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Abstract— Let Y be a random variable whose moment generating function exists in a neighborhood
of the origin. The aim of this paper is to introduce and study the probabilistic extension of Bernoulli
polynomials and Euler polynomials, namely the probabilistic Bernoulli polynomials associated Y and
the probabilistic Euler polynomials associated with Y . Also, we introduce the probabilistic r-Stirling
numbers of the second associated Y , the probabilistic two variable Fubini polynomials associated Y ,
and the probabilistic poly-Bernoulli polynomials associated with Y . We obtain some properties, explicit
expressions, certain identities and recurrence relations for those polynomials. As special cases of Y , we
treat the gamma random variable with parameters α, β > 0, the Poisson random variable with parameter
α > 0, and the Bernoulli random variable with probability of success p.
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1. INTRODUCTION

In recent years, we have witnessed that degenerate versions and λ-analogues of many special polynomials
and numbers were investigated by employing various methods such as generating functions, combinatorial
methods, umbral calculus, p-adic analysis, differential equations, probability, special functions, analytic num-
ber theory and operator theory (see [6, 11–18, 21] and the references therein). Here we study by means of
generating functions probabilistic extensions of several special polynomials, including the Bernoulli and Euler
polynomials.

Let Y be a random variable satisfying the moment condition (see (8)). The aim of this paper is to study,
as probabilistic extensions, the probabilistic Bernoulli polynomials associated Y and the probabilistic Euler
polynomials associated with Y , along with the probabilistic r-Stirling numbers of the second associated Y , the
probabilistic two variable Fubini polynomials associated Y , and the probabilistic poly-Bernoulli polynomials
associated with Y . We derive some properties, explicit expressions, certain identities and recurrence relations
for those polynomials and numbers. In addition, as special cases of Y , we consider the gamma random variable
with parameters α, β > 0, the Poisson random variable with parameter α > 0, and the Bernoulli random
variable with probability of success p.

The outline of this paper is as follows. In Section 1, we recall the Bernoulli polynomials, the Euler
polynomials, the Stirling numbers of the second kind, the r-Stirling numbers of the second kind, the Fubini
polynomials and two variable Fubini polynomials. Assume that Y is a random variable such that the moment
generating function of Y ,

E[etY ] =

∞∑

n=0

tn

n!
E[Y n] (|t| < r),

exists for some r > 0. Let (Yj)j�1 be a sequence of mutually independent copies of the random variable Y ,
and let

Sk = Y1 + Y2 + · · ·+ Yk (k � 1), withS0 = 0.

Then we remind the reader of the gamma random variable with parameters α, β > 0 and the probabilistic
Stirling numbers of the second. Section 2 is the main results of this paper. Let (Yj)j�1, Sk (k = 0, 1, . . . )
be as in the above. We define the probabilistic Bernoulli polynomials associated Y , BY

n (x) (see (12)). We
derive explicit expressions for BY

n (x) in Theorems 2.1, 2.2, and 2.6, and BY
n (x) = n!

(
x+n−2

n

)
in Theorem 2.9,

when Y ∼ Γ(1, 1) (see (9)). In Theorems 2.3, 2.4, and 2.5, we get probabilistic analogues for the well-known
identities

n∑

k=0

km =
1

m+ 1
{Bm+1(n+ 1)−Bm+1} (n,m � 0),

n∑

l=0

(
n

l

)
Bl −Bn = δn,1 (n � 0),
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and

Bn = dn−1
d−1∑

k=0

Bn

(
k

d

)
(n � 0, d � 1),

respectively. In Theorem 2.8, we deduce an identity involving BY
n = BY

n (0), which gives an explicit expression
for the Bernoulli numbers

Bn =

n∑

k=0

{
n

k

}
k!

k + 1
(−1)k,

for Y = 1. We show that BY
n = 1

pBn if Y is the Bernoulli random variable with probability of success p

in Theorem 2.10. We define the probabilistic r-Stirling numbers of the second kind associated with Y (see
(31)),

{
n+r
k+r

}
r,Y

, for which an expression in terms of E[Sn
j+r ] is found in Theorem 2.11. We introduce the

probabilistic two variable Fubini polynomials associated Y , FY
n (x|y) (see (33)). We obtain an expression in

terms of FY
k (x) for FY

n (x|y) in Theorem 2.12. In case y = r is a nonnegative integer, we show that

FY
n (x|r) =

n∑

k=0

k!

{
n+ r

k + r

}

r,Y

xk

in Theorem 2.13. In Theorem 2.14, we get an identity involving BY
n (r), which reduces to the identity

Bn(r) =

n∑

k=0

k!

k + 1
(−1)k

{
n+ r

k + r

}

r

,

for Y = 1. We define the probabilistic poly-Bernoulli polynomials B
(k,Y )
n (x) (see (40)) by making use of the

polylogarithmic function. In Theorem 2.15, we obtain an expression for B
(k,Y )
n (x) in terms of BY

k (x). We
define the probabilistic Euler polynomials associated with Y , EY

n (x) (see (43)). We get an expression for
EY
n (x) in Theorem 2.16 and that for for EY

n = EY
n (0) in Theorem 2.17. In Theorem 2.18, we get an identity

which corresponds to the well-known identity

n∑

k=0

(−1)kkm =
1

2

{
EY
m(n+ 1) + EY

m

}
,

for any integer m � 0 and any even positive integer n. We show that in Theorem 2.19, EY
n = n!

2n , for
Y ∼ Γ(1, 1) and in Theorem 2.20,

EY
n =

n∑

k=0

αk

{
n

k

}
Ek,

when Y is the Poisson random variable with parameter α > 0. For the rest of this section, we recall the facts
that are needed throughout this paper.

It is well known that the Bernoulli polynomials are defined by

t

et − 1
ext =

∞∑

n=0

Bn(x)
tn

n!
(see [1− 28]). (1)

When x = 0, Bn = Bn(0) are called the Bernoulli numbers. The Euler polynomials are given by

2

et + 1
ext =

∞∑

n=0

En(x)
tn

n!
(see [5, 7, 11]). (2)

For x = 0, En = En(0) are called the Euler numbers.
For n � 0, the Stirling numbers of the second kind are defined by

xn =
n∑

k=0

{
n

k

}
(x)k, (n � 0) (see [7, 17, 23]), (3)

where (x)0 = 1, (x)n = x(x − 1) · · · (x− n+ 1), (n � 1).
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For r ∈ Z with r � 0, the r-Stirling numbers of the second kind are given by

1

k!

(
et − 1

)k
ert =

∞∑

n=k

{
n+ r

k + r

}

r

tn

n!
, (k � 0) (see [7, 14, 16, 23]). (4)

If r = 0,
{
n+r
k+r

}
r
=

{
n
k

}
, (n � k � 0).

The Fubini polynomials are defined by

Fn(x) =
n∑

k=0

{
n

k

}
k!xk, (n � 0) (see [15, 18]). (5)

Two variable Fubini polynomials are given by

1

1− x(et − 1)
eyt =

∞∑

n=0

Fn(x|y)
tn

n!
(see [15, 18, 26]). (6)

For y = r ∈ Z with r � 0, we have

Fn(x|r) =
n∑

k=0

{
n+ r

k + r

}

r

k!xk (n � 0). (7)

Assume that Y is a random variable such that the moment generating function of Y ,

E
[
etY

]
=

∞∑

n=0

tn

n!
E
[
Y n

]
(|t| < r), exists for some r > 0. (8)

Let (Yj)j�1 be a sequence of mutually independent copies of the random variable Y , and let Sk = Y1 + Y2 +
· · ·+ Yk, (k � 1) and S0 = 0.

A continuous random variable Y whose density function is defined by

f(y) =

{
βe−βy (βy)α−1

Γ(α) , for y � 0,

0, for y < 0,
(9)

for some α, β > 0 is said to be the gamma random variable with parameters α, β, which is denoted by
Y ∼ Γ(α, β), (see [20, 24, 26–28]). The probabilistic Stirling numbers of the second kind associated with Y
are given by

1

k!

(
E[etY ]− 1

)k

=

∞∑

n=k

{
n

k

}

Y

tn

n!
, (k � 0) (see [3, 13]). (10)

When Y = 1, we have
{
n
k

}
Y
=

{
n
k

}
.

2. PROBABILISTIC BERNOULLI AND EULER
POLYNOMIALS ASSOCIATE WITH RANDOM VARIABLES

Let (Yj)j�1 be a sequence of mutually independent copies of the random variable Y , and let

S0 = 0, Sk = Y1 + Y2 + · · ·+ Yk (k � 1). (11)

We consider the probabilistic Bernoulli polynomials associated with Y which are given by

t

E[eY t]− 1

(
E[eY t]

)x

=
∞∑

n=0

BY
n (x)

tn

n!
. (12)

When Y = 1, we have BY
n (x) = Bn(x), (n � 0). For x = 0, BY

n = BY
n (0) are called the probabilistic

Bernoulli numbers associated with Y .
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From (12), we note that

∞∑

n=0

BY
n (x)

tn

n!
=

t

E[eY t]− 1

(
E[eY t]− 1 + 1

)x

=
t

E[eY t]− 1
+ t

∞∑

k=1

(
x

k

)(
E[eY t]− 1

)k−1

(13)

=
t

E[eY t]− 1
+ t

∞∑

k=0

(x)k+1

k + 1

1

k!

(
E[eY t]− 1

)k

=

∞∑

n=0

BY
n

tn

n!
+ t

∞∑

k=0

(x)k+1

k + 1

∞∑

n=k

{
n

k

}

Y

tn

n!

=

∞∑

n=0

BY
n

tn

n!
+ t

∞∑

n=0

n∑

k=0

(x)k+1

k + 1

{
n

k

}

Y

tn

n!
=

∞∑

n=0

BY
n

tn

n!
+

∞∑

n=1

n

n−1∑

k=0

(x)k+1

k + 1

{
n− 1

k

}

Y

tn

n!
.

Thus, by (13), we get
∞∑

n=1

(
BY

n (x) −BY
n

) tn
n!

=
∞∑

n=1

n
n−1∑

k=0

(x)k+1

k + 1

{
n− 1

k

}

Y

tn

n!
. (14)

Therefore, by comparing the coefficients on both sides of (14), we obtain the following theorem.

Theorem 2.1. Let n be a positive integer. Then we have

BY
n (x)−BY

n = n
n−1∑

k=0

(x)k+1

k + 1

{
n− 1

k

}

Y

.

By binomial expansion, we get

(
E[eY t]

)x

=
(
E[eY t]− 1 + 1

)x

=

∞∑

k=0

(x)k
1

k!

(
E[eY t]− 1

)k

(15)

=

∞∑

k=0

(x)k

∞∑

m=k

{
m

k

}

Y

tm

m!
=

∞∑

m=0

m∑

k=0

{
m

k

}

Y

(x)k
tm

m!
.

Thus, by (12) and (15), we get

∞∑

n=0

BY
n (x)

tn

n!
=

t

E[eY t]− 1

(
E[eY t]

)x

(16)

=

∞∑

l=0

BY
l

tl

l!

∞∑

m=0

( m∑

k=0

{
m

k

}

Y

(x)k

)
tm

m!

=

∞∑

n=0

n∑

m=0

(
n

m

)
BY

n−m

m∑

k=0

{
m

k

}

Y

(x)k
tn

n!
.

Therefore, by comparing the coefficients on both sides of (16), we obtain the following theorem.

Theorem 2.2. For n � 0, we have

BY
n (x) =

n∑

m=0

m∑

k=0

(
n

m

)
BY

n−m

{
m

k

}

Y

(x)k.

From (12), we note that

n∑

k=0

(
E[eY t]

)k

=
1

t

t

E[eY t]− 1

((
E[eY t]

)n+1

− 1
)

(17)

=
1

t

( ∞∑

m=0

BY
m(n+ 1)

tm

m!
−

∞∑

m=0

BY
m

tm

m!

)

=

∞∑

m=0

(
BY

m+1(n+ 1)−BY
m+1

m+ 1

)
tm

m!
.
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On the other hand, by (11), we get

n∑

k=0

(
E[eY t]

)k

=
n∑

k=0

E
[
e(Y1+Y2+···+Yk)t

]
=

n∑

k=0

E
[
eSkt

]
=

∞∑

m=0

( n∑

k=0

E[Sm
k ]

)
tm

m!
. (18)

Therefore, by (17) and (18), we obtain the following theorem.

Theorem 2.3. For n,m � 0, we have

n∑

k=0

E[Sm
k ] =

BY
m+1(n+ 1)−BY

n+1

m+ 1
.

By (12), we see

t =

∞∑

l=0

BY
l

tl

l!

(
E[eY t]− 1

)
=

∞∑

l=0

BY
l

tl

l!

( ∞∑

m=0

tm

m!
E[Y m]− 1

)
(19)

=

∞∑

n=0

( n∑

l=0

(
n

l

)
BY

l E[Y n−l]−BY
n

)
tn

n!
.

By comparing the coefficients on both sides of (18), we have

n∑

l=0

(
n

l

)
BY

l E[Y n−l]−BY
n =

{
1, for n = 1
0, otherwise

, E[Y ]BY
0 = 1. (20)

Therefore, by (20), we obtain the following theorem.

Theorem 2.4. Let n be a nonnegative integer. Then we have

E[Y ]BY
0 = 1,

n∑

l=0

(
n

l

)
BY

l E
[
Y n−l

]
−BY

n = δn,1,

where δn,k is the Kronecker’s symbol.

Now, we observe that

t

E[eY t]− 1
=

t
(
E[eY t]

)d − 1

d−1∑

k=0

(
E[eY t]

)k

=
t

E[e(Y1+Y2+···+Yd)t]− 1

d−1∑

k=0

(
(E[eY t])d

) k
d

(21)

=
t

E[eSdt]− 1

d−1∑

k=0

(
E[eSdt]

)k
d

=

∞∑

n=0

d−1∑

k=0

BSd
n

(
k

d

)
tn

n!
,

where d is a positive integer.

By comparing the coefficients on both sides of (21), we obtain the following theorem.

Theorem 2.5. Let d be a positive integer. For n � 0, we have

BY
n =

d−1∑

k=0

BSd
n

(
k

d

)
.

In particular, for Y = 1, we have

Bn = dn−1
d−1∑

k=0

Bn

(
k

d

)
.

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 31 No. 1 2024



PROBABILISTIC BERNOULLI AND EULER POLYNOMIALS 99

Let Y be the Poisson random variable with parameter α > 0. Then we have

∞∑

n=0

BY
n (x)

tn

n!
=

t

E[eY t]− 1
(E[eY t])x =

t

eα(et−1) − 1
eαx(e

t−1) (22)

=
t

α(et − 1)

α(et − 1)

eα(et−1) − 1
eαx(e

t−1)

=
1

α

∞∑

l=0

Bl
tl

l!

∞∑

m=0

αmBm(x)
1

m!

(
et − 1

)m

=
1

α

∞∑

l=0

Bl
tl

l!

∞∑

m=0

αmBm(x)
∞∑

k=m

{
k

m

}
tk

k!

=
1

α

∞∑

l=0

Bl
tl

l!

∞∑

k=0

k∑

m=0

αmBm(x)

{
k

m

}
tk

k!

=

∞∑

n=0

n∑

k=0

k∑

m=0

αm−1

(
n

k

){
k

m

}
Bn−kBm(x)

tn

n!
.

Therefore, by (22), we obtain the following theorem.

Theorem 2.6. Let Y be the Poisson random variable with parameter α > 0. For n � 0, we have

BY
n (x) =

n∑

k=0

k∑

m=0

αm−1

(
n

k

){
k

m

}
Bn−kBm(x).

We need the following lemma in showing Theorems 2.8 and 2.14. We obtain this from the following
observation:

t = log(1 + et − 1) =
∞∑

k=1

(−1)k−1

k
(et − 1)k =

∞∑

k=1

(−1)k−1(k − 1)!
1

k!
(et − 1)k

=

∞∑

k=1

(−1)k−1(k − 1)!

∞∑

n=k

{
n

k

}
tn

n!
=

∞∑

n=1

n∑

k=1

(−1)k−1(k − 1)!

{
n

k

}
tn

n!
.

Lemma 1. For n ∈ N, we have

n∑

k=1

(−1)k−1(k − 1)!

{
n

k

}
= δn,1.

Equivalently, for n ∈ N ∪ {0}, we have

1

n+ 1

n+1∑

k=1

(−1)k−1(k − 1)!

{
n+ 1

k

}
= δn,0.

The probabilistic Fubini polynomials are given by

∞∑

n=0

FY
n (y)

tn

n!
=

1

1− y(E[eY t]− 1)
. (23)

Thus, by (10), we get

FY
n (y) =

n∑

k=0

{
n

k

}

Y

k!yk (n � 0). (24)

From (24), we get ∫ 1

0

FY
n (−y)dy =

n∑

k=0

{
n

k

}

Y

k!

k + 1
(−1)k. (25)
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From (23), we have

∞∑

n=0

∫ 1

0

FY
n (−y)dy

tn

n!
=

∫ 1

0

1

1 + y(E[eY t]− 1)
dy =

1

E[eY t]− 1
log

(
1 +

(
E[eY t]− 1)

)
(26)

=
1

E[eY t]− 1

∞∑

k=1

(−1)k−1

k
k!

1

k!

(
E[eY t]− 1

)k

=
t

E[eY t]− 1

1

t

∞∑

k=1

(−1)k−1

k
k!

∞∑

m=k

{
m

k

}

Y

tm

m!

=
t

E[eY t]− 1

1

t

∞∑

m=1

m∑

k=1

(−1)k−1(k − 1)!

{
m

k

}

Y

tm

m!

=
t

E[eY t]− 1

∞∑

m=0

1

m+ 1

m+1∑

k=1

(−1)k−1(k − 1)!

{
m+ 1

k

}

Y

tm

m!

=

∞∑

l=0

BY
l

tl

l!

∞∑

m=0

1

m+ 1

m+1∑

k=1

(−1)k−1(k − 1)!

{
m+ 1

k

}

Y

tm

m!

=

∞∑

n=0

n∑

m=0

BY
n−m

(
n

m

)
1

m+ 1

m+1∑

k=1

(−1)k(k − 1)!

{
m+ 1

k

}

Y

tn

n!
.

Therefore, by (25) and (26) and using Lemma 1, we obtain the following theorem.

Theorem 2.7. For n � 0, we have

n∑

k=0

{
n

k

}

Y

k!

k + 1
(−1)k =

n∑

m=0

(
n

m

)
BY

n−m

1

m+ 1

m+1∑

k=1

(−1)k−1(k − 1)!

{
m+ 1

k

}

Y

.

In particular, for Y = 1, we get
n∑

k=0

{
n

k

}
k!

k + 1
(−1)k = Bn.

Let Y ∼ Γ(1, 1). Then we have

E[eY t] =

∫ ∞

0

e−yeytdt =
1

1− t
(t < 1). (27)

Thus, by (12) and (27), we get

∞∑

n=0

BY
n (x)

tn

n!
=

t

E[eY t]− 1

(
E[eY t]

)x

=

(
1

1− t

)x−1

=

∞∑

n=0

(
x+ n− 2

n

)
tn. (28)

Therefore, by (28), we obtain the following theorem.

Theorem 2.8. Let Y ∼ Γ(1, 1). For n � 0, we have

BY
n (x) = n!

(
x+ n− 2

n

)
.

Let Y be the Bernoulli random variable with the probability of success p. Then we have

E[eY t] = p(et − 1) + 1. (29)

From (12) and (29), we have

∞∑

n=0

BY
n

tn

n!
=

t

E[eY t]− 1
=

t

p(et − 1)
=

∞∑

n=0

1

p
Bn

tn

n!
. (30)

Therefore, by (30), we obtain the following theorem.
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Theorem 2.9. Let Y be the Bernoulli random variable with probability of success p. For n � 0, we have

BY
n =

1

p
Bn.

Now, we define the probabilistic r-Stirling numbers of the second kind associated with Y by

1

k!

(
E[eY t]− 1

)k(
E[eY t]

)r

=

∞∑

n=k

{
n+ r

k + r

}

r,Y

tn

n!
, (31)

where r is a nonnegative integer.
When Y = 1, we have

{
n+r
k+r

}
r,Y

=
{
n+r
k+r

}
r
. From (31), we note that

∞∑

n=k

{
n+ r

k + r

}

r,Y

tn

n!
=

1

k!

k∑

j=0

(
k

j

)
(−1)k−j

(
E[eY t]

)j+r

(32)

=
1

k!

k∑

j=0

(
k

j

)
(−1)k−jE

[
e(Y1+Y2+···+Yj+r)t

]

=

∞∑

n=0

1

k!

k∑

j=0

(
k

j

)
(−1)k−jE

[
Sn
j+r

] tn
n!

.

Therefore, by (32), we obtain the following theorem.

Theorem 2.10. For n � k � 0, we have
{
n+ r

k + r

}

r,Y

=
1

k!

k∑

j=0

(
k

j

)
(−1)k−jE

[
Sn
j+r

]
.

Now, we consider the probabilistic two variable Fubini polynomials associated with Y defined by

1

1− x
(
E[eY t]− 1

)
(
E[eY t]

)y

=

∞∑

n=0

FY
n (x|y) t

n

n!
. (33)

When Y = 1, we have FY
n (x|y) = Fn(x|y).

From (33), we note that

1

1− x
(
E[eY t]− 1

)
(
E[eY t]

)y

=
1

1− x
(
E[eY t]− 1

)
(
E[eY t]− 1 + 1

)y

(34)

=

∞∑

j=0

FY
j (x)

tj

j!

∞∑

k=0

(
y

k

)
k!

1

k!

(
E[eY t]− 1

)k

=

∞∑

j=0

FY
j (x)

tj

j!

∞∑

m=0

m∑

k=0

(
y

k

)
k!

{
m

k

}

Y

tm

m!

=

∞∑

n=0

n∑

m=0

m∑

k=0

k!

(
y

k

){
m

k

}

Y

(
n

m

)
FY
n−m(x)

tn

n!
.

Therefore, by comparing the coefficients on both sides of (34), we obtain the following theorem.

Theorem 2.11. For n � 0, we have

FY
n (x|y) =

n∑

m=0

m∑

k=0

k!

(
y

k

){
m

k

}

Y

(
n

m

)
FY
n−m(x).

For r ∈ Z with r � 0 and from (31), we have

∞∑

n=0

FY
n (y|r) t

n

n!
=

1

1− y(E[eY t]− 1)

(
E[eY t]

)r

=

∞∑

k=0

ykk!
1

k!

(
E[eY t]− 1

)k(
E[eY t]

)r

(35)

=

∞∑

k=0

ykk!

∞∑

n=k

{
n+ r

k + r

}

r,Y

tn

n!
=

∞∑

n=0

n∑

k=0

k!yk
{
n+ r

k + r

}

r,Y

tn

n!
.

Therefore, by (35), we obtain the following theorem.
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Theorem 2.12. Let r be a nonnegative integer. For n � 0, we have

FY
n (x|r) =

n∑

k=0

k!

{
n+ r

k + r

}

r,Y

xk. (36)

From (36), we have
∫ 1

0

FY
n (−y|r)dy =

n∑

k=0

k!

k + 1
(−1)k

{
n+ r

k + r

}

r,Y

. (37)

By (37), we get

∞∑

n=0

∫ 1

0

FY
n (−y|r)dy t

n

n!
=

∫ 1

0

1

1 + y(E[eY t]− 1)

(
E[eY t]

)r

dy (38)

=
t

E[eY t]− 1

(
E[eY t]

)r 1

t
log

(
1 +

(
E[eY t]− 1

))

=

∞∑

l=0

BY
l (r)

tl

l!

1

t

∞∑

k=1

(−1)k−1

k
k!

1

k!

(
E[eY t]− 1

)k

=

∞∑

l=0

BY
l (r)

tl

l!

1

t

∞∑

k=1

(−1)k−1(k − 1)!

∞∑

m=k

{
m

k

}

Y

tm

m!

=

∞∑

l=0

BY
l (r)

tl

l!

1

t

∞∑

m=1

m∑

k=1

(−1)k−1(k − 1)!

{
m

k

}

Y

tm

m!

=

∞∑

l=0

BY
l (r)

tl

l!

∞∑

m=0

1

m+ 1

m+1∑

k=1

(−1)k−1(k − 1)!

{
m+ 1

k

}

Y

tm

m!

=

∞∑

n=0

n∑

m=0

(
n

m

)
BY

n−m(r)
1

m+ 1

m+1∑

k=1

(−1)k−1(k − 1)!

{
m+ 1

k

}

Y

tn

n!
.

Therefore, by (37) and (38) and using Lemma 1, we obtain the following theorem.

Theorem 2.13. For n, r ∈ Z with n, r � 0, we have

n∑

k=0

k!

k + 1
(−1)k

{
n+ r

k + r

}

r,Y

=
n∑

m=0

(
n

m

)
BY

n−m(r)
1

m+ 1

m+1∑

k=1

(−1)k−1(k − 1)!

{
m+ 1

k

}

Y

.

In particular, for Y = 1, we get
n∑

k=0

k!

k + 1
(−1)k

{
n+ r

k + r

}

r

= Bn(r).

For k ∈ Z, the polylogarithmic function is given by

Lik(x) =

∞∑

n=1

xn

nk
(|x| < 1). (39)

Note that Li1(x) = − log(1− x).

Now, we define the probabilistic poly-Bernoulli polynomials associated with Y by

Lik(1− e−t)

1− E[e−Y t]

(
E[e−Y t]

)x

=

∞∑

n=0

B(k,Y )
n (x)

tn

n!
. (40)

Note that

B(1,Y )
n (x) = (−1)nBY

n (x) (n � 0). (41)
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From (40), we note that

∞∑

n=0

B(k,Y )
n (x)

tn

n!
=

Lik(1− e−t)

1 − E[e−Y t]

(
E[e−Y t]

)x

=
t

1− E[e−Y t]

(
E[e−Y t]

)x 1

t
Lik

(
1− e−t

)
(42)

=

∞∑

m=0

BY
m(x)

(−1)m

m!
tm

1

t

∞∑

l=1

(−1)l

lk

(
e−t − 1

)l

=
∞∑

m=0

BY
m(x)

(−1)m

m!
tm

1

t

∞∑

l=1

(−1)l

lk
l!

∞∑

j=l

{
j

l

}
(−1)j

tj

j!

=
∞∑

m=0

BY
m(x)

(−1)m

m!
tm

∞∑

j=0

1

j + 1

j+1∑

l=1

l!

lk

{
j + 1

l

}
(−1)j+1−l t

j

j!

=

∞∑

n=0

(−1)n
n∑

j=0

(
n

j

)
BY

n−j(x)
1

j + 1

j+1∑

l=1

l!

lk

{
j + 1

l

}
(−1)l−1 t

n

n!
.

Therefore, by (42), we obtain the following theorem.

Theorem 2.14. For n � 0, we have

B(k,Y )
n (x) = (−1)n

n∑

j=0

(
n

j

)
BY

n−j(x)
1

j + 1

j+1∑

l=1

l!

lk

{
j + 1

l

}
(−1)l−1.

Now, we define the probabilistic Euler polynomials associated with Y by

2

E[etY ] + 1

(
E[etY ]

)x

=

∞∑

n=0

EY
n (x)

tn

n!
. (43)

When Y = 1, EY
n (x) = En(x), (n � 0). In particular, for x = 0, EY

n = EY
n (0) are called the probabilistic Euler

numbers associated with Y .
From (43), we have

∞∑

n=0

EY
n (x)

tn

n!
=

2

E[eY t] + 1

(
E[eY t]

)x

=
2

E[etY ] + 1

(
E[etY ]− 1 + 1

)x

(44)

=
2

E[etY ] + 1

∞∑

k=0

(
x

k

)(
E[etY ]− 1

)k

=

∞∑

l=0

EY
l

tl

l!

∞∑

k=0

(x)k

∞∑

m=k

{
m

k

}

Y

tm

m!

=

∞∑

l=0

EY
l

tl

l!

∞∑

m=0

m∑

k=0

(x)k

{
m

k

}

Y

tm

m!
=

∞∑

n=0

n∑

m=0

(
n

m

)
EY
n−m

m∑

k=0

{
m

k

}

Y

(x)k
tn

n!
. (45)

Therefore, by comparing the coefficients on both sides of (44), we obtain the following theorem.

Theorem 2.15. For n � 0, we have

EY
n (x) =

n∑

m=0

(
n

m

)
EY
n−m

m∑

k=0

{
m

k

}

Y

(x)k.

From (43), we note that

∞∑

n=0

EY
n

tn

n!
= 2

∞∑

k=0

(−1)k
(
E[eY t]

)k

= 2

∞∑

k=0

(−1)kE
[
e(Y1+Y2+···+Yk)t

]
=

∞∑

n=0

2

∞∑

k=0

(−1)kE[Sn
k ]
tn

n!
. (46)

Therefore, by (46), we obtain the following theorem.

Theorem 2.16. For n � 0, we have

EY
n = 2

∞∑

k=0

(−1)kE
[
Sn
k

]
.
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For n ∈ N with n ≡ 0 (mod 2), we have

2
n∑

k=0

(−1)k
(
E[eY t]

)k

=
2

E[eY t] + 1

(
1 +

(
E[eY t]

)n+1
)
=

∞∑

m=0

(
EY
m + EY

m(n+ 1)
) tm
m!

. (47)

On the other hand, by (11), we get

2

n∑

k=0

(−1)k
(
E[eY t]

)k
= 2

n∑

k=0

(−1)kE
[
e(Y1+Y2+···+Yk)t

]
(48)

= 2

n∑

k=0

(−1)k
∞∑

m=0

E[Sm
k ]

tm

m!
=

∞∑

m=0

2

n∑

k=0

(−1)kE[Sm
k ]

tm

m!
.

Therefore, by (47) and (48), we obtain the following theorem.

Theorem 2.17. For n ∈ N with n ≡ 0 (mod 2) and m � 0, we have

n∑

k=0

(−1)kE[Sm
k ] =

EY
m + EY

m(n+ 1)

2
.

Let Y ∼ Γ(1, 1). Then, by (27), E[eY t] = 1
1−t , (t < 1). By (43), we get

∞∑

n=0

EY
n

tn

n!
=

1− t

1− t
2

= (1 − t)

∞∑

n=0

(
1

2

)n

tn =

∞∑

n=0

(
1

2

)n

tn −
∞∑

n=1

(
1

2

)n−1

tn = 1−
∞∑

n=1

(
1

2

)n

tn. (49)

Hence, by (49), we get

EY
n = − n!

2n
(n � 1). (50)

Theorem 2.18. Let Y ∼ Γ(1, 1). For n � 1, we have

EY
n = − n!

2n
.

Let Y be the Poisson random variable with parameter α > 0. Then we have

∞∑

n=0

EY
n

tn

n!
=

2

E[eY t] + 1
=

2

eα(et−1) + 1
(51)

=

∞∑

k=0

Ekαk 1

k!

(
et − 1

)k
=

∞∑

k=0

Ekαk
∞∑

n=k

{
n

k

}
tn

n!
=

∞∑

n=0

n∑

k=0

αkEk
{
n

k

}
tn

n!
.

Therefore, by (51), we obtain the following theorem.

Theorem 2.19. Let Y be the Poisson random variable with parameter α > 0. For n � 0, we have

EY
n =

n∑

k=0

αk

{
n

k

}
Ek.

3. CONCLUSION

We used generating functions to study probabilistic extensions of several special polynomials, namely
the probabilistic Bernoulli polynomials associated Y and the probabilistic Euler polynomials associated Y ,
together with the probabilistic r-Stirling numbers of the second associated Y , the probabilistic two variable
Fubini polynomials associated Y , and the probabilistic poly-Bernoulli polynomials associated with Y . Here
Y is a random variable such that the moment generating function of Y exists in a neighborhood of the
origin. In more detail, we obtained several explicit expressions for BY

n (x) (see Theorems 2.1, 2.2, 2.6) and

an explicit expression for each of FY
n (x|y), FY

n (y|r), B(k,Y )
n (x), and EY

n (x) (see Theorems 2.12, 2.13, 2.15,
2.16). We derived three identities about probabilistic extensions of some well-known identities on Bernoulli
numbers (see Theorems 2.3–2.5) and a probabilistic extension of the identity that reduces to an explicit
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expression of those numbers (see Theorem 2.8). We got two identities on EY
n (see Theorems 2.17, 2.18). In

the special case of Y ∼ Γ(1, 1), we found an expression for BY
n (x) (see Theorem 2.9) and that for EY

n (see
Theorem 2.19). Also, we determined BY

n when Y is the Bernoulli random variable with probability of success
p (see Theorem 2.10) and EY

n when Y is the Poisson random variable with parameter α (see Theorem 2.20).
Finally, we deduced two identities involving

{
n+r
k+r

}
r,Y

(see Theorems 2.11, 2.14).

As one of our future projects, we would like to continue to study probabilistic versions of many special
polynomials and numbers and to find their applications to physics, science and engineering as well as to
mathematics.
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