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Abstract — We consider the L,-theory of interaction problems associated with Dirac operators
with singular potentials of the form D = 9,, ¢ + I'dx where

Dm0 = Zaj(—iazj) + mant1 + Py
j=1

is a Dirac operator on R", a1, az,...,an,ant1 are Dirac matrices, m is a variable mass, ®ly elec-
trostatic potential, I'dx. is a singular potential with support on smooth hypersurfaces 3 C R"™.

We associate with the formal Dirac operator D the interaction (transmission) problem on R™\ X
with the interaction conditions on X. Applying the method of potential operators we reduce the in-
teraction problem to a pseudodifferential equation on ¥. The main aim of the paper is the study of
Fredholm property of these pseudodifferential operators on unbounded hypersurfaces 3 and applica-
tions to the study of Fredholmness of interaction problems on unbounded smooth hypersurfaces in
Sobolev and Besov spaces.

DOI 10.1134/S1061920823040167

1. INTRODUCTION

1°. The paper is devoted to the study of n—dimensional (n > 2) Dirac operators with singular d—type
potentials supported on hypersurfaces in R”. In dimension 3, such operators arise in problems of confinement
and transition of relativistic particles through surfaces that are supports of the singular potentials. The formal
Dirac operators with singular potentials are realized as unbounded operators in a Hilbert space with the
domain described by the interaction (transmission) conditions on the supports of the singular potentials.
Moreover, one can associate with the formal Dirac operator the interaction (transmission) problem for the
Dirac operator on the support of the singular potential.

The paper is a natural continuation of the previous author’s papers [39, 40] devoted to the Dirac operators
with singular potentials for dimensions 2 and 3, and the paper [41] for n > 2 where the Lopatinsky—Shapiro
condition relating to the interaction problems has been obtained in the effective form independent of the
dimension.

Here we consider the L,-theory of the interaction problems generated by Dirac operators in R™ with
singular potentials with supports on smooth closed and nonclosed hypersurfaces ¥ belonging to the wide
class of non compact hypersurfaces in R™. We reduce the interaction problems to pseudodifferential equations
on the interaction hypersurface ¥, and study the Fredholm properties of these pseudodifferential operators
in Sobolev and Besov spaces.

20, Let

Dm,CI>,F6;; = ©m,<I> + F5E

be the formal Dirac operator with singular potentials where
Omau(z) = (a- D+ m(z)on 1 + (z))u(z), z € R, (1)
a-D=Y a;-D;,D=(Dy,..,Dy),D; = —id, (2)
j=1
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METHOD OF POTENTIAL OPERATORS FOR INTERACTION PROBLEMS 675

aj,j = 1,..,n+ 1 are the Dirac matrices (see [18]) that is the N x N Hermitian matrices satisfying the
anti-commutative relations

ajop + agoy =205l . k=1,...,n+1, (3)
where I is the unit N x N matrix. The formal Dirac operator (2) is implemented as an unbounded operator
D in the Hilbert space L?(R™, CV). The self-adjointness of the operators D and its spectral properties in the
dimension 2,3 have been studied last time in many papers, see for instanse [3, 9-12, 15, 5, 6, 16, 20, 33, 31]
for smooth bounded surfaces in R? and curves in R?, and for the bounded curves with angular points in the
paper [30], and for bounded rough surfaces > C R in [14].

We associate with the formal Dirac operator (2) the interaction (transmission) problem

| Dpou=fon RNN\E=0Q,UQ_
Dm,@.850 = { Byu=f,on % (4)

where 21 are open domain in R™ with the common smooth boundary 3. The interaction condition on ¥ is:

Bru(v) = (as (W5 +a-(v)yg) ulv) = fi(v),v € T,

where a4 (v) = Fia - v(v) + 2F( Za]yj

v(v) = (v1(V), ..., un(v)) is the unit normal vector to ¥ at the point v directed to Q_, 75 : H™P(Qx,CN) —
B,T,,pl/p (2,CN),r > 1/p, or NE By ,(Q+,CN) — B;El/p (2,CN),r > 1/p,p,q € (1,00) are the trace
operators, H"?(Q4,C") are Sobolev (Bessel potential) spaces on Q+, By (Q+,CY) are the Besov spaces.
We assume that the functions m, ® belong to the space SO (R™) of slowly oscillating at infinity functions:

SOOO(R”):{aech(R”); lim 8, a(z )_O,jzl,..,n},

Tr—r00

C°(R™) is the space of infinitely differentiable functions on R™ bounded with all their derivatives. We assume
that 3 is a closed or non closed manifold of the class R(n — 1) introduced in the papers [34], [37].

Let the Dirac operator ®,, ¢ : HV2(R",CN) — L2/(R*,CY) is invertible. By the well known R. Beals
theorem [4] ZD;L%@ is a pseudodifferential operator (psdo) in the L. Hérmander class OPSy ) (R",CV) with
the slowly oscillating at infinity symbol (see [23]).

The operator ’D;;q) has the integral representation

9, po(z) = /n gm.o(2,y)(y)dy, z € R", ¢ € C5° (R",CV) (5)
with the Schwartz kernel g,,, o € C®(R™ x R™\ {(z,y) € R?" : z # y}), satisfying the estimate

19205 gm0 (@ 9) [y opuerry < Cape™ e > 0,1 —y| > 0. (6)
We introduce the potential operator

P,o, s ( ( m<p¢®5z)() (7)

/9m,<1> (v)dv,z € R™\ 2,9 € C§°(%, cM)
b

satisfying the following properties:
(i) jf the C*°-hypersurface ¥ € R(n — 1) the operators

® e

Prmox : Bpp” (3,CN) » HPP(R™N 3, CN),

r— 1
Pma.x : Bpg” (3,CY) = B (R™\X,CY)
are bounded for 7 > _,
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676 RABINOVICH
(ii) Pm, o st (x), has no tangential limits

+ _ : 4t
Py mst(v) = Qialiglvezpcpm,z¢($) = j:2a v(v)(v) + Kmesp(v),v € X (8)
where v(v) is the unit normal vector to ¥ at the point v € ¥ directed to Q_, and K, o » is the psdo in the
class OPSY? ((%,CN) on X,

We are looking for the solution of the interaction problem

Dmou = fon R"\X )
Byu=fronX ’

fexs(R™N\E,CY), fr ev=Vr(z,CV),s > 1/p

where Y*=1/2(%, CV) is one from the spaces Bip,/?(S,CN), By4"/?(S,CN). Substituting (8) in the interac-
tion condition we obtain the pseudodifferential equation on the hypersurface

Emas¥(v) = (Ix + Kna5) ¥(v) = f2(v) = BeDg), fi(v),v € X

Note that the psdo =, ¢, has the principle symbol

o (v,€) = HN+F()

ZEm,e,%

|£| ,v € X EeTHEN0

where T)%(X) is the cotangent space to ¥ at the point v.
10, If ¥ is a compact C>°—hypersurface then the operator Em,o,x is a Fredholm operator in the spaces
ys=1/p(3, CN) if and only if
det ‘Lm - E(v,f) #0,V(v,€) € T, (X)\0 (10)

Condition (10) yields also the Fredholmness of the operator
Din,a,my © XH(R™NE,CY) = XHRN\Z,CV) @ Y7 (3,€V) s > 1/p.

20. Let the C*—hypersurface ¥ has the structure of an unbounded manifold of the class R(n—1). Then
3. admits the compactification 32 by the set of the infinitely distant points 3. (see [34, 37]). We study the
Fredholm property of the psdo =, o 5 on by using the local principle and the limit operators method on by
following paper [37]) (note the paper [17] devoted to the Fredholm theory of psdo’s on some noncompact
manifolds).

We assume that R™ is equipped with the structure of a manifold of class R(n) and X is its submanifold

The main result of this chapter is the following theorem.

Theorem 1. Let (i) m,® € SO®(R"); (ii) ¥ € R(n — 1); (i) I' € SO®(X) ® B(CN); (iv) the operator
Do HY2R™,CN) — LQ(R” CN) is invertible; (v) condition (10) is satisfied at every point v, &, € T*(X);
(vi) condition

" Sv n P I
liminf  inf |det ]IN—I—F(U)O‘ &+ m(v)apyr + P(v)y

YDV Voo £, €TH (D) 2 1/2 >0 (11)
e 2 (I&ul” +m2(v) - 92(v))
is satisfied for every infinitely distant point Vs € Soo
Then Zp.¢,5 15 a Fredholm operator in each space YS(E,(CN),S € R, ind =, 0,5 is independent of the
space Y¥(2,CN), and ind Z,.05 = 0 if m, ® are real-valued functions, and T'(v) is an Hermitian matriz
for each v € ¥. Moreover,

Din,a,3s : X (R™N\Z,CY) —» XL R, CY) @ Y 1/7 (3,CV)
is a Fredholm operator for each s > 1/p,p,q € (1,00).

The proof of this theorem is based on the local principle in the compactification R™, 3 and the limit
operators approach (see [35, 36]).

It should be noted that the method of the potential operators for reduction of the boundary and trans-
mission problems has a wide applications in the partial differential equations theory, mathematical physics,
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METHOD OF POTENTIAL OPERATORS FOR INTERACTION PROBLEMS 677

and numerical analysis (see, for instance, [1, 2, 21, 28, 22] for enough smooth boundaries or interaction
hypersurfaces, and for non smooth hypersurfaces, see [2, 26, 25, 47], and references cited there.

Transmission and boundary problems for the Helmholtz equations on unbounded smooth hypersurfaces
in R™ have been considered in the papers [36, 42].

The paper is organized as follows. In Chap.2 we give the necessary notations and auxiliary materials
on the Sobolev and Besov spaces, and pseudodifferential operators on R™ acting in these spaces. We also
introduce a class of noncompact manifolds following to the papers [34, 37], pseudodifferential operators on
these manifolds, and the Fredholm theory for them.

In the Chap.3 we consider the L,—theory of interaction problems on unbounded hypersurfaces of the
class R(n— 1) introduced in Chap.2, associated with the formal Dirac operators with singular potentials. We
consider the Dirac operator ©,,, ¢ with the slowly oscillating at infinity mass m and electrostatic potential P,
and we study the inverse operator ©_ 1(1) Then applying the potential operator generated by © q, we reduce
the interaction problem Dy, . s, u = ( f, f1) to a pseudodifferential equation on the interaction hypersurface
3. We study the Fredholrn theory of these pseudodifferential operators and apply them to the study of
the Fredholm theory of the interaction problems on unbounded hypersurfaces of the class R(n — 1). The
conical at infinity and slowly oscillating at infinity hypersurfaces are important examples of the interaction
hypersurfaces under consideration.

2. NOTATIONS AND AUXILIARY MATERIAL

e If X, Y are Banach spaces then we denote by B(X,Y") the space of bounded linear operators acting
from X into Y with the uniform operator topology, and by I(X,Y’) the subspace of B(X,Y) of all
compact operators. In the case X =Y we write shortly B(X) and K(X).

e We denote by Cp°(R™) the space of infinitely differentiable of functions on R" bounded with all their
derivatives, and we set

SO (R") = {a € Cy°(R™) such that mhj%o Og;a(x) = 0,5 =1, ,n} .

The functions of the class SO (R™) are called slowly oscillating at infinity.

Let ¥ be a C*°—hypersurface in R™.Then we denote by Cg°(X) the class of infinitely differentiable
functions f on ¥ such that sup,cy, |0% f(z)] < oo for all multi-indices « and if ¥ is an unbounded
hypersurface we define the class of slowly oscillating functions on X as

sow(z):{aec;ﬂz); lim  9,,a(v) = o.}

Y3v—00

2.1. Bessel potentials and Besov spaces

e Asusual, H5P(R"), s € R,p € (1,00) is the Sobolev space (the space of Bessel potentials) on R™ that
is the space of distributions v € S’(R™) such that

» \p
fallnogaoy = ([ WD) 0P o) <,

where (D)® = (I — A)¥/2 is a psdo with symbol (1 + [£|°)3. In the case p = 2 we use the standard
notation H*?2(R") := H*(R"™).

e We introduce the Littlewood—Paley partition of unity

Y @) =1,6eR" (12)

with Ao (€) = 10(£), A& (&) = nk(&) — mk—1(€), k € N where 19 € C§°(RY), so that:
(1) no(§) =1 for || < 1 and O for |£] > 2

(i) m(€) = no(277¢).
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS ~ Vol. 30  No. 4 2023
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Note some properties of the partition of unity (46): (i) supp Ao = {£ €R™: |§] < 2}, supp A\ =
{fERn'Zk 1<|€|<2k+1} 11 Let wk—/\k 1+/\k+/\k+1,k€N0,/\ 1—0 Then 1/)k(€):1f01‘
€ € supp M. Hence A, = A and suppipy, = {£ € R™ : 2872 L [¢] < 2MF2} [k > 2.

The Besov space B, ,(R™),s € R, 1 < p,q < oo is defined as the space of distributions u € S"(R™) with
the finite norm:

1
oo sk q q
il oy == § (Zi0 [0l <0 o)
Pod SUPgen, ||2S )\k(D)uHLP(Rn) < 00, = 00
Note that the space B3, . (R") coincides with the Holder—Zigmund space A*(R™).

Let X*(R") be one of the space H*P(R"),s € R,p € (1,00), B, ,(R"),s € R,p,q € [1,00], and X*()
be the spaces of the restrictions of distributions u € X S(IR") on ) with the standard norm

Il =, inf il

where lu € X*(R™) is a an extension of u € X*(2) on R".

Let ©Q be a domain in R" with C°°—boundary 99, let S(2),S(9) be the spaces of restriction of
functions in the Schwartz space S(R™) to Q, and let Yoy : S(Q2) — S(99Q) be the trace operator. Then

oo is extended to the trace operator acting from H®P({)) into B;;l (89) and from B, ,(£2) into
By, ql/p(('?Q) ifl<p,g<oo, s> 1 . Let Y°(0Q) is one of the spaces Bpp (09), B (GQ)

In what follows X*(Q.CV) = (Q) RCN,Y$(Q.CN) =Y*(Q) @ CN.

For more detail definitions and properties of the Besov spaces see for instance [7, 8, 44, 48].

We introduce the weighted spaces H*?(R™, (z)"), B, ,(R™, ("), p,q € [1,], L € R defined by the
norm

L
7||u||B1§’q(]R",(m)L) = H<x> U‘

il e, oy = [[(@)" \\Hs,p(w)

Bs  (R")
We denote by XE(R™,CN) one of the space H*P(R", (z)*) @ CN,p € (l,oo),B;,q(]R",<x>L) ®
CN,p,qe1,00].

2.2. Pseudodifferential operators (psdo) on R™
We say that a function a € C*°(R" x R", B(C")) belongs to the class S7y(R",CN) = §™(R",CV) if

ol = > sup [ (@20ga(z, €)) &)

ol <1, |B]<la, (B E)ERT XR™

< 13
sewy < (13)

for every l1,lo € Ng = NU[0) The semi-norms |a|;, ;, define the Freshet topology on S™(R",CV).
The functions in S™(R"™, C") are called symbols. We associate with each symbol a € S™(R", CV) the
pseudodifferential operator ( psdo ) A = Op(a)

Op(ayu(e) i= (2m) " [ e [ ala ulr)e= <y,
ue SR, CN) = S(R") ®CN.

We denote by OPS™(R",C"V) the class of pseudodifferential operators (psdo’s) with symbols in
S™(R"™,CN) and we denote by S™(R",C") the class of the classical symbols a(z,&) € S™(R",CV)
such that there exists the principle symbol a°(z, €)

tli)m t~ma(x, t€) = a®(x, €) for every £ : [¢] = 1.

We say that the symbol a(x,&) € S™(R",CV) is slowly oscillating at infinity and belongs to the class
m(R™, CV) if for all multi-indices v and 8 # 0

lim sup [(920¢a(x, €)) (€)M =0,k 1=1,..,N (14)

T—r00 EERn

and we say that the symbol a(z, &) belongs to the class S™(R™, CV) if conditions (14) holds for all o, 5.

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 30 No. 4 2023
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Proposition 2. (see, [32, 45, 38, 8, 44] Let Op(a) € OPS™(R™,,CN). Then: (i) for all s,L € R, and
p,q € (1,00) the operator
A =0p(a): X>ER",CN) - x5~ LR, CV)
is bounded, and
10p(a)| g(xs.z (mn ,cv), xs=mL (e cny) < Clalp, r, (15)
with C > 0, L1, Ly € N independent of a.
(i) Let a; € OPST (R",CN), j = 1,2. Then Op(a1)Op(az) C ST+ (R, CN) and

Op(a1)Op(az) = Op(aiaz) + Op(r)

where r € §mitm2—1(Rn CN), )
(iii) The operator Op(a) € OPS™~¢(R",C") is a compact operator from XL (R"™,CN) into X*—™E(R",CN).

o We denote by R™ the spherical compactification of R™ obtain by adding to each ray
= {x eER":z =tw,t >0,w € S"’l} the infinitely distant point z.,. The topology in R™ is intro-
duced such that R™ is isomorphic to the closed unit ball B, (0). We denote by Rgo the set of all infinitely
distant points in R™.

e Let A = Op(a) € OPS™(R";C") is psdo with the symbol a(z,&) € S™(R",CV), and a sequence
R" 3 g — Zoo € RZ. Then Arcela-Ascoli theorem yields that the sequence a(z + g, &) has a
subsequence a(z + hy, &) — a”(z, &) € S™(R",CN) in the sense of the uniform convergence on the sets
in R™ x R™. The operator Op(a") is called the limit operators defined by the sequence hj — Zoo. We
denote by Lim,_ Op(a) the set of all limit operators of Op(a) defined by such sequences, and we set

LimOp(a U Lim,_ Op(a). (16)

wOOE]RgQ

Proposition 3. (see [35, 38]). The operator A = Op(a) € S™(R",CY) is a Fredholm operator from
X3(R™, CN) into X5~™(R"™,CN) if and only if the following conditions hold :
(i)
det a®(z, &) # 0 for all (z,€) € R™ x §™1 (17)
(ii) all limit operators Op(a") € LimOp(a) are invertible from X*(R™ CN) into X*~™(R", CV).
Remark 4. Let Op(a) € OPS™(R",CY). Then the limit operator Op(a”) has the symbol a"(¢) inde-
pendent of x, and the condition of invertibility of Op(a®) is:

inf
£ER™

det a"(¢) <g>*’”‘ > 0.

Hence condition (ii) of Proposition 3 can be written as follows

lim inf 1nf ‘deta x, &) §>_m‘ > 0. (18)

r—r 00
2.8. Fredholmness of psdo on a class of noncompact manifolds

Let X be a C'*™ noncompact manifold of a finite dimension n, C*°(X) the space of infinitely differentiable
functions on X, Cp°(X) the subspace of C°°(X) consisting of functions bounded with all their derivatives,
C§°(%) the subspace of C*°(X) consisting of functions with compact supports.

Definition 5. (see [37, 34]). We say that a noncompact C*-manifolds X of a finite dimension n € N
belongs to the class R(n) if there exists a finite covering of X by open sets Uj,j = 1,...,J and for every
j € J there is a homeomorphism @; : U; — ¢;(U;) C RN. Let J = J U J”, J'NJ" = @. We assume
that v;(U;),j € J' are open bounded sets in R™, and K; = ¢;(U;),j € J” are open conical sets in R™. The
transition functions

0j 005" 10 (U, NUS,) = 05, (Uy, NU,), 51 € J'

are C'*° —diffeomorphism , and

d(pj, 095, (x) € SO®(K;,) @ B(CN), j1,j2 € J

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 30 No. 4 2023
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We denote by X = X U Xo a compactification of X by adding the set X of "infinitely distant points”
such that the pair (X,X) is locally homeomorphic to the pair (R™ R™). It means that every point ¢ € X
has a fundamental system of neighborhoods homeomorphic to open bounded sets in R", and an infinitely
distant point 1o, € X has a fundamental system of neighborhoods homeomorphic to open conical sets in
R™.

In what follows we denote by U the closure of U(C X) in X.

Definition 6. (i) We say that xuy € C§°(X) is a cut-off function of a bounded open set U C X if
0 < xu(z) < 1, suppxu C U, and there exists an open set U'(U' C U) such that xy(z) =1 if z € U’;
(i) We say that xuy € Cp°(X) is a cut-off function of a neighborhood U of infinitely distant point roo if
0 < xu(r) <1, suppxu C U, there exists other neighborhood of U'(U' C U) of X, such that xuy(x) =1 if
rel’;

It follows from the definition of a manifolds X € R(n) that there exists a finite partition of the unity

D xie) =1 e Xy, € CR(X)

jeJ
subordinate to the covering of X by charts {U;, ¢; }j s and for every multi-index «
0 (xjow;!) (2)] < Ca(2) ™ w e K;,j e . (19)

Definition 7. We denote by X*(X,CN) one of the spaces H*?(X,CN), BS (X,CN) which in the local
coordinates belongs to the spaces H>P(X,CN), By (X,CN) with the norm

H“Hxs(am:N) = Z l[(xju) o @j”xs(%(Uj),(cN) : (20)
JjeJ

It can be proven that another partition of unity leads to a norm equivalent to (20).

Definition 8. We say that an operator A : C§°(X,CN) — C>=(X,CV) is a pseudodifferential operator in
the class OPS™(X,CN) (OPS™ (X,CN)) if for every local chart (U, ) the operator

Av = ¢ ryAivep. : G (p(U)) = CF(e(U)) (21)

is a pseudodifferential operator in the class OPS™(o(U),CN) (OPST (¢(U),CN)) where iy : C§°(U,CN) —
C§°(X,CN) is the imbedding operator and ry : C*°(X,CN) — C>°(U,CN) is the restriction operator, p*u =

uo @, and P,v =vo @ L.

We note some properties of the operators in the class OPS™ (X, C") which follow from Proposition 2:

Proposition 9. (i) A pseudodifferential operator A € OPS™(X,CN) is continued to a bounded operator
from X*(X,CN) into X*~™(X,CN) for every s € R; (ii) Let A; € OPS™i(X,CN),j = 1,2. Then the product
Az Ay is well defined and Az Ay € OPS™+m2 (%,(CN). If A; € OPS:;j (X,CN),j = 1,2, then A1 Ay —
Ay Ay = [Ay, Ay] € OPS™+m2=1(x CN) is a compact operator from X*(X,CN) into X5 (mitm2)(x CN);
(iii) Let F1,Fa be two open sets in X such that F1 N Fy = @, and A € OPS™(X,CN). Then xr, Axr,I €
K(X3(%,CN), X57™(Xx,CN)), where x 7 is a cut-off function of a set F.

We denote by c4(x,€x) the symbol of the operator A defined on the cotangent bundle 7*(X)®B(CY)
(see for instance [45, 46]) The symbol o4 (r,{x) is unique up to a symbol ¢ which in each local coordinate
system belongs to S™~1(R", CV).

We say that the operator A € OPS™ (X%, CY) is elliptic at the point ¢ € X if

deta®(x, &) # 0,V(r.&) € S*(X) (22)
where a®(r, €) is the principal symbol of A defined on the spheric cotangent bundle S*(X) (see for instance
[46]).

If the operator A € OPS™(X,C") is uniformly elliptic, that is
inf |deta®(x,&)| >0, 23
(r.O)eS5" (%) | (&.)] (23)
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then the a priory estimate holds
ull xorxovy < CUlAUl xomm iz ony + 1ull xori-1z om), s €R (24)
with a constant C' > 0 independent of u. It implies that every solution u € X*(X,C") of the equation
Op(a)u = f € S(%,CN)
belongs to the Schwartz space S(X,CY).

Definition 10. (see [38]) We say that an operator AEB(X*(X,CN),X*=™(X,CN)) is locally invertible
at a point ¢ € X if there exists a neighborhood U of t, a cut-off function xu of U, and operators £y, Ry €
B(Xsm(%,CN),X5(X,CN)) such that

LyAxuvl = xvl, xuARy = xvl.

Definition 11. We say thatiAEBi(XS(f{,(CN),XS””(%, CM)) is a local type operator on X if for every
open sets F1,Fo C X such that Fy N Fy = &, the operator x5, Axr, 1 € K(X*(X,CN),Xs~™(X,CN)).

Proposition 12. (see [38]) Let AcB(X*(X,CN), X5~™(X,CN)) be a local type operator on X. Then A
is a Fredholm operator if and only if A is locally invertible at every point ¢ € X.

We consider now the Fredholm property of A € OPS™(X,C¥) as operator acting from X*(X,C%) into
Xs=m(x,CN). Following to Proposition 12 we have to consider the local invertibility of A at the points of the
compactification X. It is well known (see for instance [45, 46]) that A € OPS™(X,CV) is locally invertible
at the point ¢ € X if and only if the principal symbol o9 (r, §,) is invertible at this point. It implies condition
(22) at every point ¢ € X.

Let A = Op(a) € OPS™(X,C") the chart (U, ¢) be such that U is a neighborhood of the infinitely distant
point oo € Uso, ¢ : U — K be a diffeomorphism extended to a continuous mapping ¢ : U — K, Ay be the
restriction of A on the neighborhood U with the local symbol o4, (r,&),r € U,&§ € T;(U) be the symbol
of the operator Ay. Let Ay be the operator defined by formula (21). Then

O Ay (33,77) = 0Ay (@_1($)7d@($)n)a$ €EK,ne Rn,

where o 4, (z,1) € S™(K,CN). Let 7, € Ko, and the sequence K 3 hj, — xoo defines the limit operator
Al with symbol

ol (oo, ) =, 1m0y (97! (@ o+ bk, diple + i) = Ty (e, (di) " ).

The limit is understood in the sense of converges on compact sets in K x R™. Therefore, the condition of the
local invertibility at the point 1 is:

liggorif . eiir“t*f(BE) det (&) " o4, (1,6)= lég;?of nlen]l{" det (n) "™ o4, (y,n)| > 0. (25)

Theorem 13. An operator A € OPS™(X,CY) acting from X*(X,CN) into X5~ (X,CN) is a Fredholm
operator if the following conditions hold: )

(i) the principal symbol 0% (¢, &) is invertible at every point ¢, & € TF(X) :&| = 1; where T} (X) is the
cotangent space to X at the point ¢ R

(i) for every infinitely distant point oo € Xoo

liminf  inf  |det (&)™ )| > 0. 26
xlsl?jgoo&e%(x) ¢ <€F> 7au (bk) 2

Proof. Following Proposition 12. we have to consider the local invertibility of A at every point of the com-
pactification ¥ of X. It is well known (see, for instance, [46]) that A € OPS™(%, E) is locally invertible
at the point r € X if the principal symbol ¢% is invertible at this point, that is condition (25) holds. Let
A =Op(a) € OPS™(X,CN) and the chart (U, ) be such that U is a neighborhood of the infinitely distant
point re € Use, ¢ : U — K be the diffeomorphism extended to the continuous mapping ¢ : U — K, Ay be
the restriction of A on the neighborhood U, and 04, (¢,&;),r € U, & € T{(X) be the symbol of the operator
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Ay where T(X) is the cotangent space to X at the point r. Let Ay be the operator defined by formula (21).
Note that

OAy (33, T]) = 0Ay (‘p_l(x)v d@(l’)??)a reK,ne R",
where o4, (z,1) € ST(K,CN). Let 7o € Ko, and the sequence K 3 hj, — xo defines the limit operator
AP with symbol

ol (Tooyn) = lim oa, (97 (x + hy), do(x + hi)n) = 0ay (2o, (dp)" n).

hp—Too
The limit is understood in the sense of converges on compacts in K x R™. By Proposition 3 the condition of

local invertibility at the point 1, is written as

ligplgf . elir“t*f(BE) det (€) " oa(r,&)| > 0. (27)

Therefore, if condition (26) holds, then condition (27) holds at every point 1o, € X, that is A is locally
invertible at every point ro, € Xoo. By Proposition 12 the operator A : X*(X,CV) — X*~™(X,CV) is a
Fredholm operator.

Corollary 14. Let A = Op(a) € OPST (X,CV). Then A : X*(X,CN) — X*=™(X,CN) is a Fredholm
operator if conditions (i) holds, and condition (i) is changed by the condition

%g;inofo . elir“l;f(x) }det (&) Moa, (X&) > 0. (28)

3. FREDHOLM THEORY OF INTERACTION PROBLEMS ASSOCIATED
WITH DIRAC OPERATORS WITH SINGULAR POTENTIALS

3.1. Realization of the Dirac operators with singular potential as the interaction problem

Let Dy, 3,165, = Dm,& + I'0x be the formal Dirac operator defined by formulas (1), (3). We assume that
¥ is a C*°—hypersurface in R” which is a common boundary of domains 3 C R",n > 2, ®,m € C;°(R"),
I, € C*(X),i,j = 1,..., N. The product I'ésu where u € X3(R"\2,CV), s > le,p € (1,00) is defined as
the distribution in D’'(R", CV) = D/(R") ® CN

(Tos) (9) = , [ T(5) (5uts) + 75u0)) - plo)do. € C (R, CY), (29)

do is the hypersurface Lebesgue measure, 74 : X*(Qx,CV) — Y*~1/P(2,CN) where Y*(Q,CN) =
By, /PP (2,CN) if X*(Q4,CN) = H*?(Qx,CN) and Y*(Qu,CN) = By /PP (2,CN) if X*(Qx,CN) =
H*P(Qy,CN).

Integrating by parts and taking into account (29) we obtain that

<Dm,q)7f‘5zu7 S0>L2(]R"7(CN) - / ©m7q>u(x) . QO(.T)d.T (30)
QLuQ_

- / o V(o) (hEu(o) — 5 u(0)) - p(0))do

1

+ 9 / (F(cr) (’ygu(cr) + ’ygu(a)) . tp(cr)) do,p € CSO(R”,(CN)
3

where v(0) = (v1(0), ...,vn(0)) is the unit normal vectors on ¥ directed to Q_. Formula (30) yields that
DA & m,rost (31)
. _ 1 _
=D A¢ml — [za v (vhu—y5u) — o (vsbu + 5 u) | O,

in the distribution sense, where ©,, gu is the regular distribution defined by the vector-valued function
D, ou. Hence Dy, ¢ rs.u is the regular distribution if and only if

1
—ia-l/(’y;u—’ygu)—l—2I‘("y§u+"/§u):0011 3. (32)
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We write condition (32) of the form
Bru(o) = as (O)1fu(0) +a_(o)rgu(o) = 0,0 € % (33)

where ay (o) are N x N matrices

1

2F(cr) Fia-v(o),0 €X. (34)

at(o) =

Therefore, we can associate with the formal Dirac operator D, & s, the bounded operator of the inter-
action (transmission) problem

D B Dot on RN\ XZ
m,®,BeU = Byu(o) = aryu+a_vsuon

(35)
acting from X*(R™\ 2, C") into X*~"HR™\ %,CN) @ Y*~1/7(%,CV),s > 1/p.p € (1,00).
3.2. Inverse operator to the Dirac operator on R™
We consider the Dirac operator
Dm,e =a-D+mapy + Oy
defined by (1),(2) where m, ® € C;°(R™). We give some properties of ©,,, ¢ which will be used below:
o D9 is a psdo of the class OPS! (R™, C") with symbol
0D (€)= - €+ mlz)ans1 + D)Ly, (2,€) € R”
and the principle symbol .- € = 377 a;&;,& = (§1,..,&n) € 8™

o ©,, ¢ is elliptic on R™ since (« - 5)2 = |§|2 In. The ellipticity of ©,, ¢ yields the a priori estimate

HUHXS,L(RTL,(CN) <C (H@m,@uHxs—l,L(Rn)CN7<w>7‘) + HUHXS—l,L—l(Rn,CN)) ) (36)
s,LeR

e A priory estimate (36) yields that every solution u of the equation ©,, ¢u = 0 belonging to the space
X*(R",CN) | actually, belongs to the Schwartz space S(R™, CV).

e It follows from Proposition 2 that ®,, ¢ is a Fredholm operator from X*(R",C") into X*~1(R",CV)
if and only if

liminf inf |det (€)™ (a- &+ m(z) a1 + ®(2)Ix)| >0, (37)

r—o0 EER™

and ind Dy, ¢ is independent from s € R,and p, ¢ € (1, 00). Moreover, if m, ® are real-valued functions,
then ind D6 = 0.

e If the operator ®,, ¢ : HLVP(R",CN) — L%(R",CY) is invertible, then CD;;(I) € OPS™1(R",CN) (see
[4]). Hence ’D;ﬁ(b is invertible operator from X*(R",C") into X*~!(R",C¥).

e Let m, ® € SO (R™). Taking into account Proposition 2 we obtain that
Dm,0Dm,—o = (—A +m?— @2) In + Q1, (38)
Dm,—Dm,e = (—A +m?— @2) In+ Q2
where @Q;(x) are N x N matrices for every «, such that

lim 0°Q;(x) =0, Va,j =1,2. (39)

r—r 00
Proposition 3 yields that if condition
lim inf Re(m?(z) — ®*(z) > 0 (40)
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is satisfied, then the operator
C=(-A+m?—d%)Iy: X*R",CY) - X*2(R",C")

is a Fredholm operator . Moreover, it follows from the uniqueness of continuation for the operator C
that condition (40) yields that ker C' = ker C* = {0}. That is if condition (40) holds, the operator

C: X5(R",CN) - xX*72(R",CV)
is invertible operator for each s € R, and p,q € (1, c0).

o Let the operator ZD;L%@ be invertible, and

iélﬂgn Re (m?(z) — *(x)) > 0. (41)
Then formulas (38) yield that
D, =Dm-aC ' +QCT" (42)
Therefore,
a- &+ m(x)aps — @(x)ly
On-1 (2,8) = + T (z, 43
o, 0= T e T (13)

where T (z,€) € S~2(R",CN).

e The operator 33;:4, has the integral representation

n

D, pplx) = / gm,o(z,y)p(y)dy,z € R",p € C°(R™,CN),

with the Schwartz kernel g,,, ¢ (the Green function of the operator ©,, ¢), is the distribution g, ¢ €
S'(R™ x R™) ® B(C™) which is the solution of the equation

:Dm,<1>gm,<l>('ay) = 5(' - y), y € R"™

The Green function g, &(x,y) has the following properties:

(i) gmae € C®((R" x R\ F)® B(CY) where F = {(z,y) € R" x R* : x =y}, (ii) there exists
€ > 0 and constants Cy g > 0 such that for all multi-indices «, 8

Hagaggmﬁb(xay)ug(cl\l) < Ca,ﬁ exp(—a |33 - y|)a for |33 - y| > 07 (44)

and )
Vot p)Lgeny < Cla—yl™ "V o —yl <. (45)

3.3. Reducing of interaction problems to pseudodifferential equations

1°. We consider interaction problem (35)

D " Omaot=(a-D+a,pim+@Iy)u=fon R\ X (46)
m®,Bxt = Byru=ayyhu+a_ygu= f; on
where m, ® € SO (X), and
1 . o0
ax(v) = ,T(v) Fio v(v),T(v) = (Cri(v)p =1 - Trt € SO™ (), (47)

v(v) is the unit normal vector to ¥ at v € ¥ directed to 2_,3 C R™ is a C°°— manifolds in R” of the class
R(n—1).
We use the notation
X5(R™X,CY) = X*(Q,CM) o x5 (Q_,CM)
where X*(R™\ 3, C") is the space of the restrictions of distributions in X*(R",C") on X*(R"\ %,C")
with the standard norm of the restriction. We consider the operator Dy, ¢ %4, as acting from X*(R™\ %, CV)
info X5~ 1(R™\Z,CN) & Vo1 (S,CN), 5 > 1/p,p,q € (1,050).
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We assume that the operator ®,, ¢ is invertible, and condition

zienﬂgn Re (m*(z) — ®*(z)) > 0, (48)

holds and we will look for solutions of the equation

D‘P,m7‘32u = (fa fl)au = (’U,+, ’U/,) S XS(Rn\Ea (CN)a (49)
(f, f1) € X*(R™N\E,CN) @ 0y~ 17 (3,CV).

as

w(z) =9, f(#) + Prmaostp(z), s e RN\E = Q. UQ_, (50)
b ey (s, )

where P, o 5 is the potential operator

P (@) = Dl (0905) = [ gmale,0)vv)dv.s € RNS,
b
gm,®(x,y) is the Schwartz kernel of the operator 33;:4, and dv is the Lebesgue measure on the
C*° —hypersurface X..
The following proposition gives some of the properties of potential operators required below.

Proposition 15. Let m,® € SO*(R"™), and ¥ C R™ be a manifold in R™ of the class R(n —1). Then:
(i) the potential operator Pp, & is a bounded operator from Y *~1/P (E, (CN) ,8 > 1/pinto X3(R™\ X, CN);
(ii) there exist no tangential limits

P o.st(v) (51)

)
= 1. m — :I: . m ’ E

Qiaznl)lveE,P ,@,21/)(33) 20[ V(”ﬁﬁ(“) +K ,@,E‘/’(v) (ONS
where v(v) is the unit normal vector to X at the point v € ¥ directed to Q_, and Ky o x € OPSSl(g(CN)

with the symbol
a-& +mv)apsr + @(v)ly

U’Cm,d),Z(U7£U) = 9 (52)
2162 + m2(v) — 82(0)
and principle symbol
a-&, .
TR om0 60) = ) |§| o €ETHENO,v E Y, (53)

Tx(X) is the cotangent space to ¥ at the point v € X.
Proof. Statement (i) is well known for the potential operators if Q4 = R%, that is
Pm.ast(2') = pla, D)(6(xn) @ ¢)(x),z € RY UR™

where the symbol p(x, &) € S™H(R"™,CV) and satisfying the transmission property with respect to R"~! (see
[8, 19, 44]). If the common boundary ¥ of domains 2 is a manifold of the class R(n — 1), we use a finite
partition of unity and the transition to local coordinates.

(ii) Formula (51) follows from [46], Proposition 3.4, page 232 for more general setting. However we will
prove that Kg s is a psdo of the class OPSY(%,C") with the symbol and principal symbol given by
formulas (52) and (53). First, we consider the case Q4+ = R? and ¥ = R"~!. Taking into account that

D at(@) = (2m) 7" /R | Oz, (2,07 (y)dyde,
r= (2 2,) ER" ¢ € CSO(]R",(CN)
and formula (43) we will write the potential operator P, ¢ gn-1 as follows
(P,arn-19) () (54)

= (2m)™" / Tg-1 (w,€)el@ YV EFIEEn Y (1) dy de
R xR™

m,P
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with

U@;}m(xaf) :I(x,ﬁ) +Q($7§), (55)
a-&+m(x)anps + @(z)ly
I(x, &) =
(79 &7+ m?(x) — 2%(x)
q(z,€) € STAHR™,CV)

)

Formulas (54),(55) yield that

(Pm o Rn— 190) ' , Tn) (56)
(2m)~ ("1 // (2, @, )& =YV Sy dy dE’ (57)
R2(n—1)
where
p(xafl) :pl($;€/)+p2($;€/); (58)
p(e€) = 2m)7 [ T, g)eedg, (59)
R
and
pa(e.€) = 2m) [ oo €€ ), (60)
Applying the residua theorem to (59) we obtain that
(e, €) = e (sgn) " A ) (61)
with p(z, &) \/|§ > + m2(x) — ®2(z) and inf, Re (m?(z) — ®%(z)) > 0, and
Al €)= o &+ mx)anr + @(x)HN. (62)

2p(x, &)

Taking into account that ¢(z,§) € 5’;2(11%”, C") we obtain the estimates

[070gpa(w,€) | gon) < Capl2) /]R L+ [€] + €))7 dg, (63)
< Clgle) (1 + &)1

with lim, o Cf,5(x) = 0 for all multi-indeces a, 8. Formulas (61),(62), and (63) yield that there exist limits

P priap(@) = lm (P g ge-160) (2, 20)

Tp—10

where

Piéwlw() (64)

= i 9 "p(x )+’Cm,cp7R"—1<P(9C/)7<P € CSO(Rnfla(CN)

and
o & +m(2',0)ans1 + 0(2',0)y

2/l + m(a’,0)° — @(a’,0)?

where R(2',£') € So's_ll(R"’l, CN), o ¢ =" } a;&;. Transition to the local coordinates at the point v € £
with the frame {f1,..., fn} where f,, is the unit normal vector v(v) to ¥ at the point v, directed to Q_, and
applying formulas (64), (65) we obtain formulas (51), (52).

OK,, & gn—1 (xlv SI) = + R(xlﬂ 5/)7 (65)
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20, Now we are ready to reduce the interaction problem (49) to the pseudodifferential equation on X.
Substituting
u(s) =D lpf1 + P g st ¥ € XSTYP(X,CN) s > 1/p

in the interaction condition
Byu(v) = ar (V) u(v) + a- (V)5 u) = f2(v),v € %,

and applying formulas (51) and (52) we arrive to the pseudodifferential equation on ¥ with respect to
Y e Ys—tr(x, CN)

ia-v(v)

Emesp(v) =" " "(ap(v) = a-(v)(v) + (a4 (v) + a-(v)) (Km.2.59) (v) (66)
= fo(v) = BxDg ), fr(v) € V7Vr(m,CV).
Taking into account that
at(v) —a_(v) = =2ia-v(v) and a4 (v) + a—(v) =T(v),v € X
we obtain that =, ¢+ = I + 'K, 05 is the psdo on £ of the class OPSY (%, C" ).with the symbol

a-& +mv)apsr + @(v)ly

0%, 2, (U, gv) =In+ F(U) 9 ) (67)
2\/Ief* + m()? - d(v)?
veEXE eTh(D).
The principal symbol of Z,, ¢ is
T -&y
o2 a0 =T+ ) e e, ey, (68)

26|

8.4. Interaction on closed C'*°—hypersurfaces

We consider the interaction problem for a closed C>°—hypersurface ¥ which is the common boundary of
the bounded open domain 24 and unbounded domain Q_ = R™\ Q.

Theorem 16. Let: (i) m,® € SO®(R"™), (ii) ¥ be a C*°—closed hypersurface in R™, and T’ € C* (%) ®
B(CN), (iii) the Dirac operator ®,, ¢ : HVP(R™,CN) — L2(R",CN) is invertible, (iv)

_ I'(v) (- &o)
detog  (v,&) = det <HN + 0 &l ) #0 (69)

for each point v € ¥ and &, € T (X)\0. Then:

(a) Em.a. is a Fredholm operator in the spaces Y*(X,CV), s € R,,p,q € (1,00); (b) kerZ,, 0+ and
kerE7 ¢ ¢ € C>®(%,CN), hence ind =, 5 is independent of s,p,q; (c) if the matriz T'(v) is Hermitian for
each v € X, then ind Zp,,0,. = 0.

Proof. The Fredholmness of =,, ¢ ¢ in all spaces Y *(2, CV) follows from Theorem 13, statements (b), follows
from a priori estimate (49), and statement (c) follows from the equality 02 = o02.  which follows from

P, m,P,t

the Hermite property of the matrix I'.
Corollary 17. Let conditions of Theorem 69 hold. Then
Dim.emy ¢ X (R™N\E,CY) = XTI R™Z,CY) @ Y~ /7(5,CV),
s>1/p,p,q € (1,00)
is a Fredholm operator.

Proof. Conditions (), (47), (473) yield the local invertibility of the operator Dy, & s, at the points of R™\ X,
and (69) is the Lopatinsky—Shapiro condition at the points s € 3 for the operator of interaction problem
Do 35 (see [41, 39]). Hence the local principle yields the Fredholmness of the operator Dy, o %5
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3.5. Interaction on hypersurfaces of the class R(n — 1)

Theorem 18. Assume that m,® € SO>®(X), the hypersurface ¥ € R(n—1), I' € SO®(X)® B(CN), and
the Dirac operator ®,, ¢ : HL2(R",CN) — L2(R",CV) is invertible. Then =, ¢+ is a Fredholm operator in
the space Y*(3,CN) if : (i) condition (69) holds for each point v € X, (ii)

lim inf inf(z) |detoz,, .., (v,&)| >0 (70)

33v—00 £, €T -

where
D) (@& +m(v)anss + S(v)ly)

o & € TH(E) v E R, (71)
2(|fv|2+m2(v)—@2(1})) /

UEm,@,z(Uvgv) =1In+

The index of Epm.a,¢ is independent of s € R,p,q € (1,00). If m,® are real-valued functions, and I' is a
Hermitian matriz, then Ind =, ¢, = 0.

Proof. Let U be a neighborhood of the infinitely distant point v € U where U is the compactification of U
in the topology . According formula (67) the symbol of the operator =,, ¢ in the neighborhood U is given
by formula (71). Thus Theorem 18.. follows from Theorem 13. Statements regarding the index are proven
using the considerations given earlier.

Theorem 19. Let conditions of Theorem 18 be satisfied. Then the operator
Do,y @ X(R™N\Z,CY) — XTI R™ 2, CY) @ Y 1/P(2,CV)
is Fredholm for each s > 1/p,p,q € (1,0).

Proof. Let R™ be equipped the structure of the manifold of the class R(n). Let R™ be a compactification
of R as a manifold of the class R(n) and 3 is the closure of ¥ in the topology of R™.The local principle
on R™ states that Dy, ¢.my 1 X (RN, CN) = X5~ HR™\2,CN) @ Y~ 1/2(%,CN) is a Fredholm operator
if and only if D, %, is a locally Fredholm operator at every point € R™ and locally invertible at every
infinitely distant point zo, € R’;O. Since the operator D, o 1, concedes with the operator ©,, ¢ on the set
R"\f] the operator I, ¢ s is locally Fredholm at every point x € R"\ X and locally invertible at every
point z, € Rgo\ioo. Therefore, according to the local principle we need to study the local Fredholmness
of D, .3 2, at the points v € ¥. The local Fredholmness at the points v € ¥ follows from the Lopatinsky—
Shapiro condition at the point v (see [41]) which concedes with condition (69), and local invertibility at the
points v, € Yoo It folloes from condition

liminf  inf |detos (v,&)] > 0,Vue € Yo (72)

B30 V00 £, €T (S) St
But condition (72) is equivalent to condition (70).

e Important examples of the hypersurfaces in R to which Theorems 18 and 19 apply are:

1) C*°-hypersurface ¥ C R™ conical at infinity, that is such that the hypersurface ¥ = XN B} , B =
{z € R™: || > R} is a conical set for some R > 0;

2) C°-hypersurface ¥ C R” slowly oscillating at infinity, that is there exists of a finite covering of
Yr C U5_F; by open sets F; such that

SRNF) = {o=(,2,) € R s = (')’ € K}

where K are open conical sets in R"™!, f; are C°°—real-valued functions such that 9, f; € SO®(K;),k =
1,...,n — 1. Examples of functions satisfying these conditions are:

f(@') = Ala'|" coslog? |2/] ,0 <« <1, > 0,A € R.
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