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Abstract⎯Diffusion of different electrolytes through a negatively charged (cation-exchange) membrane into
distilled water has been studied. It has been established theoretically (with no regard to the presence of diffu-
sion layers) that the integral diffusion permeability coefficient of an electrolyte depends on the diffusion coef-
ficients and the ratio between the charge numbers of a cation–anion pair, the ratio between the density of
charges fixed in the membrane and electrolyte concentration, and the averaged coefficient of equilibrium dis-
tribution of cation−anion ion pairs in the membrane matrix. It has been found that, when co-ions have a
higher mobility, the dependence of diffusion permeability on electrolyte concentration passes through a max-
imum. Derived equations have been compared with experimental dependences of the diffusion permeability
of an MC-40 membrane with respect to different solutions of inorganic 1 : 1 and 2 : 1 electrolytes. The devel-
oped method has been shown to be applicable for describing diffusion of any electrolytes (including asym-
metric ones) through arbitrary uniformly charged membranes.
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1. INTRODUCTION
The determination of the diffusion permeability

coefficients of charged membranes is of great impor-
tance for the characterization of new composite and
hybrid ion-exchange materials produced by surface or
bulk modification with polymers (e.g., polyaniline) or
nanoparticles (in particular, metal-oxide nanoparti-
cles), as well as inorganic materials (carbon nanotubes
or halloysite). Previously, we have used solutions of
different electrolytes to study the diffusion permeabil-
ity of reverse-osmosis, bipolar, composite bilayer, and
modified ion-exchange membranes based on polysty-
rene and perfluorinated matrices [1], as well as perflu-
orinated MF-4SC membranes, the surfaces of which
were modified with polyaniline [2], and theoretically
explained the asymmetric diffusion permeability at
different orientations of a bilayer membrane in a mea-
suring cell [3]. Work [4], which was devoted to the
modification of layer-by-layer sulfated hydrophobic
fluoroplast-4SF (F-4SF) films with polyaniline, has
shown that the theoretical approach developed in [1]
makes it also possible to explain the symmetry
observed for the diffusion permeability of the obtained
composite films. In [5], a new model has been devel-
oped for an ion-exchange membrane charged linearly
along its thickness, and the asymmetry of the diffusion
permeability has been proven for such a membrane. It
has been noted that, while the bilayer model of an ion-
exchange membrane adequately describes membranes

with modified surfaces, the new linear model is better
applicable in the case of a gradient distribution of the
density of charges fixed in a membrane subjected to
bulk modification. We have elaborated a procedure for
determining the main physicochemical parameters
(diffusion coefficients and equilibrium distribution of
ions in a membrane) of bulk-modified membranes.
This procedure has been realized to advantage by the
example of MF-4SC perfluorinated membranes mod-
ified with silica nanoparticles [6] and halloysite nano-
tubes [7–9].

However, we have failed to find models in the liter-
ature for diffusion of asymmetric electrolytes through
charged membranes into water. At the same time, hav-
ing experimental data on diffusion permeability of
such membranes, we may try to explain previously
unmentioned peculiarities of the curves for the diffu-
sion as depending on electrolyte concentration. In this
work, a model of a fine-porous membrane has, for the
first time, been used to study theoretically diffusion of
asymmetric electrolytes into water. Exact analytical
solutions of corresponding boundary problems have
been obtained for the case of 1 : 2 and 2 : 1 electrolytes
to determine conditions under which maxima are
observed in the concentration dependences of integral
diffusion-permeability coefficients of membranes.
The Mathematica® 11 software package has been
employed to find the main physicochemical parame-
ters (individual diffusion coefficients and equilibrium
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distribution coefficients of ions in a membrane
matrix) for different membrane–electrolyte solution
systems.

2. PROBLEM FORMULATION

Let us use the Nernst–Planck transfer equations to
formulate the stationary boundary value problem con-
cerning diffusion of aqueous solutions of  elec-
trolytes with equivalent concentration 
through a cation-exchange membrane into water
(Fig. 1). The case of an anion-exchange membrane is
considered analogously. The membrane is character-
ized by thickness h; diffusion coefficients 
and equilibrium distribution coefficients  of cat-
ions and anions in the membrane matrix; and concen-
tration of fixed groups (exchange capacity) 
which is constant over the membrane thickness.
Remember that  reflects the level of the interaction
between ions and membrane pore walls. The presence
of diffusion layers is ignored for simplicity. Let us
introduce the following denotation coefficients:

 being the equilibrium distribution
coefficient of ion pairs in the membrane;

 where  denotes the dimensionless
potentials of the interaction of ions with membrane
pore walls in the  units (  is Boltzmann’s con-
stant, and T is absolute temperature);  denoting the
concentrations of ions in an equilibrium solution to
the left of the membrane (Fig. 1); and  are the
charge numbers of the ions with no regard to the signs
( ). Then, in the range of the membrane,

, the equations for the diffusion and electro-
migration transfer of ions are written in the following
standard manner:

(1)

+ −:Z Z
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where the prime indicates differentiation over coordi-
nate x, while ϕ is the dimensionless electric potential
expressed in  units (F is Faraday’s constant, and
R is the gas constant). Here,  are the f lux densi-
ties and  are the concentrations of the ions.

At the interfaces,  and , the conditions
for the equality of the chemical potentials have the fol-
lowing form [1–3]:

(3)

(4)

(5)

where  is the electric-potential drop at interface
 and  is the equivalent electrolyte

concentration. In order to close the set of
Eqs. (1)−(5), it must be supplemented with the condi-
tions of electrical neutrality

(6)
and the absence of electric current

(7)

3. SOLUTION OF THE PROBLEM
Boundary value problem (1)−(7) implies an exact

analytical solution. In order to obtain this solution, we
introduce the following dimensionless variables and
parameters:

(8)

where P is the integral diffusion permeability coeffi-
cient of an electrolyte. Then, with allowance for the
condition of electrical neutrality taken in the dimen-
sionless form

, (6a)
Eqs. (1) and (2) are written as follows:

 (1a)

 (2a)

By subtracting Eq. (2а) from Eq. (1а), we obtain

(9)
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Fig. 1. Schematic representation of asymmetric electrolyte
diffusion through uniformly negatively charged (cation-
exchange) membrane.
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As can be seen from Eq. (9), the behavior of the poten-
tial depends on the relation between dimensionless

fluxes  At  or  the potential profile
increases over the membrane thickness, while, at

 or  it decreases. Assume that any of
the described situations takes place. The case of

 or  is degenerate and not considered
here. Then, because of the monotonic character of the
electric potential, a one-to-one correspondence
(bijection) exists between it and dimensionless coordi-
nate y, which enables us to search for the solution of

problem (1)−(7) for coordinate  and concentra-

tions  (all of them being dimensionless)

as functions of the electric potential. Furthermore,
rewriting Eq. (2а) with allowance for Eq. (9), we

obtain the following differential equation for 

the solution of which is

(10)

Substituting expression (10) into Eq. (9) and integrat-
ing the result, we find the general solution for the elec-
tric potential in the form of the inverse function

(11)

with the following denotation being introduced:

(12)

Using boundary conditions (3) and (4) rewritten in the
dimensionless form, we find the following equations
for the concentration of anions and the electric poten-

tial drop in the membrane at interface 

(13)

(14)

In the case of 1 : 2 and 2 : 1 electrolytes, Eq. (13) is
reduced to a cubic one and implies an analytical solu-
tion, which will be presented below. For a binary
(symmetric) electrolyte, Z– = Z+, Eq. (13) is reduced

to a quadratic one. In the general case, Eq. (13) is an
algebraic equation of an integral power with respect to

dimensionless co-ion concentration  at

the left-hand interface from side of the membrane,
and its solution can be found only numerically. Writ-
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ing solutions (10) and (11) at  and 
with allowance for boundary condition (5) rewritten in
the dimensionless form and expression (14), we deter-
mine integration constants A and B, as well as the elec-
trical potential at the right-hand interface of the mem-
brane via unknown boundary concentration of anions
u, which is independently determined from Eq. (13),
and derive the following expression for the dimension-
less f lux of anions:

(15)

(16)

(17)

(18)

Note that condition (7) for the absence of electric
current has been used when deriving Eq. (18), with this
condition yielding the following relation between
dimensionless f luxes of ions:

(19)

Integral coefficient  of membrane dif-
fusion permeability is determined by simple multipli-
cation of Eq. (18) by the anion diffusion coefficient. In
addition, Eq. (18) shows that P depends on the ratio
between the charge numbers of the ions rather than on
each of them; therefore, in the case of symmetric elec-
trolytes, diffusion permeability is independent of ion
charges. In order to analyze the behavior of permeabil-
ity coefficient P, let us determine the derivative of the
right-hand side of Eq. (18) over parameter σ and
equate it to zero taking into account relation (13), from

which we may find derivative  Then, we obtain the

following implicit equation:

(20)

It is clear that Eq. (20) has a positive solution

 (it may be shown that this solution is unique)
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only at  because both sides of Eq. (20) are pos-
itive only in this case. This solution corresponds to the
maximum in the dependence of diffusion permeability

coefficient P on electrolyte concentration. At 

Eq. (20) has no positive solution; hence, the 

dependence is, in this case, monotonically increasing.

4. ANALYSIS OF THE RESULTS OBTAINED

Let us, initially, consider some particular cases.

4.1. Symmetric Electrolyte ( )

As has been mentioned above, Eq. (13) becomes, in
this case, quadratic; therefore, substituting its positive
solution into Eq. (18), we find the following explicit
expression for the diffusion permeability of the mem-
brane:

(21)

Note that, for the case of a 1 : 1 electrolyte, Eq. (21)
was previously obtained in [6], and it has, now, been
established that it is independent of the magnitude
of ion charge Z0, provided that an electrolyte is sym-

metric.

4.2. Asymmetric 1 : 2 Electrolyte ( )

In this case, the expression for diffusion permeabil-
ity acquires the following form:
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(22)

while dimensionless value  is determined

from the following cubic equation derived from rela-
tion (18):

(23)

Analysis shows that Eq. (23) always has the only real
root, which may be determined by the Cardano equa-
tion

(24)

Figure 2 presents the dependences of the integral
diffusion-permeability coefficient on electrolyte con-

centration for different sets of parameters  these
dependences being calculated by Eqs. (22) and (24). It
can be seen that a decrease in equilibrium distribution
coefficient γ of electrolyte ion pairs (curves 1, 2), i.e.,
an increase in the positive sorption of the ions in
membrane pores, leads to a growth in the diffusion
permeability. The same takes place upon decreasing

diffusion coefficient ratio  between anions and cat-
ions, i.e., an increase in the mobility of the cations

(curves 1, 3). At  (curves 1−3), a rather pro-
nounced maximum is observed, in contrast to the case

of  (curve 4), in which the  dependence is

monotonic. Note that the existence of an extreme at

 is also characteristic of symmetric electrolytes
[9]. As the concentration increases, diffusion permea-

bility tends to limiting value  which corresponds to
the permeability of an uncharged membrane and is
determined by the exact equation presented below.

4.3. Asymmetric 2 : 1 Electrolyte ( )
In this case, the expression for diffusion permeabil-

ity acquires the form

(25)

while the values of ω are determined from another
cubic equation, which also follows from relation (18):

(26)

Analysis shows that Eq. (26) always has only one
real root, which is also easy to determine by the Car-
dano equation
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Fig. 2. Reduced integral diffusion permeability coeffi-
cients  calculated by Eqs. (22) and (24) as functions
of 1 : 2 electrolyte dimensionless equivalent concentration

 at fixed parameters (1) νm = 50 and γ = 0.3,
(2) νm = 50 and γ = 0.1, (3) νm = 10 and γ = 0.3, and
(4) νm = 0.95 and γ = 0.95.
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(27)

Figure 3 shows the concentration dependences of
the integral coefficient of membrane diffusion perme-
ability with respect to a 2 : 1 electrolyte at the same sets
of the physicochemical parameters as in Fig. 2. The
first thing to attract attention is the more distinctly
pronounced extreme, as well as the higher values of
the limiting permeability. In other respects, the behav-
ior of the curves is similar to that in Fig. 2. It is clear
that the diffusion permeability is, in this case, higher
because of the larger size of the counterion (Fig. 3),
the charge of which is twice as high.

4.4. Limiting Cases
Two limiting cases may be distinguished. (1) When

the equivalent electrolyte concentration tends to zero

( ), it follows from Eq. (13) that

 while relation (18) yields  Hence, all
diffusion curves originate from the coordinate origin
of the (P, C0) system. (2) If the equivalent electrolyte

concentration infinitely increases, or the membrane

exchange capacity tends to zero (  or

), Eq. (13) shows that  which

makes it possible to use relation (18) for determining
the limiting value of the diffusion permeability as fol-
lows:

(28)

where

(29)

is the diffusion coefficient of an electrolyte molecule.
It follows from relation (28) that, in the case of a 2 : 1

electrolyte and , its limiting permeability
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 (here, the electrolyte-molecule diffu-

sion coefficient is ) is always higher (other

conditions being equal) than the limiting diffusion per-

meability of a 1 : 2 electrolyte  (here,

), while, at  it is, vice versa, lower.

At  the limiting permeability is, as can be seen
from relation (28), independent of the ion charges.

5. EXPERIMENTAL

A series of experiments were performed to deter-
mine integral diffusion-permeability coefficient Р of
the MC-40 heterogeneous membrane sample for solu-
tions of different electrolytes. The exchange capacity
of the membrane was 1.52 mmol/g, while its thickness
in the swollen state was 520 ± 3 μm. Membrane mois-
ture capacities W in the studied 1 : 1 and 2 : 1 electro-
lytes are presented in Table 1.

In order to calculate P, the integral diffusion flux
was experimentally determined using a two-chamber
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Fig. 3. Reduced integral diffusion permeability coeffi-
cients  calculated by Eqs. (25) and (27) as functions
of 2 : 1 electrolyte dimensionless equivalent concentration

 at fixed parameters (1) νm = 50 and γ = 0.3,
(2) νm = 50 and γ = 0.1, (3) νm = 10 and γ = 0.3, and
(4) νm = 0.95 and γ = 0.95.
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Table 1. Moisture capacity of MC-40 membrane in 0.1 N solutions of alkali and alkaline-earth metal chlorides and radii
of cations

Parameter
Electrolyte

LiCl NaCl NH4Cl KCl CsCl MgCl2 CaCl2 BaCl2

W, % 36.7 32.2 30.7 29.4 26.8 25.6 32.0 26.0

Cation Stokes radius, Å [10] 2.36 1.80 1.225 1.21 1.155 1.725 1.53 1.42

Shannon physical radius of cation, Å [11] 0.90 1.16 − 1.52 1.81 0.86 1.14 1.49
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cell in the course of electrolyte electrodiffusion
through a membrane into water. The electrolyte f lux
through the membrane in a quasi-stationary state has
constant value

(30)

and is calculated by the following equation:

(31)

where V is a water-containing chamber volume equal

to 100 mL, S = 19.5 cm2 is membrane area, and τ is
time. Since diffusion proceeds from a solution into
pure water, the concentration drop is

An increase in electrolyte concentration in the
water-containing chamber during its penetration
through the membrane was recorded by conductome-
try using the following relation:

(32)

where K is the cell constant, which depends on the
nature of an electrolyte and is determined for each
specific case, and Rs is the electric resistance of a solu-
tion in the cell chamber that is initially filled with
water (Fig. 1). With allowance for the aforementioned,
P was calculated as follows:

(33)

The experiments were carried out at 25°C, and
their error, including that relevant to the ignorance of
the growth of the electrolyte concentration in the
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chamber initially filled with water, was no higher than
5% [12]. In the calculations and experiments, equiva-
lent concentration (molar concentration of equiva-
lents) was used. The electric-potential drop across the
membrane for the initial membrane systems was not
measured; the influence of diffusion layers on the
integral diffusion permeability was ignored. The
effects of the diffusion-layer thickness and the electro-
lyte concentration in the chamber to the right of the
membrane will be described in Section 7.

6. RESULTS AND DISCUSSIONS

Figures 4−11 show the experimental and calculated
data on the integral diffusion permeability coeffi-
cients, which are in satisfactory agreement with each
other. Table 2 presents the numerical values of the
physicochemical parameters obtained for the mem-
brane systems by minimizing the root-mean-square
deviations between the theoretical and experimental
values of diffusion permeability with the use of a pro-

gram written in the Mathematica® 11 computing envi-
ronment. The minimization was performed in several
stages. The calculations were carried out for three
asymmetric 2 : 1 electrolytes using Eq. (25) and five
symmetric 1 : 1 electrolytes by Eq. (21).

Initially, all three model parameters, , γ, and

 were determined by the method of least squares
from the experimental extremal P(C0) dependence for

MgCl2 electrolyte. In the case of the other seven elec-

trolytes, the error was minimized only for two param-

eters,  and γ, assuming that the diffusion coefficient
of chlorine co-ions was the same in the experiments:

Dm– = 2.85 μm2/s, which was 712 times lower than that

in a dilute solution. Then, Eqs. (28) and (29) were
used to calculate the asymptotic value of diffusion per-

meability  at high concentrations and the diffusion
coefficient of electrolyte molecules in the membrane,
respectively. It can be seen that the calculated diffu-
sion coefficients of cations (as well as electrolyte mol-
ecules themselves) in the membrane decrease in the
series Mg–Ca–Ba according to an increase in the
Sannon physical radii of these bivalent cations
(Table 1). This confirms the hypothesis that ions
partly lose their hydration shells when entering a

membrane. At the same time,  increases due to the
enhancement of the positive sorption of electrolyte
molecules in membrane pores in the aforementioned
series, i.e., a reduction in equilibrium distribution
coefficient γ (a rise in the absolute value of specific

interaction potential ).

The data calculated for symmetric 1 : 1 electrolytes
are presented in Table 2 also according to an increase in
the Shannon radii of the cations (a decrease in the Stokes
radius) listed in Table 1. The results presented in Table 2

show that the order of univalent cations Li+–Na+–

mν

−m ,D

mν

∞P

∞P

Φ

+
4NH

Fig. 4. (1) Experimental and (2) theoretical dependences
of integral diffusion permeability coefficient of MC-40
membrane with respect to MgCl2 electrolyte on its equiv-
alent concentration C0. 
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corresponds to an increase in the radii and a decrease in
the diffusion coefficients of the ions. Later, the mobility
of potassium cations doubles, while that of cesium cat-
ions decreases. This may be due to different degrees of
hydration shell loss by the cations in the membrane. This
is explained by, e.g., different moisture capacities of the
membrane exposed to different electrolytes (Table 1) and
supported by the higher integral diffusion permeabilities
of potassium and cesium chlorides and, hence, their
higher asymptotic values of integral diffusion permeabil-

ity 

As can be seen from Table 2, the MC-40 membrane
is characterized by the positive sorption of all electro-
lytes under consideration. Therewith, the equilibrium

distribution coefficient  while dimensionless

specific interaction potential  is nega-

tive (see the last column in Table 2). Note that the
aforementioned property is, in general, typical of
all ion-exchange materials. The comparison of a het-
erogeneous MC-40 membrane with a homogeneous
MF-4SC membrane, for which the calculation has

yielded  in the case of NaCl diffusion

[6], leads us to suppose that the interaction of the ions
of this electrolyte with MC-40 matrix is 2.5 times
stronger than with the matrix of the perfluorinated
membrane.

According to the above-described model, all P(C0)

dependences for the electrolyte under consideration
may reach a maximum upon increasing concentra-
tion, because the mobility of co-ions in a membrane
matrix is higher than the mobility of counterions

( ). The existence of the maximum is explained
by the nonuniform contributions of the diffusion and
electromigration components to the total f lux with
increasing electrolyte concentration. The higher the

 ratio, the more pronounced this maximum; there-
fore, it is especially distinct for CaCl2 and BaCl2 elec-

trolytes, which have the highest  values (Table. 2).
Note that, previously, when calculating simultane-

ously three physicochemical parameters,  γ, and

, for symmetric 1 : 1 electrolytes [6, 8, 9], we

∞
.P

<γ 1,

( )Φ =B ln γk T

Φ = − B1.78 k T

ν >m 1

mν

mν

mν ,

−mD

encountered a poor conditioned system (nonunique-
ness of the set of these parameters). For asymmetric
electrolytes, this problem of the calculation is, in the
considered case, absent, probably, due to the pro-
nounced extremal character of the diffusion depen-
dences. The poor conditioned system might also be
related to a small number of experimental points or a
large number (three) of the sought parameters. This
difficulty may be overcome by reducing the number of
the parameters to two by using the experimental values
of the diffusion permeability at any high electrolyte
concentration, when the P(C0) dependence almost

reaches the plateau (asymptotic value of the diffusion
permeability). Then, using expression (28), parameter

 may be excluded from Eqs. (21), (22), and (25) for
diffusion-permeability coefficients of a membrane
with respect to 1 : 1, 1 : 2 and 2 : 1 electrolytes, respec-
tively, as follows:

(21a)

 (22a)

 (25a)

mν
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Table 2. Calculated physicochemical parameters of heterogeneous MC-40 membrane

Electrolyte νm = Dm–/Dm+ Dm–, μm2/s Dm+, μm2/s Dm, μm2/s P∞ γ Ф/kBT = lnγ

MgCl2 4.34 2.85 0.657 1.350 11.70 0.115 –2.16

CaCl2 6.26 2.85 0.456 1.036 14.10 0.073 –2.61

BaCl2 6.70 2.85 0.426 0.985 21.47 0.046 –3.08

LiCl 2.60 2.85 1.099 1.587 10.82 0.147 –1.92

NaCl 2.70 2.85 1.058 1.544 13.46 0.115 –2.17

NH4Cl 2.80 2.85 1.018 1.500 11.99 0.125 –2.08

KCl 1.29 2.85 2.220 2.498 29.57 0.084 –2.47

CsCl 2.19 2.85 1.305 1.791 18.20 0.098 –2.32
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where denotations  and 

have been introduced. The two unknown physico-
chemical parameters of the model, i.e., effective
exchange capacity  and co-ion diffusion coeffi-

cient  are determined by the aforementioned
equations using the procedure of minimizing the root-
mean-square deviation between experimental and
theoretical data. Then, at experimentally determined
exchange capacity ρ and limiting diffusion permeabil-

ity  we determine successively equilibrium electro-

lyte distribution coefficient  and diffusion

coefficients of ions in the membrane,  and

 = 

Note that Eqs. (21a), (22a), and (25a) are applicable
only when an experiment distinctly shows that the
curve for the diffusion permeability reaches an asymp-
totic value. In this respect, our experimental data do
not meet this condition. The only way out is to use a
large number of experimental points, thereby widen-
ing the range of variations in the concentration, or
determine the physicochemical parameters in combi-
nation with the studies of other important characteris-
tics of a membrane, e.g., the electrical conductivity [8,
9] and/or current–voltage curve [13, 14]. An alterna-
tive is the method that is used in this work and based
on the investigation of the diffusion permeability of a
membrane with respect to a number of electrolytes
containing a common anion or cation.

It is worth noting that there are, so far, no reliable
methods for exact determining individual diffusion
coefficients of ions in membranes or other porous
bodies. Due to the condition for the local electrical
neutrality of a solution, the transfer of cations is
accompanied by simultaneous transfer of anions;

therefore, effective diffusion coefficient  of an elec-
trolyte molecule has an important practical signifi-
cance and a clear physical meaning. This coefficient is
calculated by Eq. (29) and has been called an ambipo-
lar or average coefficient [15]. It follows from Eq. (29)
and Table 2 that the electrolyte diffusion coefficient is
to a larger extent determined by an ion that has a lower
diffusion coefficient and a charge. In addition to γ, this
coefficient should be considered to be one of two main
physicochemical parameters of a membrane system;
therefore, the fifth column of Table 2 lists its values for
the studied electrolytes. The calculations show
that this diffusion coefficient inside a heterogeneous
MC-40 membrane is, depending on the nature of an
electrolyte, 3–3.5 orders of magnitude lower than that
in a dilute solution. This decrease is much greater
than that observed in the case of a homogeneous per-
fluorinated MF-4SC membrane, for which value

 μm2/s in the case of NaCl [6] is only one
and a half order lower than that in a dilute solution.
The perfluorinated membrane represents a noncross-

= =
0

ργ
σ σγ

С − −=m m γD D

=ρ ργ

−m ,D

∞
,P

=γ ρ ρ

− −=m mγD D

+mD ( )( )∞ ∞
− − + − + −+ −m mγ 1 .D P D Z Z P Z Z

mD

=m 7.2D

linked polymer; therefore, the diffusion coefficient of

NaCl in it is higher.

7. ON THE CORRECTNESS 

OF BOUNDARY CONDITIONS

At first sight, boundary conditions (5) are incor-

rect, because they formally lead to an infinite trans-

membrane jump in the electric potential. Below, it will

be shown that this apparently rough approximation

has a weak effect on the values of the integral diffu-

sion-permeability coefficient. As for the transmem-

brane electric-potential drop, it is not considered in

this work and is intended to be studied in a subsequent

communication. We have performed preliminary

experiments on measuring the transmembrane poten-

tial difference for NaCl electrolyte in a two-chamber

cell upon tangential stirring of the solutions on both

sides of an MC-40 membrane. In particular, at elec-

trolyte concentration C0 = 0.1 М and k = 100, the

measured potential and that calculated by an analyti-

cal equation derived under boundary condition (33)

(in this work, this equation is not presented) differed

from each other by no more than 10%. Its value has

appeared to be about 100 mV.

Let us show that the ignorance of the diffusion lay-

ers and the use of the condition for the zero concentra-

tion behind the right-hand diffusion layer do not

affect significantly the value of integral diffusion-per-

meability coefficient P, and its variations are no larger

than 5% that does not exceed the experiment error.

First, it should be noted that the solution of the

boundary problem was obtained in terms of the tradi-

tional formulation taking into account both diffusion

layers of equal thicknesses δ and the standard bound-

ary conditions relating the electric potential drops and

the concentrations of ions at the near and far mem-

brane surfaces. The concentration behind the mem-

brane was taken low, however, nonzero and equal to

 (k > 100). Therewith, the boundary conditions

imposed on the electric potential drops and ion con-

centrations at the right-hand side of the membrane

were written as follows:

(34)

where  is the (finite) electric potential drop upon

the passage through the right-hand boundary of the

membrane. Unfortunately, an exact equation for inte-

gral diffusion permeability coefficient P is, then,

implicit and, in the case of an, e.g., 1 : 1 electrolyte,

has the following form (see Eq. (13) in our work [7]):

0C k

( ) ( ) ( )± ± ± ±γ − Δϕ = +∓0 exp 0 ,hC h Z C h

Δϕh
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(35)

where the following new denotations have been intro-

duced:   

 and

 Since Eq. (35) deter-

mines the P value implicitly, it is inconvenient to use it

for calculating physicochemical parameters via the

error-minimization algorithm. Therefore, we have

ignored (as well as in the experiment) the presence of

diffusion layers and an increase in the electrolyte con-

centration in the region initially filled with distilled

water. It is distinctly seen that, at ,

expression (35) acquires the following explicit form:

(36)
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Table 3 shows the values of P calculated by exact

equation (35) at k = 100, these values attesting to a
weak dependence of the diffusion permeability of

MC-40 membrane with respect to NaCl electrolyte on

diffusion-layer thickness in a very large range of its

variations from 0 to 1000 μm (membrane thickness is

h = 520 μm, experimental permeability value is P =

13.0 μm2/s at C0 = 0.4 M, while the value calculated by

approximate Eq. (36) is P = 13.61 μm2/s). Diffusion

coefficients of sodium and chlorine ions in an

infinitely dilute solution, D+ = 1350 and D– = 2030

μm2/s, used in the calculations were taken from

monograph [10].

As can be seen from Table 3, the scatter of diffusion

permeability values at  is no higher

than 2%, which is within the experiment error (5%).

At  and , boundary conditions (34)

degenerate (with allowance for solution electrical neu-

trality) into conditions (5), which have already been

derived in our work [1], while Eqs. (35) and (36) are

transformed into Eq. (21) presented in this paper. As

can be seen from the structure of Eq. (36), at high k
values (which really take place in experiments), inte-

≤ δ ≤ μ0 1000 m

→ ∞k δ = 0

Table 3. Dependence of coefficient P on diffusion-layer
thickness

δ, μm 0 50 100 200 400 520 1000

P, μm2/s 13.61 13.59 13.58 13.55 13.50 13.47 13.34

Table 4. Dependence of coefficient P on degree of NaCl-solu-
tion dilution to the right of MC-40 membrane (C0 = 0.1 M),
δ = 100 μm

k 10 100 1000 10000

P, μm2/s, (35) 9.617 9.758 9.759 9.759

P, μm2/s, (36) 9.595 9.738 9.740 9.740

Fig. 5. The same as in Fig. 4 for CaCl2 electrolyte. 
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Fig. 6. The same as in Fig. 4 for BaCl2 electrolyte. 
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Fig. 7. The same as in Fig. 4 for LiCl electrolyte.
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Fig. 8. The same as in Fig. 4 for NaCl electrolyte.
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Fig. 9. The same as in Fig. 4 for NH4Cl electrolyte. 
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Fig. 10. The same as in Fig. 4 for KCl electrolyte. 
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gral diffusion permeability P weakly depends on this
parameter.

The P(k) dependences calculated for comparison
by exact equation (35) and approximate equation (36)
at sodium chloride concentration C0 = 0.1 M are pre-

sented in Table 4. Equation (21) yields P = 9.759 at
infinitely high k values (i.e., when the chamber to the
right of the membrane contains pure water).

The data in Table 4 show that, at , the data
calculated by any equation are almost identical, and
the difference between the approximate and exact val-
ues is no larger than 0.5%. Under the experimental
conditions, parameter k represents a function slightly
increasing with time; i.e., the studied system is quasi-
stationary.

8. CONCLUSIONS

In this work, on the basis of a homogeneous model
of a fine-porous membrane, a general theory has been
proposed for steady diffusion of an optional electrolyte

≥ 100k

Fig. 11. The same as in Fig. 4 for CsCl electrolyte. 
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through a cation-exchange membrane into distilled

water. Explicit algebraic equations have been derived

for the determination of integral diffusion permeabil-

ity coefficients of any symmetric  and asym-

metric 1 : 2 and 2 : 1 electrolytes, as depending on the

physicochemical parameters of a membrane system,

such as the coefficients of equilibrium distribution of

ion pairs, diffusion coefficients of ions involved in the

process, and exchange capacity of a membrane. In the

general case, to find the integral diffusion permeability

coefficient, it is necessary to solve a set of two alge-

braic equations, with one of them being implicit. The

derived equations enable one to find the aforemen-

tioned parameters from the comparison between cal-

culated and experimental data. Such calculations have

been performed with the use of the method of least

squares and the Mathematica® 11 software for a het-

erogeneous MC-40 membrane. Diffusion coefficients

of some inorganic ions in the MC-40 membrane

matrix have for the first time been determined. It has

been established theoretically and confirmed experi-

mentally that, when the diffusion coefficient of a co-

ion is higher, the concentration dependence of the

integral diffusion-permeability coefficient exhibits a

maximum. This maximum may be rather distinct

(when ratio  of the diffusion coefficients of co- and

counterions is rather high (Figs. 5, 6)), or weakly pro-

nounced (Fig. 4). In the case of symmetric 1 : 1 elec-

trolytes, the maximum also exists in the theoretical

dependence but is difficult to find experimentally

(Figs. 7–11).

ACKNOWLEDGMENTS

This work was supported by the Russian Founda-

tion for Basic Research, projects nos. 15-08-03285

and 16-08-00642.

REFERENCES

1. Filippov, A.N., Starov, V.M., Kononenko, N.A., and
Berezina, N.P., Adv. Colloid Interface Sci., 2008,
vol. 39, p. 29.

2. Filippov, A.N., Iksanov, R.Kh., Kononenko, N.A.,
Berezina, N.P., and Falina, I.V., Colloid J., 2010,
vol. 72, p. 243.

3. Berezina, N.P., Kononenko, N.A., Filippov, A.N.,
Shkirskaya, S.A., Falina, I.V., and Sycheva, A.A.-R.,
Russ. J. Electrochem., 2010, vol. 46, p. 485.

4. Kolechko, M.V., Filippov, A.N., Shkirskaya, S.A.,
Timofeev, S.V., and Berezina, N.P., Colloid J., 2013,
vol. 75, p. 289.

5. Filippov, A.N. and Iksanov, R.Kh., Russ. J. Electro-
chem., 2012, vol. 48, p. 181.

6. Filippov, A.N., Safronova, E.Yu., and Yaros-
lavtsev, A.B., J. Membr. Sci., 2014, vol. 471, p. 110.

7. Filippov, A., Khanukaeva, D., Afonin, D.,
Skorikova, G., Ivanov, E., Vinokurov, V., and
Lvov, Yu., J. Mater. Sci. Chem. Eng., 2015, vol. 3, p. 58.

8. Filippov, A., Afonin, D., Kononenko, N., and
Shkirskaya, S., Abstracts of Papers, AIP Conf. Proc.,
7th Int. Conf. for Promoting the Application of Mathemat-
ics in Technical and Natural Sciences AMiTaNS’15,
2015, vol. 1684, p. 030004.

9. Filippov, A., Afonin, D., Kononenko, N., Lvov, Y., and
Vinokurov, V., Colloids Surf. A: Physicochem. Eng.
Aspects, 2017, vol. 521, p. 251.

10. Moelwyn-Hughes, E.A., Physical Chemistry, London:
Pergamon, 1961.

11. Shannon, R.D., Acta Crystallogr., 1976, vol. A32,
p. 751.

12. Gnusin, N.P., Berezina, N.P., Shudrenko, A.A., and
Ivina, O.P., Zh. Fiz. Khim., 1994, vol. 68, p. 565.

13. Filippov, A.N., Colloid J., 2016, vol. 78, p. 397.

14. Filippov, A.N., Elektrokhimiya, 2017, vol. 53, p. 292.

15. http://ocw.mit.edu/courses/chemical-engineering/
10-626-electrochemical-energy-systems-spring-2014/
lecture-notes/MIT10_626S14_S11lec23.pdf.

Translated by A. Kirilin

+ −0 0:Z Z

νm


		2017-07-27T14:14:16+0300
	Preflight Ticket Signature




