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INTRODUCTION

As applied to micellization, the law of mass action
is formulated as follows (see, e.g., [1]):

 (1)

where  and  are the concentration and activity
coefficient of micelles, respectively;  is the true
constant of the law of mass action; and  , and 
are the concentration, activity coefficient, and aggre�
gation number of i�type monomers, respectively.
When the critical micelle concentration (CMC) is low
and the activity coefficients may be equated to unity
(usually, in the concentration range of one to two
orders of magnitude of CMC), the law of mass action
is simplified as follows:

 (2)

where, strictly speaking, coefficient K is not a constant
any longer. However, even for a system with Coulomb
interaction, such as a sodium dodecyl sulfate solution,
the relative difference between lnK and  near the
CMC is as small as 1% [1]. The law of mass action
written as Eq. (2) is used in the literature.
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where  is the overall concentration of the i�type par�
ticles, is an essential value for this theory. It is clear
from Eq. (3) that micelle concentration may be
expressed via the degree of micellization of any
micelle component (it is convenient to use the main
micelle�forming substance denoted by subscript 1),
while the concentration of a monomer of any type is
determined only by its own degree of micellization:

(4)

The substitution of Eq. (4) into Eq. (2) yields

 (5)

At a fixed composition of a mixture of particles, the
monotonically increasing  function has the only
inflection point, and the concentration corresponding
to it may be taken as CMC, although there are many
other definitions as well [1].

The definition that relates the CMC to the constant
of the law of mass action [2, 3] is especially remark�
able. After being generalized to a multicomponent sit�
uation [4], it corresponds to relationship

(6)

where  is the CMC and  is the total aggre�
gation number for particles of all types.
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The substitution of Eq. (6) into Eqs. (2) and (5)
transforms these relationships as follows:

 (7)

  (8)

where the tilde symbol denotes that concentration is
measured in the CMC units. It is evident that Eqs. (7)
and (8) are attractive for the theory, since they com�
prise no equilibrium constant, which is difficult to cal�
culate in the general case. Some results of this
approach have been reported in [4]. The aim of this
communication is to refine and complete these results
for micelles of simple composition. For the sake of
simplicity, we agree that all concentrations are mea�
sured in the CMC units and omit the tilde symbol
below.

GENERAL RELATIONSHIPS

In the simplest case, solvated molecules of one
nonionic surfactant (if solvation takes place) may play
the role of the particles in question. In this case, index
i in Eqs. (7) and (8) acquires only one value i = 1 and
may be omitted. The second index (1), which indicates
that monomers are concerned, remains preserved in
expression (7) for the law of mass action

 (9)

while expression (8) may be written in the following
form:
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which determines the overall concentration of the sur�
factant as an explicit function of the degree of micelli�
zation and the aggregation number. Both latter values
increase with concentration; however, the aggregation
number varies most slowly and is an almost constant
parameter in the theory [4]. As a proper approxima�
tion, it may be considered to be a constant (which is
the essence of the quasi�chemical approach) in the
concentration range up to one or two orders of magni�
tude of CMC (1 < c < 100). Figure 1 shows the plot of
the  function at n = 100. Since the curve proceeds
from the origin, it is obviously S�shaped and has an
inflection point; however, the α values are so small in
a range of c < 1 that, in the selected scale, the curve
almost coincides with the vertical axis of the coordi�
nate system in this region.

Beginning to analyze the derived relationships, we
have, primarily, to verify to what extent CMC defini�
tion (6), which strongly simplifies the theory, con�
forms to the conventional approaches. If the CMC is
determined from the inflection point, it corresponds
to critical degree of micellization αm = 0.061 at n =
100 [4]. Now, our CMC corresponds to c = 1. Then, it
is obvious that the entire bracketed expression in
Eq. (10) is equal to unity, and αm is found from equation

  (11)

which determines the dependence of  on the speci�
fied n value (Fig. 2). At n = 100, the solution of
Eq. (11) is  The difference 
for the two approaches being compared is quite
noticeable: 15% for  and slightly less than 1% for
1 – αm (parameter for the monomers). However, dif�
ference  is important for determining the CMC.
Let us calculate it. Using formula (10), we find that

 (12)

For the inflection point (α = 0.061) at which the slope
of the  curve is smallest, formula (12) yields

≈ 1.227 at n = 100. Then,

 

and, since cm = 1, this deviation is as small as 1%. It is
less than the accuracy of determining the CMC exper�
imentally; moreover, the difficult removal of impuri�
ties from nonionic surfactants should be taken into
account. Now, we may state that definition (6) con�
forms to both the theoretical and experimental
approaches to determining CMC.
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Fig. 1. Overall surfactant concentration as a function of the
degree of micellization according to Eq. (10) at n = 100.
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In the micellization theory based on the law of
mass action, Eqs. (9) and (10) are considered along
with material balance condition for the surfactant

(13)

where Eq. (9) has been used. As has been noted in [4],
an important consequence of Eq. (13) is condition

 at  which means that monomer concen�
tration reaches the CMC value at a surfactant concen�

= + = +1 M 1 1 ,nc c nc c nc

= + 1c n =1 1,c

tration several orders of magnitude higher than CMC.
However, it has not been mentioned that, according to
Eq. (9), at , we expect to have  i.e., at

, the concentrations of monomers and
micelles become equal to one another and, simulta�
neously, to CMC. If micelle concentration at CMC is
assumed to be negligible, the dependences of  and 
on c must have absolutely different patterns. To verify
this hypothesis, let us, in addition to formula (10),
represent  and  as explicit functions of α. Accord�
ing to Eqs. (4) and (10), we have

(14)

(15)

Equations (10) and (14) taken together specify the c1–c
dependence parametrically (via α), while Eqs. (10)
and (15) preset the cM–c dependence at a given n
value. Both these functions are shown in Fig. 3 at n =
100 in a range of 0 < α < 0.9. At α = 0.07 and n = 100
(which correspond to c = 1, i.e., CMC), formulas (14)

and (15) yield  and  Taking
 we obtain  and  i.e., the

concentration of micelles is still lower than monomer
concentration by an order of magnitude. At the point
where the curves for monomer and micelle concentra�
tions intersect and Eqs. (14) and (15) become equal to
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Fig. 2. Critical degree of micellization as a function of
aggregation number according to Eq. (11).
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unity, the degree of micellization is determined from
the following condition:

(16)

At n = 100, this yields 
The simplicity of the graphical representation of

the  and  functions shown in Fig. 3 is in con�
trast to the complexity of their analytical representa�
tion by formulas (10), (14), and (15). It is clear that
simple analytical approximations can also be used
here. For example, the curve for the  function can
be approximated using two linear regions below and
above the CMC:

(17)

where  is the positive slope coefficient. Let us calcu�
late this value. In our approach,

(18)

The following analytical expression was found for the
inflection point in the α1(c) curve [1]:

(19)

As has been found above, when calculating , it may,
with a high accuracy, be assumed that  ≈

 Then, omitting the linear dependence in the
range from   to   we, with
allowance for relation (18), obtain

(20)

As a result, the second linear portion of the  func�
tion in Eq. (17) is analytically expressed as

(21)

Now, let us consider the  function. By defini�
tion, for a monodisperse micellar system with aggrega�
tion number n, we have:

(22)

The substitution of Eq. (21) into Eq. (22) yields
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At the point of CMC (c = 1), formula (23) (also see
Eq. (19)) also determines concentration of micelles as

 Since we have established that the differ�
ence between  and  is much smaller than these
values themselves, the free term in the right�hand part
of Eq. (23) may take place (it is small, but nonzero).
The same value (as a value added to unity) is also
present in square brackets. However, it is small com�
pared with unity (always smaller than 0.02 for real
aggregation numbers); therefore, it may be ignored
here. Equation (23) is simplified to yield

(24)

Formulas (21), (23), and (24) for monomer and
micelle concentrations above CMC refine the com�
monly used approximation  cM  The
comparison between Eqs. (21) and (24), shows that,
although  within the most part of the concen�
tration range (these values are comparable only near

), derivative  is, on the contrary, much
larger (by a factor of 16.3 at n = 100) than derivative

 throughout this range.

DIFFUSION COEFFICIENT 
AND AGGREGATION NUMBER

The aforementioned approximations make the cal�
culations much simpler. Let us discuss the problem of
surfactant diffusion in a micellar system as an exam�
ple. When the diffusion is rather slow (at a low gradient
of surfactant chemical potential) and the equilibrium
between monomers and micelles remains preserved
during the diffusion, law of mass action (9) is valid. In
this case, for low concentrations and the simplest
bimodal distribution (when all micelles have the same
size), surfactant diffusion coefficient D is specified by
the following expression [5] (see also [6]):

(25)

where  and  are the diffusion coefficients of
monomers and micelles. The former is easily deter�
mined from experiments with a premicellar solution,
while the latter can be found from the data on a micel�
lar solution. Both coefficients could be believed to be
constant but for the viscosity, which varies with con�
centration and directly affects the diffusion coeffi�
cients. This is evident from, e.g., the following formula
for noninteracting spherical i�type particles:

(26)

where  is the Boltzmann constant, T is the temper�
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particles of different types have the same or similar
geometric shapes, the viscosity has the same effect on
all of the diffusion coefficients. In this case, we can
eliminate the effect of viscosity by using the ratio
between the coefficients. In any case, after rewriting
Eq. (25) as

(27)

and assuming the  ratio to be constant, we
reduce the role of viscosity and make calculation of the
diffusion coefficient of micelles more reliable. Let us
consider this calculation procedure.

According to Eqs. (21) and (24), the relative role of
the terms in the denominator of Eq. (25) is character�
ized by the following ratio (we denote it as κ):

(28)

For CMC (c = 1), Eq. (28) yields the result

(29)

which shows that, although concentration of micelles
is rather low, as compared with the concentration of

monomers, the  value is significantly higher than
the concentration of monomers already at CMC

 at n = 100). The κ value becomes even
smaller as the concentration grows above the CMC,
because the denominator in Eq. (28) increases much
faster than the numerator does. At a concentration
twice as high as the CMC , κ decreases to negli�
gible value

(30)

 at n = 100). This means that, on exceed�
ing the CMC, we may omit the first term in the
denominator of Eq. (25) and write this equation as

(31)

where κ is specified by Eq. (28).
The latter expression can also be simplified. In the

numerator of Eq. (28), as well as in formula (21), the
variable component remains small, as compared with
the free term throughout a broad range 
If we confine ourselves to a range that does not exceed
one order of magnitude with respect to the CMC, the
variable component will be negligibly small and can be
omitted. An opposite state of affairs holds for the
denominator of Eq. (28). The variable component in it
increases with concentration so rapidly that it
becomes significantly higher than the free term (16.3�
fold at n = 100) already at c = 2. Moreover, at c > 2, the
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free term may be ignored and we arrive at the following
approximation for κ:

(32)

The boundaries of the range are given here approxi�
mately; the distance to the CMC value must be suffi�
ciently large to provide a proper denominator, but not
too large to meet the conditions of ideality for the
entire micellar system. Now, introducing coefficient

(33)

we may rewrite Eq. (31) as follows:

(34)

According to Eq. (34), in the selected concentra�
tion range, the surfactant diffusion coefficient
increases linearly with the  value (i.e.,
decreases with growing concentration); therefore, rel�
ative diffusion coefficient  of micelles can be
determined as the Y�intercept when extrapolating this
linear dependence to the coordinate origin

 A similar method has been illustrated in
[7] when determining the diffusion coefficient of Tri�
ton X�100 (p�(1,1,3,3�tetramethylbutyl)phenyl
poly(ethylene glycol)) micelles. However, an analog of
coefficient k in the cited study (which also included
the constant of the law of mass action) remained a
“thing�in�itself,” leaving the feeling that nothing use�
ful could be derived from it. In our representation of
Eq. (33), coefficient k is unambiguously related to the
aggregation number, thereby yielding the fundamental
possibility of finding the aggregation number of
micelles from the data on the concentration depen�
dence for the diffusion coefficient of a surfactant.

Note that the approach that is adequately illus�
trated by formula (26), i.e., the transition from the dif�
fusion coefficient to the aggregation number via the
hydrodynamic radius of micelles, is commonly used
for this purpose. However, this approach requires
knowledge of, first, the geometric shape of micelles
and, second, the hydration number (for finding the
true volume followed by determining the aggregation
number by dividing the true volume by the volume of
a single surfactant molecule). Since the law of mass
action is independent of micelle shape (which is often
unknown) and takes into account hydration (even if
the hydration number is unknown), our formula (33)
is devoid of these requirements, although it still has its
own limitations.

However, the use of formula (33) for determining
the aggregation number encounters certain difficulties
in practice. Figure 4 shows the dependence of coeffi�
cient k in Eq. (34) on the aggregation number in a
range of 10 < n < 100, where this coefficient acquires a
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value of 0.086–0.0094. It can be seen that, within a
reasonable range of aggregation numbers, the k value
is so small that a very high accuracy is required for the
measurement of the diffusion coefficient to reliably
determine it in an experiment (here, the situation is
similar to that observed when determining the aggre�
gation number from the slope of the surface tension–
concentration dependence above CMC, where the
slope is also extremely small [8]). The data available
on the diffusion coefficients of nonionic surfactants
(e.g., Triton X�100 [7] and sulfobetaines [9]) are not so
accurate, but this is not the sole point. It has been
mentioned in the comment to formula (25) that diffu�
sion coefficient  of monomers can be easily deter�
mined from the experiments with premicellar solu�
tions; however, if solution viscosity varies with con�
centration,  varies as well. Hence, formula (34) does
not contain the  value for a premicellar solution, but
rather it comprises the actual D1 value for a solution in
which total diffusion coefficient D is measured for the
entire surfactant. This actual value still remains to be
found. Alternatively, the  value may be used as a
constant for a premicellar solution with viscosity 
provided that every obtained D value is recalculated
from real viscosity η to viscosity  This implies that
the viscosity of a solution must be measured in parallel
with the measurement the surfactant diffusion coeffi�
cient in it.

1D

1D

1D

1D
η0,

η0.

This approach was demonstrated in [10] when
studying an aqueous solution of penta(ethylene gly�
col)�1�hexyl ether  each obtained diffusion
coefficient was corrected by multiplying it by  A

value of cm2/s was obtained for the diffu�
sion coefficient of monomers in a premicellar solu�
tion. Variations in the diffusion coefficient of 
were studied upon passing through CMC at 25°C. Six
experimental points were located in the region above
the CMC (from c = 1.061 to c = 2.055), and we used
these points for the calculations by formula (34). Fig�
ure 5 exhibits the linear approximation of the experi�
mental dependence (coefficient of determination is
0.965) at  and  At this k
value, Eq. (33) yields n = 51.1 (see also Fig. 4), which
is in good agreement with value n = 54 that was used in
the calculations for matching with the experimental
data [10]. Hence, it may be stated that an unusual
method for determining the aggregation number of
nonionic surfactant micelles has been tested for the
first time.
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