stronger the non-Newtonian effects. Nevertheless,
this parameter is not a real size of any physical object
and may, formally, take any value allowed by con-
straints on the values of the viscosity coefficients.
These constraints follow from the second law of ther-
modynamics, and, as in the classical case, they have
the following form [9]:

Thus, dimensionless parameters N and L, which
are determined by relations (12), take values lying in
the ranges . So, the dimen-
sionless formulation of the problem for the Poiseuille
flow is as follows:

2
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(13)

The tilde symbol is omitted in Eqs. (13) and below.
Note that the coefficient at the higher-order derivative
in the second equation of set (13) may take arbitrarily
small values. This fact will be necessary to take into
account when solving the system by approximate or
numerical methods. However, the existence of an
explicit analytical solution eliminates this necessity,
and, therefore, it is especially valuable. It has the fol-
lowing form:

(14)

(15)

where  are arbitrary constants. Let us
write the partial solution only for the conditions of
complete no-slip and no-spin at both walls, i.e.,

 , to make more convenient the
comparison of the solution with the classical Poi-
seuille profile, which is also obtained under the no-
slip condition. Note that, in addition to the pressure
gradient, the solution depends on only two more
dimensionless parameters N and L. In order to
emphasize this peculiarity, parameters N and L are
included in the list of the arguments of the following
functions:

(16)

(17)

It can be easily seen that the first term in the expres-
sion for the linear velocity represents the Poiseuille
parabola, while the correction to it has the opposite
sign; i.e., the f low velocity of a micropolar liquid is
lower than the velocity of a nonpolar liquid at the same
pressure gradient. This fact is quite obvious, because
additional energy consumptions are required to over-
come new type of viscous friction. The angular f low

velocity also consists of a term equal to  and a

correction term with the opposite sign.
Many authors have dealt with detailed studying the

properties of planar f lows of micropolar liquids under
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different boundary conditions. Some results have been
presented in aforementioned monographs [10, 15].
Exact solutions have been obtained for a planar f low
between infinite rotating discs simulating an orthogo-
nal rheometer [48, 49]. Some specific types of statio-
nary planar f lows were analyzed in the plane of a
hodograph [50] using the Legendre transform of the
stream function. The Poiseuille planar f low was com-
pared in [51] with a f low squeezed between two
approaching planes for three real micropolar liquids.
Characteristic interplanar distances have been deter-
mined beginning from which the micropolarity effects
become essential, and it has been shown that these dis-
tances for approaching planes are an order of magni-
tude smaller than corresponding values for the Poi-
seuille f low. Work [52], in which a nonstationary Cou-
ette planar f low has been considered under the
conditions of linear velocity slip at both boundaries,
deserves attention. A problem, which was similarly
formulated but under the boundary conditions of
complete no-slip, has been solved in [53]. Planar and
essentially two-dimensional f lows were considered in
[54], where the analytical solution was obtained using
the Lie group method. However, the boundary condi-
tions imposed by the authors must be additionally dis-
cussed.

Flow along the Axis of Coaxial Cylinders

Let a f low between coaxial cylinders be directed
along their symmetry axis, which coincides with the
Oz axis, and is caused by constant pressure gradient

. We denote the radii of the external and inter-
nal cylinders as R and A, respectively. Then, in cylind-
rical coordinates , 

, and set of Eqs. (9) takes the following
form:

where prime symbols denote differentiation over coor-
dinate r.

Let us write this set in dimensionless variables (10)
at :

In denotations (12), the dimensionless formulation of
the problem is as follows:
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(18)

Here and below, the tilde symbol is omitted and
the remarks concerning the coefficient at the higher-
order derivative in the planar case remain valid for the
cylindrical geometry.

The general solution of set (18) contains four arbi-
trary constants  and comprises modified Bessel

,  and Macdonald ,
 functions of the zero and first orders,

respectively:

(19)

(20)

The classical profile of the Poiseuille f low between
coaxial cylinders has the following form:

where . Comparing Eq. (19) with this expres-
sion and Eq. (20) with a corresponding coordinate of
the vorticity vector of the classical f low of this geome-
try

it may, again, be noted that the structure of solutions
(19) and (20) is represented in the form of the sum of
classical terms with correction terms, which depend
on characteristics N and L of a micropolar medium.

In the particular case , we obtain the f low
inside one cylinder. The condition of a finiteness solu-
tion of the problem enables us to exclude infinitely
high function values at  and represent solutions
(19) and (20) in the following form containing only
two constants:

Using no-silp and no-spin conditions 
, we obtain a solution of the Poiseuille

type and represent it in a form convenient for the ana-
lysis of its dependence on dimensionless parameters N
and L:
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Let us present an example of a brief parametric
study of the obtained solution as an illustration. Pri-
marily, we are comparing the obtained profiles of the
linear and angular velocities with corresponding pro-
files for the classical Poiseuille f low. Figure 1 shows
velocity curves for  and values  and

 corresponding to a rather well-developed
micropolarity. The profile of the linear velocity of a
micropolar f low (Fig. 1a) is located below the classical
Poiseuille parabola; i.e., the micropolar liquid f lows
more slowly than a Newtonian one does, because the
flow energy is partly consumed to overcome additional
viscous forces. As N and L grow, this difference will
increase, because the micropolar properties of the liq-
uid will become more pronounced. In Fig. 1b, the
angular velocity of a micropolar liquid is compared
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with the angular velocity of the solid-state rotation of
a Newtonian liquid. The strongest difference between
the profiles is observed near the channel walls and is
explained by the boundary conditions selected for the
angular velocity. As has been mentioned above, under

the condition , the profile of the angular

velocity coincides with the straight line corresponding
to the classical f low of a Newtonian liquid. This fact
once more evidently shows the extent of the influence
and the importance of the proper selection of bound-
ary conditions for problem formulation.

The extent of the influence of parameters N and L
on the solution can be seen in Figs. 2 and 3. Figure 2
shows the surfaces, which may be considered to be the
evolutions of the profiles of (a) linear and (b) angular
velocities with an increase in parameter N at fixed
value . Figure 3 illustrates the evolution of the
same profiles with a rise in parameter L at fixed value

. Remember that parameter N may vary from
zero to unity, while parameter L may vary from zero to
infinity. At the same time, they enter the solution in a
manner such that the limiting case resulting from their
simultaneous tending to zero is uncertain.

Figure 2a indicates that, at , the velocity pro-
file coincides with the classical parabola and, as
parameter N increases, the profile goes down. At

, it reaches the limiting position, which is deter-
mined by the value of parameter L. Another situation
is presented in Fig. 2b; namely, the profile of the angu-
lar velocity increases from zero value  to some
highest position at . This effect is explained by
two factors, i.e., the procedure of determining param-
eter N and the boundary conditions preset for .
According to the definition of parameter N, condition

 is equivalent to zero microrotation viscosity .
The latter, in turn, plays the role of the measure of
“engagement” between medium microparticles and
characterizes the rate of torque transmission. At zero
engagement, we have the zero rotation at any r values
because of the condition imposed on the walls. As 
and, hence, N grow, increasingly efficient rotational
interaction of medium microparticles better transmits
the torques and aligns the profile, leading it to zero at
a wall 

The tendency of parameter L toward zero may be
interpreted either as the free rotation of microparticles
at infinitely low angular viscosities or as a vanishingly
small size of microparticles at a fixed channel radius.
In both cases, we obtain the classical limits at a non-
zero fixed value of parameter N. As parameter L
grows, both the linear and angular velocities decrease,
and, already at , they reach their asymptotic val-
ues, which correspond to . The angular velocity
tends to zero as might be expected at infinite values of
angular viscosities. The linear velocity reaches the
classical parabolic profile scaled by coefficient .
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Fig. 1. Profiles of (a) linear and (b) angular velocities for
Poiseuille f lows of micropolar (solid lines) and Newtonian
(dashed lines) liquids.
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Formally this means that a micropolar f low may be
completely stopped at . In practice, the
aforementioned values of the parameters are, of
course, unattainable. Nevertheless, this important
property may be of practical significance.

Flows in capillaries are drawing increasing atten-
tion of researchers in view of the great importance of
specifically this geometry for engineering and medical
applications. Corresponding references will be given
below when considering simulation of hemodynamics.
Moreover, the cylindrical shape of a tube is, as a
rule, most suitable for describing f lows in channels of
arbitrary or unknown shapes.

The authors of [21] quantitatively analyzed f lows of
several micropolar liquids in cylindrical channels and
obtained the characteristic radii at which the f low
characteristics substantially differ from the classical
ones.

, 1L N→ ∞ →

Couette Concentric Flow between Coaxial Cylinders

Let us consider a stationary f low in a ring-shaped
gap between coaxial cylinders caused by their rotation
relative to each other at constant angular velocity 
and the zero pressure gradient. As before, the radii of
the external and internal cylinders are denoted as R
and A, respectively. In this case, the motion occurs
along concentric circles perpendicular to the axis of
the cylinders, which coincides with the Oz axis of a
cylindrical coordinate system . The vectors of
the linear and angular velocities of the liquid have
coordinates , while set of
equations (9) is transformed as follows:

In dimensionless variables (10) and at , it has
the following form:
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Rewriting the set in denotations (12) and omitting the
tilde symbol, we arrive at the following formulation of
the problem:

(21)

The general solution of set (21) has a structure the
same as the solution of set (18):

(22)

(23)

Analogously to all cases considered here, solutions
(22) and (23) are presented as the sum of classical
terms and correction terms, which take into account
the micropolarity. One may become convinced of this
by looking at the example of the classical problem rel-
evant to the rotation of a spindle in a coaxial bearing.
Its solution under boundary conditions 

, where , in the accepted notations has
the form of

while the z coordinate of the vorticity vector of this
f low is equal to

Thus, the linear velocity is described by the first two
terms of Eq. (22), while the angular velocity is
described by the first term of Eq. (23). The last two
terms in Eqs. (22) and (23) are the correction terms
comprising micropolar medium characteristics N
and L.

In the case of an eccentric position of a spindle in a
bearing, the solution is much more cumbersome, but,
however, possible. In view of the high potential of
using micropolar lubricants, the studies in this field
have been continued from the very beginning of the
development of the theory of micropolar liquids. The
main difficulty, which hinders the development and
application of micropolar lubricants, is the deficiency
of data on the characteristic viscosities of these media.

In addition, works devoted to f lows over or inside a
cylinder subjected to longitudinal, transverse, or tor-
sional vibrations [55–58] deserve attention. Such
problems may be encountered upon operation of a
cylindrical bearing, preparation of polymer solutions,
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and drilling oil wells in the shelf under the conditions
of ocean waves.

Infinite Flow past a Cylinder
The problem of a transverse f low past an infinite

cylinder has no solution within the framework of the
micropolar theory, as well as in terms of classical
hydrodynamics [59, 60]. Namely, the so-called
“Stokes paradox” appears here, which consists in the
fact that, when an infinite cylindrical body with an
arbitrary cross sectional area is f lowed around, the
conditions of liquid no-slip on its surface and limited
velocity at infinity cannot be met simultaneously. A
nontrivial solution for this geometry may be found
within the framework of cell models in addition to
spherical cells, because the external size of a cell is
finite and fixed.

Infinite Flow past a Sphere
Let us consider an analog of the classical problem

of a stationary infinite slow uniform flow around a
solid sphere.

Assume that a uniform flow of a micropolar liquid
has constant velocity U at infinity, while the radius of
the sphere f lowed around is . The  axis of a
spherical coordinate system  is directed along
vector U ( ). The unknown func-
tions are , , and

. At infinity, the finiteness condition is imposed
on the angular-velocity vector, while the nonzero
coordinates of the linear-velocity vector must be equal
to , respectively.
The boundary conditions at the sphere surface will be
discussed after obtaining the general solution of the set
of Eqs. (9) by the Lamb method. After denotation

 is introduced, system (9) is transformed as
follows:

(24)

In dimensionless variables

and with the use of relations (12), in which R is
replaced by , the second equation of set (24) is writ-
ten as

where the tilde symbol is omitted.
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Using the curl operation to both sides of this equa-
tion, we obtain

(25)
Passing to the coordinate notation of Eq. (25) and
searching for the solution by the method of separation
of variables, we, for the third coordinate of vector

, will have .

The solution for  will be sought in the form of
; then, Ω =

. The substitution of this

expression into the dimensionless-coordinate form of
the third equation of system (24), which, in turn,
acquires the pattern of

yields the inhomogeneous Bessel equation. Its general
solution contains the following modified Bessel

 and Macdonald  functions
with fractional subscripts:

Taking into account the finiteness condition for 
at , we obtain

(26)

With allowance for solution (26), the coordinate of the
velocity curl may be represented as follows:

Taking into account the conditions at infinity, the
components of velocity will be sought in the form of

, . Then, the
continuity equation and expression for the velocity
curl in the dimensionless-coordinate form will com-
pose a set of equations for finding the 
functions:

Its solution is as follows:
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The expression for pressure is found from the -pro-
jection of the second equation of set (24):

The redefinition of the constants for a more com-
pact notation of the solution with allowance for the
condition at infinity yields the following final solution
in the dimensional form:

In the problem under consideration, the calcula-
tion of the drag force and torque that an oncoming
stream applies to a sphere that it f lows over is of prac-
tical interest.

The projection of the drag force onto the direction
of the oncoming stream and the torque are calculated
by integrating corresponding force and couple stresses
over the sphere surface:

(27)
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where ,  +

 and  =  +

. Since the components of the couple-stress

tensor and, in particular,  are independent of ,
while vector  is collinear to the equatorial plane of
the spherical coordinate system, its integration over 
yields zero. That is, the integral expressing  is equal
to zero. This result is independent of the values of con-
stants  and, hence, remains correct under any
boundary conditions at the sphere surface, as might be
expected from the considerations of symmetry.
Another situation takes place for the drag force.

The classical Stokes equation was obtained under
the condition of no-slip at the sphere surface. Its ana-
logs under different conditions at the sphere surface,
i.e., the drag forces applied to a sphere with radius 
moving at velocity U in a micropolar liquid are calcu-
lated by Eq. (27). For this purpose, we initially find a
particular solution of the f low problem under corre-
sponding conditions and calculate the required com-
ponents of the stress tensor on the sphere surface. The
result of the calculation under conditions

 may be represented
as

This formula in a somewhat different form was
obtained in [61]. However, the authors did not take
into account the aforementioned difference in the
definitions of the dynamic viscosity and, as a result,
arrived at a not quite true estimate of the correction
factor when comparing the obtained expression with
the Stokes formula for a Newtonian liquid. The exten-
sion of the formula for the drag force to the case of a
nonstationary f low around was derived in [62] and
analyzed for four different time dependences of
oncoming-flow velocity, namely, for damped and
undamped oscillations and uniform and jumpwise
accelerations.

Let us write the Navier slip condition introducing
slip length :  and leaving the
remaining two other boundary conditions unchanged,
namely, . The calculation of the
projection of the drag force yields

An analogous expression was derived in [63].
A flow of a micropolar liquid past a sphere under

boundary condition  and zero linear
velocity at the sphere surface was considered by Hoff-
mann et al. [41]. In the same work, the obtained result
was analyzed in comparison with all previous studies
and the possibility of continuous transition between
them was shown. Nevertheless, the obtained expres-

sion was not quite suitable for practical application,
because the values of coefficient п remained
unknown.

In the case of complete slip for the angular velocity
and no-slip for the linear one, i.e., at  and

, the corresponding expression
for the projection of the drag force is as follows:

The simultaneous consideration of the conditions of
finite slip for the linear and angular velocities encoun-
ters difficulties of only technical but not fundamental
character. The resulting expressions are rather awk-
ward and are not presented here.

Note that, at , , while at  the
classical value of the drag force is obtained under all
considered conditions; namely:
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The case of a complete slip for the linear-velocity
component corresponds to . Physically, this
means that the tangential stress at the sphere surface is
equal to zero, while the velocity component is finite.
In this case, for drag force  at , we obtain a
result known in classical hydrodynamics,

while, at , we have

i.e., as might be expected, the force is somewhat stron-
ger than that in a Newtonian liquid under analogous
conditions.

Finally, let us consider the limiting expressions for
spheres with infinitesimal radius , with these
expressions being of importance for the subsequent
consideration. Under the condition of complete no-

slip, we obtain ; i.e., the

projection of the drag force may be calculated using an
analog of the classical Stokes formula, in which vortic-
ity viscosity  should be added to dynamic viscosity .

In the presence of finite nonzero slip, we have

In the obtained expression, slip length is absent as well
as at infinite slip, because the relation

 takes place. Neverthe-
less, it coincides with  only if we take  in

. For a sphere of finite radius, the equation for the
drag force at infinite slip contains this radius in the
correction term.

Unfortunately, at , the expression for the
drag force with slip cannot be reduced to an analogous
limit under the condition of complete no-slip. This is
natural, because the  ratio requires an extension of
the definition. Cases  are
reduced to the above-considered limits. At

, in the denominator of the expression
for the drag force, only one term may be omitted,
thereby only slightly simplifying the equation for .

Upon a slip for the angular velocity, the corre-
sponding limit contains all viscosity coefficients of a
micropolar liquid:

Note that, formally, there is a nonzero subset of
viscosity coefficient values, at which the correction
factor with classical term  becomes negative.
Nevertheless, this situation is not realized because of
the thermodynamic constraints on the values of vis-
cosities. To estimate the order of the correction term,

we take . Then, ,

thereby coinciding with the expression obtained under
the condition of complete no-slip.

In view of the great importance of problems con-
cerning diverse motions of spherical or almost spheri-
cal particles in a micropolar liquid, there are many
studies devoted to this scope. The solution of the prob-
lem concerning the stationary f low past a spheroid has
been presented in [64], while the drag force applied to
the spheroid has been calculated in [65]. In the case of
a stationary f low past an arbitrary axially symmetric
body, the formula for the drag was presented in fre-
quently cited work [66]; later, it was reported in [67] in
a more exact mathematical form.

Slow rotations of a solid sphere in a micropolar liq-
uid were considered in, e.g., [68], while linear and tor-
sional vibrations of a sphere were studied in [69]; then,
the results were extended to the cases of vibrations and
rotations of a spheroid in [70, 71] and the case of an
arbitrary body of revolution in [72, 73]. In the afore-
mentioned works, the classical conditions of no-slip at
a solid surface were used; then, the problems implying
the condition of slip for the linear velocity were solved,
and, finally, the conditions of slip for both linear and
angular velocities [30]. Rotation of a micropolar liquid
sphere in a concentric Newtonian-liquid capsule was
simulated in [74]; however, an aforementioned incor-
rect interpretation was given there for the viscosity
coefficient of a micropolar liquid. In [75], the same
authors considered torsional vibrations of a micropo-
lar spherical droplet in a viscous spherical shell. The
torque applied to the droplet was calculated. It is
known that, in some specific cases, vibrations may
acquire a resonant character associated with a
decrease in the drag. Combinations of parameters, at
which this effect is observed for a sphere subjected to
translational vibrations in a micropolar liquid, were
studied in [76].

The Hadamard-Rybczynski problem of a f low past
a liquid droplet was developed for the case of a micro-
polar spherical droplet in [77].
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FILTRATION OF A MICROPOLAR LIQUID 
IN A POROUS MEDIUM

Flows of Newtonian liquids in porous media are
adequately described by the Darcy law, which estab-
lishes a linear relation between a constant filtration
rate and a pressure gradient. The calculations per-
formed by this law are in excellent agreement with
experimental data for large regions of f lows, in which
boundary effects may be ignored. Analogs of the
Darcy law for the linear and angular velocities of a
micropolar medium were obtained for stationary and
nonstationary f lows in [78, 79]. The homogenization
method was used under the assumption that the
porous medium had a regular periodic structure, with
the period of this structure playing the role of a small
parameter. The permeability coefficients in the
derived equations had a tensor nature and were calcu-
lated on the basis of the solution of a local problem for
an individual cell.

In the case of liquid filtration in thin capillaries or
membranes containing micro- and nanosized pores
and upon a conjugate f low of a liquid in free and
porous spaces, the Brinkman equation appears to be
preferable. It describes the velocity of a filtration f low
in regions of any scales. Far from the boundaries of a
region, it yields a solution that coincides with the rate
calculated by the Darcy law, while, at intermedium
boundaries, it enables one to impose conditions corre-
sponding to the physical character of a problem,
because it comprises a differential term of the second
order with respect to a coordinate.

The simulation of the f lows of micropolar liquids in
porous media is extremely urgent for problems of
micro- and ultrafiltration, description of f lows of
blood and other physiological f luids, the problems of
oil production that are associated with f lows in micro-
cracks, etc. Since the effects of liquid micropolarity
manifest themselves namely in narrow channels,
where the key role is played by the conditions at the
boundaries, it is of special importance to use an ade-
quate mathematical model of the filtration motion on
these scales, e.g., in the form of an analog of the
Brinkman equation.

In the original work by Brinkman [80], the motion
equation was derived phenomenologically. The bal-
ance of forces applied to an element of a liquid was
governed by the pressure gradient, on the one hand,
and the drag resulting from the viscosity and the
damping effect of a porous matrix on the other. The
mathematical representation of the latter term follows
from the notation of the Stokes force, if the porous
matrix is interpreted as a conglomerate of spherical
particles. Thus, the Brinkman equation for a Newto-
nian liquid has the following form:

' ,p
k
μ∇ = μ Δ −v v

where k is the permeability of a porous medium and 
is the effective viscosity of a permeating liquid, which
is not necessarily equal to . In almost half a century,
Ochoa-Tapia and Whitaker [81] derived the Brinkman
equation as a correction to the Darcy law by averaging
the Stokes equations over a small medium volume,
which contained solid and liquid parts and simulated a
porous body filled with a liquid. In the same work, it
was shown that the pressure gradient should be aver-
aged not over the entire representative volume, but
rather over the part of it that is occupied by pores.
Moreover, it was found that , and this does
not require other correction;  is the porosity, which is
equal to the medium volume fraction occupied by
pores.

Repeating Brinkman’s considerations on a pres-
sure-gradient-induced slow stationary f low of a
micropolar liquid in a porous medium, let us write the
motion equation as follows:

(28)

where  are the effective viscosities, while the
Darcy term is written taking into account the drag
forces for a solid sphere under the conditions of no-
slip, no-spin on its surface. Note that, when the slip of
microrotation is taken into account, the term of the
Darcy type remains unchanged, while, at the slip for
the linear velocity at a solid surface, this term should

be represented in the form of 

In [82], a set of equations that determine the f low
of a micropolar liquid in a porous medium has been
rigorously derived by the standard method of avera-
ging over a representative volume using the conditions
of no-slip, no-spin at solid surfaces. The continuity
equation written for the averaged velocity coincides
with the unaveraged equation. The motion equation
coincides with Eq. (28) with an accuracy of factor k
under condition . The integrals that
describe this factor depend on the geometric charac-
teristics of a porous medium, which were presented in
[82] by a rather cumbersome function of several values
difficult to determine. However, for applied problems,
it is not only sufficient but, in effect, more correct to
confine ourselves to one general coefficient k, if we
take into account the contemporary deficiency of
information on the values of viscosity coefficients for
a micropolar liquid. In [83], one of the authors of [82]
has shown that, for slow flows, the aforementioned
factor may be written as , which completely corre-
sponds to Eq. (28), which may be presented in the
final form as

(29)
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The form of the averaged-moment equation essen-
tially depends on the properties of vector field  and
the geometry of a f low. In the general case of a slow
stationary f low, the moment equation takes the fol-
lowing form [82]:

where averaged angular-velocity divergence  =

 is used. If the geometry of a f low has a

dimensionality lower than 3 or is symmetric,
, and this term vanishes. In the same work

[82], for essentially three-dimensional f lows, it has
been proposed to impose condition  and
introduce additional unknown р*, which is interpreted
as the surface pressure necessary to damp the rota-
tional motion when it approaches surfaces on which
condition  has been imposed. Then, the aver-
aged-moment equation acquires the following form:

where coefficient f may be taken equal to 
For practically important planar, cylindrical, and

spherical geometries of a f low, condition  is
fulfilled automatically, and the averaged moment
equation may be represented as

(30)
Note that it contains no additional terms of the Darcy
type in contrast to the momentum equation. This
result is also obtained in the Brinkman heuristic way
with allowance for the zero moment applied to a
sphere from the side of a micropolar liquid. In [84],
the averaged equations for a filtration f low of a micro-
polar liquid have been obtained for porous media of
any nature with a variable porosity, which takes any
values from zero to unity. In a particular case of a con-
stant porosity, they coincide with the equations pre-
sented above.

Thus, Eqs. (29) and (30), together with the conti-
nuity equation for the averaged velocity, represent a
system that describes the filtration of a micropolar liq-
uid through a porous medium with permeability k and
fixed porosity . This formulation was used in [85] to
describe a planar Poiseuille f low in a porous channel.
The authors of [86] tried to use the Brinkman model
for describing a micropolar liquid f low past a porous
sphere. However the term of the Darcy type was writ-
ten with coefficient  rather than  without any
explanations.

Many works devoted to f lows associated with
porous regions represent the effect of porosity via the
blow–suction model in accordance with one or
another law. This idea was proposed in [87] and has
been further developed in the direction of complica-
tion of the types of motion and methods of the deli-
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very–evacuation of a liquid through walls. An example
of the use of the homotopy method for such problems
has been presented in [88]. The nonstationarity of a
flow has been taken into account for a planar geometry
in [89]. Since the a priori specification of f low charac-
teristics is, in authors’ opinion, less preferable, the
aforementioned model of the Brinkman type will be
used below.

CELL MODELS

One of the most common and efficient methods for
simulating f lows in porous media is the cell method
proposed by Happel and Brenner [90]. For Newtonian
liquids, this method has been well developed and
shown itself to be a reliable model for describing filtra-
tion f lows, in particular, through membranes [91, 92].
According to this method, a porous medium is
replaced by a regular system composed of identical
cells of, as a rule, a spherical or cylindrical shape. Each
cell consists of a core and a liquid shell. The core may
be solid, porous, liquid, or consisting of a combination
of these phases.

At present, cell models are being intensely deve-
loped as applied to micropolar f lows. The cell method
has been described in detail within the framework of a
cylindrical geometry for a micropolar liquid in [93],
where both parallel and transverse f lows were consid-
ered. The core of the cell was assumed to be solid and
impermeable, with conditions of slip for both linear
and angular velocities being imposed on its surface. At
the external boundary of the cell, the Happel condi-
tion was used, i.e., the equality of tangential stresses to
zero, supplemented with the same condition for cou-
ple stresses. The Kozeny constant, which enters into
the Kozeny–Carman equation for the permeability of
a porous medium, was estimated as a resulting macro-
characteristic.

The development of a classical model for a spheri-
cal cell with a liquid core for the cases of a micropolar
core surrounded with a nonpolar viscous shell and,
vice versa, a viscous core in a micropolar shell was
described in [94]. Four types of possible boundary
conditions known for nonpolar liquids, namely, Hap-
pel [95], Kuwabara [96], Kvashin [97], and Cunning-
ham [98] (Mehta–Morse [99]), were considered for
the external surface of the cell. The zero angular velo-
city was used as the second condition on the external
boundary of the cell. In all cases, analytical solutions
and expressions for the drag force applied to the cell
were obtained, and their dependences on the charac-
teristic parameters of the problem were studied. The
cell model for a viscous spheroid located in a microp-
olar spheroidal shell was developed in [100]. The
effects of boundary conditions and parameters of a
micropolar medium on the drag force applied to the
viscous spheroid were studied.
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As far as we know, the cell model with a combined
solid–porous core streamlined by a micropolar f luid
has been considered neither in the cylindrical nor in
the spherical geometry so far. Here, we shall propose a
formulation of such problem in a vector form, which is
suitable for the consideration of both longitudinal and
transverse f lows in a cylindrical cell, as well as for a
spherical cell after the transition to a corresponding
coordinate system.

Assume that a cell consists of an impermeable core
with radius а, a concentric porous shell with radius b,
while the radius of an external liquid concentric layer
of the cell is denoted as c. All variables in the region of
the free f low, , and in the porous region,

, will be denoted by subscripts 1 and 2,
respectively. Variable r means the radial coordinate of
a cylindrical or a spherical coordinate system. Owing
to the system symmetry, we, for all three considered
configurations of the f low, have , and this
relation is used when writing the moment equations
for both the first and the second regions. Thus, a slow
stationary f low of a micropolar liquid under the Stokes
approximation in the absence of external forces and
moments is described by the following set of equa-
tions:

(31)

For a filtration f low in the porous region, the set of
motion equations has another form:

(32)

For a longitudinal f low in a cylindrical cell, the
pressure gradient is commonly preset, while the Oz
axis of a coordinate system is superposed with the cy-
linder symmetry axis. Then, the vectors of the linear
and angular velocities have one nonzero component
each, with the components being dependent only on
the radial coordinate. The continuity equation is satis-
fied identically, while two other second-order equa-
tions in sets (31) and (32) require eight boundary con-
ditions. Two of the conditions are imposed on internal
boundary , four of them are used at boundary

, and two other conditions are set at boundary
.

For a transverse f low through the cylindrical cell,
the oncoming-flow velocity is preset, while the pres-
sure is the unknown function. The vectors of the linear
and angular velocities have two and one nonzero com-
ponents, respectively. Although all four unknown
functions depend on two coordinates, the dependence
on the angular coordinate is determined from the con-
ditions of symmetry, while functions of variable r are
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to be found. Each of systems (31) and (32) consists of
one scalar first-order differential equation and three
scalar second-order differential equations for velocity
components and contains a first-order differential
operator applied to pressure. Thus, in order to close
the boun-dary problem, twelve boundary conditions
are necessary in this case. Three conditions are
imposed on each of internal boundary  and
external boundary , while six conditions are
imposed on boundary .

The same number of conditions are required to be
imposed on the boundaries of a spherical cell, if the
symmetry axis of a spherical coordinate system is
superposed with the direction of the velocity vector of
the oncoming f low. Note that, in cell models, the
oncoming f low is preset at the external boundary of a
cell rather than at infinity.

When describing a filtration f low by system (32),
the most correct conditions at internal boundary 
are the no-slip and no-spin conditions 

, because the equations of set (32) were
derived under the assumption of namely this type of
the interaction between a f low and solid walls. Other
types of boundary conditions at  are also possi-
ble; however, they require substantial revision of the
equations of set (32).

Researchers who dealt with studying Newtonian
liquids have focused intense attention on the boundary

 between a porous medium and free f low. The
continuity conditions of normal and tangential
stresses, as well as of the velocity vector at this bound-
ary, have been recognized to be most adequate. They
can be easily satisfied owing to the use of the Brink-
man equation rather than the Darcy equation, which
implies the introduction of fitting parameters for con-
jugation of velocity fields in a porous medium and a
free f low. Developing this idea for micropolar liquids,
we obtain . In addition
to force stresses, it is necessary to consider the couple
stresses. At a longitudinal f low in a cylindrical cell,
normal stresses at the considered boundary are identi-
cally equal, while the tangential force and couple
stresses are expressed via components  and ,
respectively. Thus, for a longitudinal f low in a cylin-
drical cell, we obtain conditions 

. For a spherical cell and a transverse
flow in a cylindrical cell, the normal and tangential
stresses are specified by components  and , while
the tangential couple stresses are preset by component

, i.e., by components  and  for the spherical
and cylindrical geometries, respectively. In this case,
the boundary conditions have the following form:
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In conjugate f lows of Newtonian liquids at a
boundary between a porous medium and a free f low,
a condition of a jump in tangential stresses is some-
times set [81]: the tangential stress at the interfacial
boundary from the side of the porous region differs
from the tangential stress from the side of the free f low
by a value of , where  is a fitting
parameter and  is the f low-velocity component
tangential to the surface under consideration. Note
that the authors who have proposed this boundary
condition have not explained its physicochemical
sense. Moreover, they noted that it was introduced to
simplify the calculations in the problems taking into
account the heat exchange. This condition can be used
for isothermal f lows; however, it should be physically
substantiated. It should also be noted that, when solv-
ing a rather simple boundary value problem in [101], it
was shown that the limits of variations in parameter 
are somewhat different: . A jump in
the tangential stresses and tangential-couple stress in
micropolar f lows may also be ascribed to the boundary
under consideration. Nevertheless, the derivation of
specific expressions for the values of the aforemen-
tioned jumps represents an independent informal
problem.

External boundary  of the cell remains, so far,
to be the least studied object. On the one hand, it is
associated with the external f low and plays the role of
an infinitely remote surface. On the other hand, it is
necessary to take into account the interaction between
the cells and impose corresponding conditions namely
at . In classical cell models, the continuity of nor-
mal velocity component  is traditionally used. For
the longitudinal f low in a cylinder, this condition is
fulfilled automatically, while, for the transverse f low
past a cylinder and a sphere, it is represented as

, where U is the velocity of an oncom-
ing f low.

As the second condition for Newtonian liquids at
the external boundary, that of the four relations is
commonly considered, in favor of which experimental
data witness within the framework of a specific appli-
cation. In the opposite case, all four conditions are
considered to be equivalent. The Happel model [95]
implies the absence of tangential stresses at the cell
surface, . Kuwabara [96] has proposed to
impose the condition of the absence of vorticity at this
boundary, . According to the Kvashin
model [97], the profile of the f low velocity is symmet-

ric; i.e., . At last, the Mehta–Morse

condition [99] (which was initially formulated by Cun-
ningham [98]) means the uniformity of a f low and is
expressed as . For the f low of a
Newtonian liquid along the axis of a cylindrical cell,
all four conditions coincide [92], while for the f low in
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a spherical cell and a transverse f low in a cylindrical
cell, they are essentially different [91, 92]. In terms of
the micropolar model for a longitudinal f low in a
cylindrical cell, only three last conditions are equiva-
lent. Owing to the presence of the angular velocity of
microrotation in the expression for components of
stress tensor, the Happel condition essentially differs
from the others.

In order to close the boundary problem, it is neces-
sary to impose one more condition on boundary

. It must, obviously, comprise information on the
state of microrotations or couple properties of a
medium. The absence of tangential couple stresses on
the cell surface is an analog of the Happel condition.
An example of its use for cylindrical cells of both ori-
entations can be found in [93]. The absence of the
solid-state rotation (the Kuwabara condition) should,
obviously, be replaced by the complete absence of
rotation, , although it is mathematically
admissible to consider both conditions to be indepen-
dent [94]. According to Kvashin, the concepts of the
symmetry may be extended to the angular velocity as
well. The condition of the uniformity of a f low of the
Cunningham type coincides with . Thus, we
obtain three types of new independent boundary con-
ditions at the external boundary of the cell. They may
be arbitrarily combined with the classical Happel,
Kuwabara, Kvashin, and Cunningham conditions.
The comparison of twelve solutions, which will
be obtained, is the goal of a separate study. The con-
sideration of the aforementioned conditions of the
jump as an alternative to the continuity conditions at
the  boundary at least doubles the number of the
resulting variants. The comparison of such number of
solutions will possibly provide valuable information
for understanding the specific features of the f lows
described by the cell models, peculiarities of boundary
conditions, and the extent of their influence on the
flow parameters.

CONCLUSIONS
In this review, problems relevant to simplest con-

figurations of f lows have been formulated within the
framework of the theory of isothermal micropolar liq-
uids. The overwhelming majority of the cited works, in
which the aforementioned problems have been con-
sidered, yield their analytical solutions. The formula-
tion proposed for the cell model of micropolar liquid
filtration also admits analytical solutions for the cases
of simple geometric shapes of the cells. They will be
considered in our separate works.

In conclusion, let us briefly consider the main
applications of the theory of micropolar liquids. They
began to be intensely developed immediately after a
corresponding mathematical apparatus had been ela-
borated. Micropolar models of blood are widely
applied, because they enable one to consider both the

r c=

1 0r c= =ω

1 0r c= =ω

r b=
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translational and rotational motions of erythrocytes
and other components present in blood plasma.
The idea to simulate blood as a micropolar liquid was
proposed in one of the earliest theoretical works by
Eringen [79], because it was already known that rota-
tion of erythrocytes causes their nonuniform distribu-
tion over the cross section of a capillary. Models that
take into account the pulsing character of the blood-
stream are widely used. A detailed review and bibliog-
raphy of works, as well as comparison of a micropolar
model of blood with a micromorphic one, i.e., one
taking into account the possibility of erythrocyte
deformation, have been presented in monograph by
Migun and Prokhorenko [15]. Then, a drastic decrease
in the concentration of blood particles near vessel
walls was revealed, and models were elaborated for
conjugate f lows of micropolar and Newtonian liquids
simulating a near-wall f low of pure plasma [102].
There are several models that take into account blood
filtration through capillary walls, with porous regions
being described by the Brinkman or Darcy equations
[103]. At present, models of angiostenosis are being
developed [104–106].

In addition to blood, other biological f luids—in
particular, synovia in joints—are described in terms of
the micropolar model [107]. More complex models
take into account the porous structure [108, 109] and
surface roughness [110] of joints. Contemporary mod-
els for the operation of joints take into account both
their surface roughness and porous structure with pos-
sible penetration of synovia into it [111]. In some
cases, mucus is also considered as a micropolar
medium, in which the motion of elementary organ-
isms or, e.g., propagation of spermatozoids through
the cervical channel, is simulated [112].

The theory of micropolar liquids is rather effi-
ciently used in the hydrodynamic theory of lubrica-
tion, because the gap between a spindle and a
bearing is rather thin, while lubricants are either con-
taminated with metal chips or filled with special dop-
ants. One of the parameters that determine the prop-
erties of a micropolar f low has the meaning of the
microscale, thereby making it possible to simulate
lubricants containing different additives [113]. Some
works have been devoted to studying liquid films
squeezed between two planes (see, e.g., [114–116]);
the behavior of liquid lubricants in bearings of differ-
ent geometries [117] and those with porous walls [118]
has been studied. Microscale processes affecting the
operation of a bearing essentially depend on the prop-
erties of lubricated surfaces, in particular, on their
roughness. A model that takes into account the inter-
action of a micropolar lubricant with a rough surface
has been proposed in [119]. The applicability of all
aforementioned data on the theory of lubricants is
limited by the conditions of no-slip, no-spin at solid
surfaces. The new interpretation of dynamic boundary
conditions with the use of the so-called boundary vis-
cosity has been described in [120], while the develop-

ment of the theory of lubricants has been presented in
[121].

It has been shown that the micropolar theory is
applicable for the simulation of suspensions [122, 123]
with some stipulations relevant to dilute suspensions
[124]. Moreover, the theory has found application in
the description of the dynamics of drilling f luids. For
example, the slip at well walls with clay shells formed
on them was described introducing a thin layer of a
micropolar liquid into the consideration [125].

The theory of micropolar f lows is also applicable to
describing the motion of granulated media [126–128].
The contemporary state of the theory of granulated
media with the micropolar model appended to it can
be found in [129].

Since the effects of the micropolarity are strongest
near the boundaries of the f low region, the theory of
boundary layers is widely used for micropolar liquids.
This theory has been described for a planar case in
[130]. The theory of a three-dimensional boundary
layer for an arbitrary surface has been developed by
Korzhov [131].

Many works have been devoted to the problems
concerning the stability of micropolar liquids both iso-
thermal compressible and incompressible and heated
by different methods. Among the first works devoted
to this problem, communications [132, 133] should be
noted, while detailed reviews and bibliographies have
been presented in works by Migun and Prokhorenko
[15], Lukashevich [10], and Eringen [9].

Micropolar models of turbulence proposed for the
first time by Peddiesson [134] and Ahmadi [135] are
been gradually developed. Not only a linear, but also
an inherent angular velocity is attributed to turbulent
vortices. The contemporary state of the theory of tur-
bulence, which has been called as postclassical, is
described in review [136].

Liquid-penetrant test is one of scarcer experimen-
tal applications of the micropolar theory. For exam-
ple, in [137], it was proposed to simulate liquids used
for liquid-penetrant testing as micropolar ones, which
has made it possible to explain the effect of viscosity at
small capillary radii.

Advances in the use of numerical algorithms for
solution of the problems under consideration, i.e.,
works devoted to the study of liquid crystals, which is
the most developed field of the application of microp-
olar theory, have remained beyond the scope of this
review, because they comprise electrodynamic aspects
that require additional discussion and magnetohydro-
dynamic investigations.

The study of micropolar liquids f lowing in porous
media is a promising field, although less developed
yet. The problem formulations proposed in this review
within the frameworks of the cell model are destined to
eliminate this drawback. While numerous analytical
and numerical studies of the f lows of micropolar liq-
uids are available, experimental works are scarcer. The
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lack of data on the values of characteristic viscosities
is, often, the main factor hindering the active use of
the developed models in practice. The authors hope
that this review will attract the attention of experi-
menters, thereby substantially stimulating the devel-
opment of applications of models of micropolar liq-
uids.
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