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INTRODUCTION

This article generalizes and develops the approach
to the description of the kinetics of a new phase forma�
tion in a metastable medium with instantaneously
generated supersaturation at the stage of nucleation
(i.e., the stage of formation of stably growing super�
critical nuclei of a new phase). The approach takes
into account that the intensity of the nucleation of new
supercritical particles is suppressed in spherical diffu�
sion regions of a certain size, which surround previ�
ously nucleated particles and remaining at the initial
level in the rest of the metastable medium. In this way,
the volume excluded from the nucleation is formed
around particles growing in a diffusion regime [1–7].
At the stage of nucleation, the effects of the excluded
volume play a fundamental role in the separation of
highly supersaturated gas solutions, substantially (by
several times) increasing solution volume [6, 7].
Recently, we have considered [8] the application of
this approach to the stage of nucleation in a supersat�
urated vapor under isothermal conditions and com�
pared the results obtained with the more traditional
description in terms of the mean�field approximation
of vapor supersaturation, which implies that vapor
consumption by growing droplets results in a simulta�

neous and uniform decrease in vapor supersaturation
throughout the system volume [9–12]. In this article,
we supplement the excluded�volume approach with
taking into account the thermal effects of nonisother�
mal nucleation and the nonstationary transfer of heat
releasing upon the transition of metastable substance
molecules to particles. The existence of the nonsta�
tionary heat flux provides the metastable medium with
additional nonuniformity and substantially contrib�
utes to the formation of an excluded volume in the
course of nonisothermal nucleation. This problem is
rather complex to solve even under the mean�field
approximation of the supersaturation of a metastable
substance in a medium and the temperature of the lat�
ter [13–16]. Since not all effects relevant to the
nonisothermal mean�field theory have been previ�
ously considered for the stage of nucleation, we briefly
discuss the results obtained in terms of this theory in
Section 1 mainly following the approach described in
[13–16]. Detailed consideration of the results
obtained in terms of the mean�field theory is also nec�
essary to consistently compare them with correspond�
ing results of the excluded�volume approach; this
comparison is carried out in Section 3. The excluded�
volume approach per se is considered in Section 2.
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1. MEAN�FIELD APPROXIMATION 
OF SUPERSATURATION AND TEMPERATURE

1.1. Nucleation Rate of Supercritical Particles

As has been known [12], the intensity of the gener�
ation of supercritical nuclei in a supersaturated homo�
geneous metastable medium with molecular concen�
tration n and absolute temperature T is determined by
nucleation rate  which may be represented as fol�
lows:

. (1)

Here,  is the formation work of a nucleus composed
of number ν of molecules expressed in the  units,
where  is Boltzmann’s constant;  is the number of
molecules in the critical nucleus that corresponds to
the maximum of work   is the rate of attach�
ment of molecules to the critical nucleus. In terms of
the classical theory of nucleation, the formation work

of a spherical nucleus with radius 
 is the number density of molecules in a new

phase) may be written as

where  is the surface tension of the nucleus and ζ
is the supersaturation of a metastable substance.
Accordingly, the activation barrier of nucleation

 which is equal to the maximum of work 
may be represented in the following form:

(2)

In the free�molecular regime of substance
exchange between a nucleus and a medium, which is
typical of the initial stage of nucleation (incubation),
at which the stationary state is established in the near�
critical range of nucleus sizes, we have

n, where  is the capture coefficient
of metastable substance molecules on the nucleus sur�
face and  is the average thermal velocity of metasta�
ble substance molecules. The development of a sta�
tionary state in the near critical range of nucleus sizes
under the conditions of nonisothermal homogeneous
nucleation was described in [13, 14], where it was
shown that rate I is renormalized by the thermal
effects as compared with rate  upon the isothermal
homogeneous nucleation as follows:
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where  is the latent heat of transition of a
metastable substance molecule to the new phase at

temperature T;  is the average thermal velocity of
carrier medium molecules;  is the molecular con�
centration of the carrier medium; and c and  are the
molecular heat capacities of the substance and the car�
rier medium in the units of Boltzmann’s constant 
respectively.

In the case of nonisothermal generation of super�
critical particles, ignoring a change in the preexpo�
nential factors of expression (1), current intensity

 (for time moment t) is related to
initial intensity  (for some initial time
moment t = 0) via the following relation:

(4)

Let us define the initial  and current  average
supersaturations of the metastable substance in the
system as

(5)

where  is the current concentration of the metasta�
ble substance,   is the equilibrium
concentration of the metastable substance over a pla�
nar surface of the stable phase at temperature T. With
regard to the Clapeyron–Clausius formula, at

 = , we have

 (6)

Let us write the  differ�
ence in the following form:

 (7)
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ignored [13, 16]; however, we shall retain it. Note that,
in view of Eq. (2), the  and

 are expressed via  as fol�
lows:

(8)

(9)

1

2

(1 ) ,

( , ) ,T
C g

g g T T

I k I

nq
k k n T

k T c n cn

−= +

⎛ ⎞
≡ ≡ α ⎜ ⎟

+⎝ ⎠

v

v vB

( )q q T≡

g
Tv

gn

gc

,kB

( ) ( )( )( ) ,I t I t T t= ζ

0 0 0( , )I I T≡ ζ

( ) ( )( ) ( )( )[ ]0 0 0( ) exp , , .I t I F t T t F T≈ − Δ ζ − Δ ζ

0ζ ( )tζ

( )

( )
( )

( ) ( )( )

( )( )
0 0

0
0

, ,
n t n T tn n T

t
n T n T t

∞∞

∞ ∞

−−
ζ = ζ =

( )n t
( )0 0 ,n n t≡ ( )n T

∞

( ) 0T t TΔ ( )( )0 0 1T t T T− �

( ) ( ) 0
0 2

0

exp .
q T

n T n T
k T

∞ ∞

⎛ ⎞Δ
= ⎜ ⎟

⎝ ⎠B

( ) ( ) 0 0( , ) ( , )F t T t F TΔ ζ − Δ ζ

( ) ( )

( ) ( )
0 0

0 0 0 00 0

0 0 0 0

, ,

, ,
.

ln ln

F T F T

F T F TT T

T T

Δ ζ − Δ ζ ≈

∂Δ ζ ∂Δ ζζ − ζ −
≈ − +

ζ ∂ ζ ∂

( )0 0 0, lnF T∂Δ ζ ∂ ζ

( )0 0 0, lnF T T∂Δ ζ ∂ ( )0 0,F TΔ ζ

( ) ( )0 0 0 00

0 0 0

, ,2
,

ln 1 ln(1 )

F T F T∂Δ ζ Δ ζζ
= −

∂ ζ + ζ + ζ

( )
( ) ( )0 0

0 0 0
0

,
, ,

ln

F T
T F T

T

∂Δ ζ
= γ Δ ζ

∂



COLLOID JOURNAL  Vol. 76  No. 6  2014

THE STAGE OF NONISOTHERMAL NUCLEATION OF SUPERCRITICAL PARTICLES 703

where

(10)

Let us estimate these derivatives. For example, using
the thermodynamic data [17] for liquid water taken as
a stable phase, at  K and  we have

(11)

Since, according to parameters (11),
 and 

the relative deviations of the supersaturation and tem�
perature in expression (7) must be small.

Let us, in accordance with [13, 16], introduce the
denotation

 (12)

and define the current value of the relative decrease in
the supersaturation of the metastable substance  as

(13)

With allowance for relations (7)–(10) and definitions
(12), (13), expression (4) for the intensity of the
nonisothermal generation of supercritical particles is
transformed as follows:

(14)

The heating of the medium due to the heat of the
phase transition upon the formation and growth of
supercritical particles may be determined in terms of
the mean�field approximation with the help of the
heat balance equation. Assuming that the heat result�
ing from the transition of the metastable substance to
particles has entirely been consumed for medium
heating, we obtain

(15)

From this, we derive the following:
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At the smallness of the argument in the exponent, this
implies [13, 16] that

(18)

where
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Using relations (18)–(20) in Eq. (16), we obtain
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Substitution of Eq. (21) into expression (14) yields
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As follows from relation (22), under the mean�field

approximation of supersaturation, duration  of the
stage of nucleation is determined by the following
condition:

 (24)

1.2. Balance of Metastable Substance, Heat Balance
of Particles, and Particle�Size Distribution

Squared radius distribution function for supercriti�
cal new�phase particles growing in the stationary
nonisothermal diffusion regime is determined at time
moment t as follows [8]:

(25)
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Droplet temperature  may be found from the
condition of heat balance between a new�phase parti�
cle and a medium due to thermal conductivity. Assum�
ing that the diffusion to a particle and the heat transfer
from the particle occur in the stationary regime, at
metastable substance concentration  and temper�
ature  at a large distance from the particle (time
variations  and  result from the collective
effect of all supercritical particles that have been
nucleated on the medium), we have

(27)

where  is the thermal�conductivity
coefficient of the medium and χ is the corresponding
thermal diffusivity. Keeping in mind that, according to
formulas (24), (18), and (21),

(28)

(29)

it may, with a sufficient accuracy, be taken that, in the
equation of heat balance between a particle and a
medium,  and 

(30)

As a consequence, the solution of Eq. (30) for particle
temperature  is time�independent. As in the
case of the growth of a single particle [13, 15], Eq. (30)
may be transformed into the following form:
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and , we obtain the following relation for
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tion is represented as
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ume is related to the distribution function via the fol�
lowing obvious expression:
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2. THERMAL EFFECTS AT THE STAGE 
OF NUCLEATION ACCORDING 

TO THE EXCLUDED�VOLUME APPROACH

2.1. Concept of Excluded Volume and Its Calculation 
for Self�Similar Regime of New�Phase Particle Growth

In the real situation of nonstationary diffusion of a
metastable substance to supercritical particles and
heat transfer from the particles to a medium, each
supercritical particle is surrounded by a diffuse layer
with a finite thickness, in which the density of the
metastable substance and temperature are spatially
nonuniform and vary with time. It is obvious that,
inside these diffuse shells, the nucleation of new
supercritical particles is decelerated due to both a
decrease in the concentration of the metastable sub�
stance and an increase in the temperature; the shorter
the distance from the particle surface the stronger the
deceleration. Outside of the diffuse shells, the nucle�
ation rate remains at the initial level. In the course of
time, the diffuse shells will start to overlap; in this case,
the nucleation of new particles will actually stop, and
the stage of nucleation will come to the end.

To describe the stage of nucleation with allowance
for the thermal effects upon the formation of diffuse
shells with time�dependent concentration fields
around supercritical particles, we use the approach
that we have previously developed in [8] for isothermal
nucleation. Assume that, inside diffuse shells with a
certain thickness, the nucleation rate of new particles
is completely suppressed, while, outside of these
shells, the nucleation rate is the same as it is at the ini�
tial time moment. As a consequence, some volume of
the medium around existing supercritical particles can
be excluded from the nucleation process. We shall
refer to this volume as the excluded one.

Excluded volume  surrounding a particle with
radius  may be found from the integral condition
that the total number of new particles, which are
nucleated per unit time around this specific particle in
sufficiently large volume V of the medium at current
profiles of metastable substance supersaturation 
and temperature , as well as corresponding pro�
file of nucleation rate  is equal to the
number of particles nucleated outside of the excluded
volume at initial nucleation rate  This condition
may be expressed in the form of the following integral
relation:

(42)

Note that, in the presence of thermal effects, initial
nucleation rate  is determined by the same relation (3)
at  and  while, for the current local vapor
supersaturation, instead of the second of definitions
(5), we have the following:
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Taking into account the spherical symmetry of the
medium around a growing spherical particle, Eq. (42)
yields
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It is obvious that the upper limit of the integral in
Eq. (44) cannot exceed the average interparticle dis�
tance and has been specified as infinity formally,
because the integrand rather rapidly tends to zero.

When considering the nonstationary profiles of
metastable substance concentration and temperature
around the particle, we shall be interested in the self�
similar regimes of diffusion particle growth and heat
transfer from the particle to the medium [18–22]. Let
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to a particle and the heat transfer from the particle to
the medium have the following forms [18–22]:

(51)

(52)

As in Section 1, diffusion coefficient D of metastable
substance molecules in the medium and thermal diffu�
sivity χ of the medium in Eqs. (51) and (52) are
assumed to be constant. Equations (51) and (52) are
written in self�similar variables (45) as follows:

(53)

(54)

where time� and coordinate�independent parameter b
is determined with the help of the equation for the rate
of supplying the substance to a supercritical particle

in the following way:

(55)

The boundary conditions for Eqs. (53) and (54) have
the forms of

(56)

(57)

The following self�similar solutions satisfy Eqs. (53)
and (54) with boundary conditions (56) and (57):
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where parameter b satisfies the following integral
equation, which results from relation (55) and defini�
tion (32) of parameter a:

(60)

Temperature  of a supercritical particle is found
using the nonstationary heat balance equation, which
has the following form in the self�similar variables:

(61)

Substituting expressions (58) and (59) into Eq. (61)
and taking into account Eq. (60), we arrive at the fol�
lowing set of two equations:

(62)

In conclusion, to calculate desired coefficient µ at
an arbitrary value of parameter a, relations (58) and
(59), as well as the results of the solution of the set of
equations (62) for b and  should be substituted into
formula (49) under integral with allowance for
Eq. (50).

2.2. Asymptotics at Weak Nonstationarity of Diffusion 
and Heat Transfer

The difference between parameters b and a charac�
terizes the nonstationarity of diffusion and heat trans�
fer in the process of the growth of supercritical parti�
cles of a new phase. In particular, at a weak nonsta�
tionarity, when a1/2 � 1, Eq. (60) yields

(63)
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tion:
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(64)

which coincides with Eq. (30) for the temperature of
growing droplets under the mean�field approximation
of supersaturation. Under the same conditions, when

 the following approximate expressions may be
used instead of relations (58) and (59) for  and

:

 (65)

(66)

Relations (63)–(66) enable us to obtain the analyt�
ical asymptotic estimate for excluded volume coeffi�
cient µ at  Let us rewrite expression (49) in the
form of

(67)

where the  function may be represented with
allowance for relations (50), (65), and (66) as

(68)

(68a)

( )

( )

0
0 0 0 0

0

0

1 exp

,

T T
Dn T q

T

T T

∞

⎛ ⎛ ⎞⎞−ζ + − β⎜ ⎜ ⎟⎟
⎝ ⎝ ⎠⎠

= κ −

d

d

1,b �
( )n ρ

( )T ρ

( )

( )
2 2

0 2 2

1

2

2

1

exp exp
2 2

,

exp
2

n

dx bx dx bxn n T
x x

dx bx
x

ρ ∞

∞

ρ

∞

ρ =

⎛ ⎞ ⎛ ⎞− + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=
⎛ ⎞−⎜ ⎟
⎝ ⎠

∫ ∫

∫

d

( )

2

2

1
0

2

2

1

exp
2

( ) .

exp
2

dx bD x
x

T T T T
dx bD x
x

ρ

∞

⎛ ⎞−⎜ ⎟χ⎝ ⎠
ρ = − −

⎛ ⎞−⎜ ⎟χ⎝ ⎠

∫

∫
d d

1.b �

( )( )[ ]
2

0

1

3 1 exp ,d

∞

μ = ρρ − −Γ ω ρ∫

( )ω ρ

( ) ( )

( )
( )[ ]

( )[ ]
( )

( )

( ) ( )
( )[ ]

0

0

0 0
2

0

0 0
2

0 0

0 0 0
0

0 0

1
1 ,

exp 1 ,

1 1 , exp ,

1 ln 1
1 , ,

2

B b

q T T
C b

k T

q T T
B b C b

k T

T T
C b

T

ζ + ⎛ω ρ = − ρ ×⎜
ζ ⎝

⎛ − ⎞⎞
× − − ρ −⎜ ⎟⎟

⎝ ⎠⎠
⎛ − ⎞

− − ρ ρ +⎜ ⎟ζ ⎝ ⎠
+ ζ + ζ −+ γ − ρ

ζ

d

B

d

B

d

( )

( )

( )

2

2

1

2

2

1

2exp 3
2

, ,
2exp 3

2

dx b x
xx

B b
dx b x

xx

ρ

∞

⎡ ⎤− + −⎢ ⎥⎣ ⎦
ρ ≡

⎡ ⎤− + −⎢ ⎥⎣ ⎦

∫

∫

(68бb)

Integrating Eq. (67) by parts, we find

(69)

where

(70)

The main contribution to the integrand that repre�
sents  in formula (69) at  is determined by a

range of   Accordingly,

the integration in Eq. (69) may be performed using the
following approximate expression:

 (71)

If b is so small that the conditions 

 are also fulfilled, 

may also be placed under the integral. As a result, with
regard to definition  we obtain

(72)

Taking into account formulas (63) and (64), relation
 between the thermal conductivity

coefficient and thermal diffusivity, and definitions of a
and a0, we have
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(73)

Substituting expression (73) into relation (72) and tak�
ing into account definition (23), we arrive at

(74)

2.3. Characteristics that Take Place by the End 
of the Stage of Nucleation

Since coefficient µ is independent of supercritical
particle size, the relation of volumes 
obtained for one particle may be extended to the entire
ensemble of supercritical particles. In other words, if
the total volume of particles at time moment t is equal
to  the nucleation of new particles in the medium is

suppressed in volume  Let the total system
volume be equal to V. Then, the expression for volume
V1, in which initial nucleation rate  (renormalized
according to formula (3) by the thermal effects at the
incubation stage) remains preserved until time
moment t, may be written in the form of

 This volume satisfies the following
integral equation [6–8]:

(75)

where, according to relations (48) and (55), 
has the form of

 (76)

Remember that, upon nonisothermal nucleation,
parameter b is, according to expression (62), related to
droplet temperature  via parameter a, and mono�
tonically increases with a rise in the latter. Strong ther�
mal effects reduce parameter a, thereby decreasing the
effect of nonstationarity.

As was shown in [8], the solution of Eq. (75) at the
stage of nucleation has the following form:

(77)

Since the stage of nucleation is completed when V1

vanishes, characteristic time  of the duration of this
stage is, according to the excluded�volume theory,
equal to

(78)
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The total number of supercritical particles nucleated

in unit volume over time  is determined as

(79)

The maximum value of the squared radius of a super�
critical particle reached by the end of the stage of
nucleation is

(80)

3. GENERAL CONCLUSIONS

First, let us compare the results of approaches to
the stage of nucleation using the mean�field and
excluded�volume approximations. As in Sections 1
and 2, we shall be interested in the key characteristics,
including the duration of the stage t1, the total number
of nucleated supercritical particles N1, the squared

radius of the largest particle  and the deviation of
the particle temperature from the initial temperature
of the medium  The values found under
the mean�field and excluded�volume approximations
will be denoted by superscripts mf and ex, respectively.
Using relations (38) and (78), (41) and (79), (39) and
(80), (30), and (62) we find
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At a weak nonstationarity of diffusion and heat
transfer in the course of the growth of supercritical

new�phase particles, when  

and formulas (81)–(83), (63), (74), and (84) yield
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(86)

(87)

(88)

It can be seen that the results of the above�consid�
ered approaches almost coincide with each other for
the stage of nucleation at slightly nonstationary diffu�
sion and heat transfer upon the growth of supercritical
particles, weak nonstationarity being provided by the
fulfillment of the strong inequality a1/2 � 1. As a rule,
this inequality takes place for nucleation in supersatu�
rated vapors in the atmosphere of an incondensable
gas, e.g., water vapor under normal conditions of the
Earth’s atmosphere. Moreover, the consideration in
terms of the excluded�volume approximation illus�
trates the diffusion mixing at the stage of nucleation.
At a rather weak nonstationarity, diffuse clouds sur�
rounding particles begin to efficiently overlap already
at the stage of nucleation, thereby providing the feasi�
bility of describing the process in terms of the mean�
field approximation.

A question may arise as to the applicability of the
continual diffusion regime to describing the stage of
supersaturated vapor nucleation in terms of both the
mean�field and excluded�volume approximations.
Actually, the critical size of a new�phase nucleus in a
supersaturated vapor is, as a rule, very small, and both
the incubation stage of nucleation, at which nearcriti�
cal droplets are formed in the vapor, and the initial
growth of supercritical droplets may occur in the free�
molecular regime or an intermediate regime with
respect to the Knudsen numbers [23].

Continuous�medium approximation is justified for
a vapor–gas mixture, provided that, by the end of the
stage of nucleation, the characteristic size of particles
is much larger than the mean free path of vapor mole�
cules. Let us estimate the possibility of this condition
being fulfilled in a specific case of water�vapor con�
densation in air. Let  K and air pressure be
atmospheric. In this case, the concentration of air

molecules is m–3 while the mean free

path of vapor molecules is found to be  m.
Then, based on formula (80) and with allowance for
relation (63) for parameter b, expression (32) for
parameter a, Eq. (64) for droplet temperature  rela�
tion (74) for parameter , and definitions (23) and
(19), let us consider the dependence of maximum

droplet radius  (simultaneously, it is
also the characteristic droplet size) on the initial
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supersaturation of the condensable vapor  Nucle�
ation rate  is calculated according to formulas (1)–
(3) as 
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using the following values of the parameters:
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The calculated  dependence is shown
in Fig. 1. As the initial vapor supersaturation increases,
the characteristic size of droplets formed by the end of
the stage of nucleation monotonically decreases; i.e.,
at high supersaturations, many small droplets are
formed. The  condition, which is necessary for
the applicability of the continuous�medium approxi�
mation and continual diffusion regime of the growth
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Fig. 1. Dependence of maximum droplet radius  on ini�
tial water�vapor supersaturation by the end of the stage of

nucleation at  K and  m–3 (mean

free path is  cm).

Rm

0 298T =

252.46 10gn = ×

68.7 10l −

= ×



710

COLLOID JOURNAL  Vol. 76  No. 6  2014

KUCHMA et al.

of supercritical droplets, is well fulfilled for the system
under consideration in an initial supersaturation range

of  therewith, the inequality  takes
place.

In conclusion, let us illustrate the behavior of

parameter  and deviation  of droplet temperature
at a moderate nonstationarity of diffusion and heat
transfer upon the growth of supercritical new�phase
particles, this nonstationarity being realized at a ~ 1
(as has already been mentioned, this can hardly take
place for nucleation in a vapor). Figure 2 demonstrates
the universal dependence of parameter b on parameter
a, this dependence resulting from the numerical solu�
tion of Eq. (60). It can be seen that the linear depen�
dence between these parameters, which corresponds
to asymptotics (63), takes place below nearly ;
at larger a values, the growth rate of parameter b
increases. The result of the substitution of the obtained

 dependence into expression (84) for 

depends, to a substantial extent, on the  ratio
between the diffusion coefficient of the metastable
substance and the thermal diffusivity of the medium. If

the  equality were to take place, then, as fol�

lows from formula (60), the  equality
would be fulfilled at any a values. The behavior of the

 ratio as a function of parameter a is illus�

trated in Fig. 3 at  (water vapor in air) and

 (solution separation).

0 2.5,ζ <
210R l >m

b TΔ d

0.05,a =

( )b a mf ex
d dT TΔ Δ

D χ

1,D χ =

mf ex
d d 1T TΔ Δ =

mf ex
d dT TΔ Δ

1.131D χ =

0.01D χ =
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