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Abstract — We consider the Lp-theory of interaction problems associated with Dirac operators
with singular potentials of the form D = Dm,Φ + ΓδΣ where

Dm,Φ =

n∑

j=1

αj(−i∂xj ) +mαn+1 +ΦIN

is a Dirac operator on R
n, α1, α2, . . . , αn, αn+1 are Dirac matrices, m is a variable mass, ΦIN elec-

trostatic potential, ΓδΣ is a singular potential with support on smooth hypersurfaces Σ ⊂ R
n.

We associate with the formal Dirac operator D the interaction (transmission) problem on R
n
�Σ

with the interaction conditions on Σ. Applying the method of potential operators we reduce the in-
teraction problem to a pseudodifferential equation on Σ. The main aim of the paper is the study of
Fredholm property of these pseudodifferential operators on unbounded hypersurfaces Σ and applica-
tions to the study of Fredholmness of interaction problems on unbounded smooth hypersurfaces in
Sobolev and Besov spaces.

DOI 10.1134/S1061920823040167

1. INTRODUCTION

10. The paper is devoted to the study of n−dimensional (n � 2) Dirac operators with singular δ−type
potentials supported on hypersurfaces in R

n. In dimension 3, such operators arise in problems of confinement
and transition of relativistic particles through surfaces that are supports of the singular potentials. The formal
Dirac operators with singular potentials are realized as unbounded operators in a Hilbert space with the
domain described by the interaction (transmission) conditions on the supports of the singular potentials.
Moreover, one can associate with the formal Dirac operator the interaction (transmission) problem for the
Dirac operator on the support of the singular potential.

The paper is a natural continuation of the previous author’s papers [39, 40] devoted to the Dirac operators
with singular potentials for dimensions 2 and 3, and the paper [41] for n � 2 where the Lopatinsky–Shapiro
condition relating to the interaction problems has been obtained in the effective form independent of the
dimension.

Here we consider the Lp-theory of the interaction problems generated by Dirac operators in R
n with

singular potentials with supports on smooth closed and nonclosed hypersurfaces Σ belonging to the wide
class of non compact hypersurfaces in R

n. We reduce the interaction problems to pseudodifferential equations
on the interaction hypersurface Σ, and study the Fredholm properties of these pseudodifferential operators
in Sobolev and Besov spaces.

20. Let

Dm,Φ,ΓδΣ = Dm,Φ + ΓδΣ

be the formal Dirac operator with singular potentials where

Dm,Φu(x) = (α ·D +m(x)αn+1 +Φ(x))u(x), x ∈ R
n, (1)

α ·D =

n∑

j=1

αj ·Dj, D = (D1, ..., Dn) , Dj = −i∂xj (2)
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αj , j = 1, .., n + 1 are the Dirac matrices (see [18]) that is the N × N Hermitian matrices satisfying the
anti-commutative relations

αjαk + αkαj = 2δjkIN ; j, k = 1, ..., n+ 1, (3)

where IN is the unit N×N matrix. The formal Dirac operator (2) is implemented as an unbounded operator
D in the Hilbert space L2(Rn,CN ). The self-adjointness of the operators D and its spectral properties in the
dimension 2, 3 have been studied last time in many papers, see for instanse [3, 9–12, 15, 5, 6, 16, 20, 33, 31]
for smooth bounded surfaces in R

3 and curves in R
2, and for the bounded curves with angular points in the

paper [30], and for bounded rough surfaces Σ ⊂ R
3 in [14].

We associate with the formal Dirac operator (2) the interaction (transmission) problem

Dm,Φ,BΣu =

{
Dm,Φu = f on R

n
�Σ = Ω+ ∪ Ω−

BΣu = f1 on Σ
(4)

where Ω± are open domain in R
n with the common smooth boundary Σ. The interaction condition on Σ is:

BΣu(υ) =
(
a+(υ)γ

+
Σ + a−(υ)γ

−
Σ

)
u(υ) = f1(υ), υ ∈ Σ,

where a±(υ) = ∓iα · ν(υ) + 1

2
Γ(υ), α · ν(υ) =

n∑

j=1

αjνj(υ),

ν(υ) = (ν1(υ), ..., νn(υ)) is the unit normal vector to Σ at the point υ directed to Ω−, γ
±
Σ : Hr,p(Ω±,C

N ) →
B

r−1/p
p,p

(
Σ,CN

)
, r > 1/p, or γ±

Σ : Br
p,q(Ω±,C

N ) → B
r−1/p
p,q

(
Σ,CN

)
, r > 1/p, p, q ∈ (1,∞) are the trace

operators, Hr,p(Ω±,C
N) are Sobolev (Bessel potential) spaces on Ω±, B

r
p,q(Ω±,C

N ) are the Besov spaces.
We assume that the functions m,Φ belong to the space SO∞(Rn) of slowly oscillating at infinity functions:

SO∞(Rn) =
{
a ∈ C∞

b (Rn) : lim
x→∞

∂xja(x) = 0, j = 1, .., n
}
,

C∞
b (Rn) is the space of infinitely differentiable functions on R

n bounded with all their derivatives. We assume
that Σ is a closed or non closed manifold of the class R(n− 1) introduced in the papers [34], [37].

Let the Dirac operator Dm,Φ : H1,2(Rn,CN) → L2/(Rn,CN) is invertible. By the well known R. Beals
theorem [4] D−1

m,Φ is a pseudodifferential operator (psdo) in the L. Hörmander class OPS−1
1,0

(
R

n,CN
)
with

the slowly oscillating at infinity symbol (see [23]).
The operator D−1

m,Φ has the integral representation

D
−1
m,Φφ(x) =

∫

Rn

gm,Φ(x, y)φ(y)dy, x ∈ R
n, φ ∈ C∞

0

(
R

n,CN
)

(5)

with the Schwartz kernel gm,Φ ∈ C∞(Rn × R
n
�
{
(x, y) ∈ R

2n : x �= y
}
), satisfying the estimate

∥∥∂α
x ∂

β
y gm,Φ(x, y)

∥∥
hom(CN )

� Cαβe
−ε|x−y|, ε > 0, |x− y| > 0. (6)

We introduce the potential operator

Pm,Φ,Σψ(x) =
(
D

−1
m,Φψ ⊗ δΣ

)
(x) (7)

=

∫

Σ

gm,Φ(x, υ)ψ(υ)dυ, x ∈ R
n
�Σ, ψ ∈ C∞

0 (Σ,CN )

satisfying the following properties:
(i) jf the C∞-hypersurface Σ ∈ R(n− 1) the operators

Pm,Φ,Σ : B
r− 1

p
p,p (Σ,CN ) → Hr,p(Rn

�Σ,CN),

Pm,Φ,Σ : B
r− 1

p
p,q (Σ,CN ) → Br

p,q(R
n
�Σ,CN )

are bounded for r > 1
p ,
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(ii) Pm,Φ,Σψ(x), has no tangential limits

P±
Φ,m,Σψ(υ) = lim

Ω±�x→υ∈Σ
PΦ,m,Σψ(x) = ± i

2
α · ν(υ)ψ(υ) +Km,Φ,Σψ(υ), υ ∈ Σ (8)

where ν(υ) is the unit normal vector to Σ at the point υ ∈ Σ directed to Ω−, and Km,Φ,Σ is the psdo in the
class OPS0

1,0(Σ,C
N ) on Σ.

We are looking for the solution of the interaction problem

{
Dm,Φu = f on R

n
�Σ

BΣu = f1 on Σ
, (9)

f ∈ Xs
(
R

n
�Σ,CN

)
, f1 ∈ Y s−1/p(Σ,CN ), s > 1/p

where Y s−1/p(Σ,CN ) is one from the spaces B
s−1/p
p,p (Σ,CN ), B

s−1/p
p,q (Σ,CN ). Substituting (8) in the interac-

tion condition we obtain the pseudodifferential equation on the hypersurface Σ

Ξm,Φ,Σψ(υ) = (IN +Km,Φ,Σ)ψ(υ) = f2(υ)−BΣD
−1
Φ,mf1(υ), υ ∈ Σ

Note that the psdo Ξm,Φ,Σ has the principle symbol

σ0
Ξm,Φ,Σ

(υ, ξ) = IN + Γ(υ)
α · ξ
|ξ| , υ ∈ Σ, ξ ∈ T ∗

υ (Σ)�0

where T ∗
υ (Σ) is the cotangent space to Σ at the point υ.

10. If Σ is a compact C∞−hypersurface then the operator Ξm,Φ,Σ is a Fredholm operator in the spaces
Y s−1/p(Σ,CN ) if and only if

detσ0
Ξm,Φ,Σ

(υ, ξ) �= 0, ∀(υ, ξ) ∈ T ∗
υ (Σ)�0 (10)

Condition (10) yields also the Fredholmness of the operator

Dm,Φ,BΣ : Xs(Rn
�Σ,CN ) → Xs−1(Rn

�Σ,CN)⊕ Y s−1/p
(
Σ,CN

)
, s > 1/p.

20. Let the C∞−hypersurface Σ has the structure of an unbounded manifold of the class R(n−1). Then
Σ admits the compactification Σ̂ by the set of the infinitely distant points Σ̂∞ (see [34, 37]). We study the
Fredholm property of the psdo Ξm,Φ,Σ on Σ̂ using the local principle and the limit operators method on Σ̂
following paper [37]) (note the paper [17] devoted to the Fredholm theory of psdo’s on some noncompact
manifolds).

We assume that Rn is equipped with the structure of a manifold of class R(n) and Σ is its submanifold
The main result of this chapter is the following theorem.

Theorem 1. Let (i) m,Φ ∈ SO∞(Rn); (ii) Σ ∈ R(n− 1); (iii) Γ ∈ SO∞(Σ)⊗ B(CN); (iv) the operator
Dm,Φ : H1,2(Rn,CN) → L2(Rn,CN ) is invertible; (v) condition (10) is satisfied at every point υ, ξv ∈ T ∗(Σ);
(vi) condition

lim inf
Σ�υ→υ∞

inf
ξυ∈T∗

υ (Σ)

∣∣∣∣∣∣∣
det

⎛

⎜⎝IN + Γ(υ)
α · ξυ +m(υ)αn+1 +Φ(υ)IN

2
(
|ξυ |2 +m2(υ)− Φ2(υ)

)1/2

⎞

⎟⎠

∣∣∣∣∣∣∣
> 0 (11)

is satisfied for every infinitely distant point υ∞ ∈ Σ̂∞.
Then Ξm,Φ,Σ is a Fredholm operator in each space Y s(Σ,CN ), s ∈ R, ind Ξm,Φ,Σ is independent of the

space Y s(Σ,CN ), and ind Ξm,Φ,Σ = 0 if m,Φ are real-valued functions, and Γ(υ) is an Hermitian matrix
for each υ ∈ Σ. Moreover,

Dm,Φ,BΣ : Xs(Rn
�Σ,CN) → Xs−1(Rn

�Σ,CN)⊕ Y s−1/p
(
Σ,CN

)

is a Fredholm operator for each s > 1/p, p, q ∈ (1,∞).

The proof of this theorem is based on the local principle in the compactification R̂
n, Σ̂ and the limit

operators approach (see [35, 36]).
It should be noted that the method of the potential operators for reduction of the boundary and trans-

mission problems has a wide applications in the partial differential equations theory, mathematical physics,
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and numerical analysis (see, for instance, [1, 2, 21, 28, 22] for enough smooth boundaries or interaction
hypersurfaces, and for non smooth hypersurfaces, see [2, 26, 25, 47], and references cited there.

Transmission and boundary problems for the Helmholtz equations on unbounded smooth hypersurfaces
in R

n have been considered in the papers [36, 42].
The paper is organized as follows. In Chap.2 we give the necessary notations and auxiliary materials

on the Sobolev and Besov spaces, and pseudodifferential operators on R
n acting in these spaces. We also

introduce a class of noncompact manifolds following to the papers [34, 37], pseudodifferential operators on
these manifolds, and the Fredholm theory for them.

In the Chap.3 we consider the Lp−theory of interaction problems on unbounded hypersurfaces of the
class R(n−1) introduced in Chap.2, associated with the formal Dirac operators with singular potentials. We
consider the Dirac operator Dm,Φ with the slowly oscillating at infinity mass m and electrostatic potential Φ,
and we study the inverse operator D−1

m,Φ. Then applying the potential operator generated by D
−1
m,Φ we reduce

the interaction problem Dm,Φ.BΣu = (f, f1) to a pseudodifferential equation on the interaction hypersurface
Σ. We study the Fredholm theory of these pseudodifferential operators and apply them to the study of
the Fredholm theory of the interaction problems on unbounded hypersurfaces of the class R(n − 1). The
conical at infinity and slowly oscillating at infinity hypersurfaces are important examples of the interaction
hypersurfaces under consideration.

2. NOTATIONS AND AUXILIARY MATERIAL

• If X,Y are Banach spaces then we denote by B(X,Y ) the space of bounded linear operators acting
from X into Y with the uniform operator topology, and by K(X,Y ) the subspace of B(X,Y ) of all
compact operators. In the case X = Y we write shortly B(X) and K(X).

• We denote by C∞
b (Rn) the space of infinitely differentiable of functions on R

n bounded with all their
derivatives, and we set

SO∞(Rn) =
{
a ∈ C∞

b (Rn) such that lim
x→∞

∂xja(x) = 0, j = 1, ..., n
}
.

The functions of the class SO∞(Rn) are called slowly oscillating at infinity.

Let Σ be a C∞−hypersurface in R
n.Then we denote by C∞

b (Σ) the class of infinitely differentiable
functions f on Σ such that supx∈Σ |∂αf(x)| < ∞ for all multi-indices α and if Σ is an unbounded
hypersurface we define the class of slowly oscillating functions on Σ as

SO∞(Σ) =

{
a ∈ C∞

b (Σ) : lim
Σ�υ→∞

∂xja(υ) = 0.

}

2.1. Bessel potentials and Besov spaces

• As usual, Hs,p(Rn), s ∈ R, p ∈ (1,∞) is the Sobolev space (the space of Bessel potentials) on R
n that

is the space of distributions u ∈ S′(Rn) such that

‖u‖Hs,p(Rn) =

(∫

Rn

|〈D〉s u|p dx
)1\p

< ∞,

where 〈D〉s = (I −Δ)s/2 is a psdo with symbol (1 + |ξ|2) s
2 . In the case p = 2 we use the standard

notation Hs,2(Rn) := Hs(Rn).

• We introduce the Littlewood–Paley partition of unity

∞∑

k=0

λk(ξ) = 1, ξ ∈ R
n (12)

with λ0(ξ) = η0(ξ), λk(ξ) = ηk(ξ)− ηk−1(ξ), k ∈ N where η0 ∈ C∞
0 (RN ), so that:

(i) η0(ξ) = 1 for |ξ| � 1 and 0 for |ξ| � 2,

(ii) ηk(ξ) = η0(2
−kξ).
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Note some properties of the partition of unity (46): (i) supp λ0 = {ξ ∈ R
n : |ξ| � 2} , supp λk ={

ξ ∈ R
n : 2k−1 � |ξ| � 2k+1

}
; (ii) Let ψk = λk−1 + λk + λk+1, k ∈ N0, λ−1 = 0. Then ψk(ξ) = 1 for

ξ ∈ supp λk. Hence λkψk = λk and suppψk =
{
ξ ∈ R

n : 2k−2 � |ξ| � 2k+2
}
, k � 2.

The Besov space Bs
p,q(R

n), s ∈ R, 1 � p, q � ∞ is defined as the space of distributions u ∈ S′(Rn) with
the finite norm:

‖u‖Bs
p,q(R

n) ==

⎧
⎨

⎩

(∑∞
k=0

∥∥2skλk(D)u
∥∥q
Lp(Rn)

) 1
q

< ∞, q ∈ [1,∞)

supk∈N0

∥∥2skλk(D)u
∥∥
Lp(Rn)

< ∞, q = ∞.

Note that the space Bs
∞,∞(Rn) coincides with the Hölder–Zigmund space Λs(Rn).

• Let Xs(Rn) be one of the space Hs,p(Rn), s ∈ R, p ∈ (1,∞), Bs
p,q(R

n), s ∈ R, p, q ∈ [1,∞] , and Xs(Ω)
be the spaces of the restrictions of distributions u ∈ Xs(Rn) on Ω with the standard norm

‖u‖Xs(Ω) = inf
lu∈Xs(Rn)

‖lu‖

where lu ∈ Xs(Rn) is a an extension of u ∈ Xs(Ω) on R
n.

• Let Ω be a domain in R
n with C∞−boundary ∂Ω, let S(Ω), S(∂Ω) be the spaces of restriction of

functions in the Schwartz space S(Rn) to Ω, and let γ∂� : S(Ω) → S(∂Ω) be the trace operator. Then

γ∂Ω is extended to the trace operator acting from Hs,p(Ω) into B
s− 1

p
p,p (∂Ω), and from Bs

p,q(Ω) into

B
s−1/p
p,q (∂Ω) if 1 < p, q < ∞, s > 1

p . Let Y
s(∂Ω) is one of the spaces B

s− 1
p

p,p (∂Ω), B
s− 1

p
p,q (∂Ω).

In what follows Xs(Ω.CN ) = Xs(Ω)⊗ C
N , Y s(Ω.CN ) = Y s(Ω)⊗ C

N .

For more detail definitions and properties of the Besov spaces see for instance [7, 8, 44, 48].

• We introduce the weighted spaces Hs,p(Rn, 〈x〉L), Bs
p,q(R

n, 〈x〉L), p, q ∈ [1,∞] , L ∈ R defined by the
norm

‖u‖Hs,p(Rn,〈x〉L) =
∥∥∥〈x〉L u

∥∥∥
Hs,p(Rn)

, ‖u‖Bs
p,q(R

n,〈x〉L) =
∥∥∥〈x〉L u

∥∥∥
Bs

p,q(R
n)

.

We denote by Xs,L(Rn,CN ) one of the space Hs,p(Rn, 〈x〉L) ⊗ C
N , p ∈ (1,∞), Bs

p,q(R
n, 〈x〉L) ⊗

C
N , p, q ∈ [1,∞] .

2.2. Pseudodifferential operators (psdo) on R
n

• We say that a function a ∈ C∞(Rn × R
n,B(CN)) belongs to the class Sm

1,0(R
n,CN ) = Sm(Rn,CN ) if

|a|l1,l2 :=
∑

|α|�l1,|β|�l2,

sup
(x, ξ)∈Rn×Rn

∥∥∥(∂β
x∂

α
ξ a(x, ξ)) 〈ξ〉

−m+|α|
∥∥∥
B(CN )

< ∞ (13)

for every l1, l2 ∈ N0 = N∪ [0) The semi-norms |a|l1,l2 define the Freshet topology on Sm(Rn,CN ).
The functions in Sm(Rn,CN ) are called symbols. We associate with each symbol a ∈ Sm(Rn,CN) the
pseudodifferential operator ( psdo ) A = Op(a)

Op(a)u(x) := (2π)−n

∫

Rn

dξ

∫

Rn

a(x, ξ)u(y)ei(x−y)·ξdy,

u ∈ S(Rn,CN) = S(Rn)⊗ C
N .

We denote by OPSm(Rn,CN ) the class of pseudodifferential operators (psdo′s) with symbols in
Sm(Rn,CN ) and we denote by Sm(Rn,CN ) the class of the classical symbols a(x, ξ) ∈ Sm(Rn,CN)
such that there exists the principle symbol a0(x, ξ)

lim
t→∞

t−ma(x, tξ) = a0(x, ξ) for every ξ : |ξ| = 1.

We say that the symbol a(x, ξ) ∈ Sm(Rn,CN ) is slowly oscillating at infinity and belongs to the class
Sm
sl (R

n,CN ) if for all multi-indices α and β �= 0

lim
x→∞

sup
ξ∈Rn

∣∣∣(∂β
x∂

α
ξ akl(x, ξ)) 〈ξ〉

−m+|α|
∣∣∣ = 0, k, l = 1, ..., N (14)

and we say that the symbol a(x, ξ) belongs to the class S̊m(Rn,CN ) if conditions (14) holds for all α, β.
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Proposition 2. (see, [32, 43, 38, 8, 44] Let Op(a) ∈ OPSm(Rn, ,CN ). Then: (i) for all s, L ∈ R, and
p, q ∈ (1,∞) the operator

A = Op(a) : Xs,L(Rn,CN ) → Xs−m,L(Rn,CN )

is bounded, and
‖Op(a)‖B(Xs,L(Rn,CN ),Xs−m,L(Rn,CN )) � C |a|L1,L2

(15)

with C > 0, L1, L2 ∈ N independent of a.
(ii) Let aj ∈ OPS

mj

sl (Rn,CN ), j = 1, 2. Then Op(a1)Op(a2) ⊂ Sm1+m2

sl (Rn,CN ) and

Op(a1)Op(a2) = Op(a1a2) +Op(r)

where r ∈ S̊m1+m2−1(Rn,CN),
(iii) The operator Op(a) ∈ OPS̊m−ε(Rn,CN ) is a compact operator from Xs,L(Rn,CN ) into Xs−m,L(Rn,CN ).

• We denote by R̃
n the spherical compactification of Rn obtain by adding to each ray

lω =
{
x ∈ R

n : x = tω, t > 0, ω ∈ Sn−1
}
the infinitely distant point x∞. The topology in R̃

n is intro-

duced such that R̃n is isomorphic to the closed unit ball B̄1(0). We denote by R̃
n
∞ the set of all infinitely

distant points in R̃
n.

• Let A = Op(a) ∈ OPSm(Rn;CN ) is psdo with the symbol a(x, ξ) ∈ Sm(Rn,CN ), and a sequence
R

n � gk → x∞ ∈ R̃
n
∞. Then Arcela–Ascoli theorem yields that the sequence a(x + gk, ξ) has a

subsequence a(x+hk, ξ) → ah(x, ξ) ∈ Sm(Rn,CN ) in the sense of the uniform convergence on the sets
in R

n ×R
n. The operator Op(ah) is called the limit operators defined by the sequence hk → x∞. We

denote by Limx∞Op(a) the set of all limit operators of Op(a) defined by such sequences, and we set

LimOp(a) =
⋃

x∞∈R̃n
∞

Limx∞Op(a). (16)

Proposition 3. (see [35, 38]). The operator A = Op(a) ∈ Sm(Rn,CN ) is a Fredholm operator from
Xs(Rn,CN ) into Xs−m(Rn,CN ) if and only if the following conditions hold :

(i)
det a0(x, ξ) �= 0 for all (x, ξ) ∈ R

n × Sn−1 (17)

(ii) all limit operators Op(ah) ∈ LimOp(a) are invertible from Xs(Rn,CN ) into Xs−m(Rn,CN ).

Remark 4. Let Op(a) ∈ OPSm
sl (R

n,CN ). Then the limit operator Op(ah) has the symbol ah(ξ) inde-
pendent of x, and the condition of invertibility of Op(ah) is:

inf
ξ∈Rn

∣∣∣det ah(ξ) 〈ξ〉−m
∣∣∣ > 0.

Hence condition (ii) of Proposition 3 can be written as follows

lim inf
x→∞

inf
ξ∈Rn

∣∣∣det a(x, ξ) 〈ξ〉−m
∣∣∣ > 0. (18)

2.3. Fredholmness of psdo on a class of noncompact manifolds

Let X be a C∞ noncompact manifold of a finite dimension n, C∞(X) the space of infinitely differentiable
functions on X, C∞

b (X) the subspace of C∞(X) consisting of functions bounded with all their derivatives,
C∞

0 (X) the subspace of C∞(X) consisting of functions with compact supports.

Definition 5. (see [37, 34]). We say that a noncompact C∞-manifolds X of a finite dimension n ∈ N

belongs to the class R(n) if there exists a finite covering of X by open sets Uj , j = 1, ..., J and for every
j ∈ J there is a homeomorphism ϕj : Uj → ϕj(Uj) ⊂ R

N . Let J = J ′ ∪ J”, J ′ ∩ J” = ∅. We assume
that ϕj(Uj), j ∈ J ′ are open bounded sets in R

n, and Kj = ϕj(Uj), j ∈ J” are open conical sets in R
n. The

transition functions
ϕj2 ◦ ϕ−1

j1
: ϕj1(Uj1 ∩ Uj2) → ϕj2(Uj1 ∩ Uj2), j1 ∈ J ′

are C∞−diffeomorphism , and

d
(
ϕj2 ◦ ϕ−1

j1

)
(x) ∈ SO∞(Kj1)⊗ B(CN ), j1, j2 ∈ J2
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We denote by X̂ = X ∪ X∞ a compactification of X by adding the set X∞ of ”infinitely distant points”
such that the pair (X, X̂∞) is locally homeomorphic to the pair (Rn, R̃n). It means that every point x ∈ X

has a fundamental system of neighborhoods homeomorphic to open bounded sets in R
n, and an infinitely

distant point x∞ ∈ X∞ has a fundamental system of neighborhoods homeomorphic to open conical sets in
R

n.
In what follows we denote by Û the closure of U(⊂ X) in X̂.

Definition 6. (i) We say that χU ∈ C∞
0 (X) is a cut-off function of a bounded open set U ⊂ X if

0 � χU (x) � 1, suppχU ⊂ U, and there exists an open set U ′(U ′ ⊂ U) such that χU (x) = 1 if x ∈ U ′;
(ii) We say that χU ∈ C∞

b (X) is a cut-off function of a neighborhood U of infinitely distant point x∞ if
0 � χU (x) � 1, suppχU ⊂ U, there exists other neighborhood of U ′(U ′ ⊂ U) of X∞, such that χU (x) = 1 if
x ∈ U ′;

It follows from the definition of a manifolds X ∈ R(n) that there exists a finite partition of the unity

∑

j∈J

χj(x) = 1, x ∈ X,χj ∈ C∞
b (X)

subordinate to the covering of X by charts {Uj , ϕj}j∈J and for every multi-index α

∣∣∂α
(
χj ◦ ϕ−1

j

)
(x)
∣∣ � Cα 〈x〉−|α| , x ∈ Kj , j ∈ J. (19)

Definition 7. We denote by Xs(X,CN ) one of the spaces Hs,p(X,CN ), Bs
p,q(X,C

N) which in the local

coordinates belongs to the spaces Hs,p(X,CN ), Bs
p,q(X,C

N ) with the norm

‖u‖Xs(X,CN) =
∑

j∈J

‖(χju) ◦ ϕj‖Xs(ϕj(Uj),CN ) . (20)

It can be proven that another partition of unity leads to a norm equivalent to (20).

Definition 8. We say that an operator A : C∞
0 (X,CN ) → C∞(X,CN ) is a pseudodifferential operator in

the class OPSm(X,CN ) (OPSm
sl (X,C

N)) if for every local chart (U,ϕ) the operator

AU = ϕ∗rUAiUϕ∗ : C∞
0 (ϕ(U)) → C∞(ϕ(U)) (21)

is a pseudodifferential operator in the class OPSm(ϕ(U),CN )
(
OPSm

sl (ϕ(U),CN )
)
where iU : C∞

0 (U,CN) →
C∞

0 (X,CN) is the imbedding operator and rU : C∞(X,CN) → C∞(U,CN ) is the restriction operator, ϕ∗u =
u ◦ ϕ, and ϕ∗v = v ◦ ϕ−1.

We note some properties of the operators in the class OPSm(X,CN) which follow from Proposition 2:

Proposition 9. (i) A pseudodifferential operator A ∈ OPSm(X,CN ) is continued to a bounded operator
from Xs(X,CN ) into Xs−m(X,CN ) for every s ∈ R; (ii) Let Aj ∈ OPSmj (X,CN ), j = 1, 2. Then the product
A2A1 is well defined and A2A1 ∈ OPSm1+m2

(
X,CN

)
. If Aj ∈ OPS

mj

sl (X,CN ), j = 1, 2, then A1A2 −
A2A1 = [A1, A2] ∈ OP S̊m1+m2−1(X,CN ) is a compact operator from Xs(X,CN) into Xs−(m1+m2)(X,CN );
(iii) Let F1,F2 be two open sets in X such that F̄1 ∩ F̄2 = ∅, and A ∈ OPSm(X,CN ). Then χF1AχF2I ∈
K(Xs(X,CN), Xs−m(X,CN )), where χF is a cut-off function of a set F .

We denote by σA(x, ξX) the symbol of the operator A defined on the cotangent bundle T ∗(X)⊗B(CN)
(see for instance [45, 46]) The symbol σA(x, ξX) is unique up to a symbol q which in each local coordinate
system belongs to S̊m−1(Rn,CN ).

We say that the operator A ∈ OPSm(X,CN) is elliptic at the point x ∈ X if

det a0(x, ξx) �= 0, ∀(x,ξx) ∈ S∗(X) (22)

where a0(x, ξ) is the principal symbol of A defined on the spheric cotangent bundle S∗(X) (see for instance
[46]).

If the operator A ∈ OPSm(X,CN ) is uniformly elliptic, that is

inf
(x,ξ)∈S∗(X)

∣∣det a0(x, ξ)
∣∣ > 0, (23)
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then the a priory estimate holds

‖u‖Xs,L(X,CN ) � C(‖Au‖Xs−m,L(X,CN) + ‖u‖Xs−1,L−1(X,CN )), s ∈ R (24)

with a constant C > 0 independent of u. It implies that every solution u ∈ Xs(X,CN ) of the equation

Op(a)u = f ∈ S(X,CN )

belongs to the Schwartz space S(X,CN ).

Definition 10. (see [38]) We say that an operator A∈B(Xs(X,CN ),Xs−m(X,CN)) is locally invertible

at a point x ∈ X̂ if there exists a neighborhood U of x, a cut-off function χU of U, and operators LU ,RU ∈
B(Xs−m(X,CN ),Xs(X,CN )) such that

LUAχUI = χUI, χUARU = χUI.

Definition 11. We say that A∈B(Xs(X,CN),Xs−m(X,CN )) is a local type operator on X if for every
open sets F1,F2 ⊂ X such that F̄1 ∩ F̄2 = ∅, the operator χF1AχF2I ∈ K(Xs(X,CN ),Xs−m(X,CN )).

Proposition 12. (see [38]) Let A∈B(Xs(X,CN ), Xs−m(X,CN )) be a local type operator on X. Then A

is a Fredholm operator if and only if A is locally invertible at every point x ∈ X̂.

We consider now the Fredholm property of A ∈ OPSm(X,CN ) as operator acting from Xs(X,CN ) into
Xs−m(X,CN). Following to Proposition 12 we have to consider the local invertibility of A at the points of the

compactification X̂. It is well known (see for instance [45, 46]) that A ∈ OPSm(X,CN ) is locally invertible
at the point x ∈ X if and only if the principal symbol σ0

A(x, ξx) is invertible at this point. It implies condition
(22) at every point x ∈ X.

Let A = Op(a) ∈ OPSm(X,CN ) the chart (U,ϕ) be such that U is a neighborhood of the infinitely distant
point x∞ ∈ U∞, ϕ : U → K be a diffeomorphism extended to a continuous mapping ϕ̃ : Û → K̃, AU be the
restriction of A on the neighborhood U with the local symbol σAU (x, ξx), x ∈ U, ξx ∈ T ∗

x (U) be the symbol
of the operator AU . Let AU be the operator defined by formula (21). Then

σAU (x, η) = σAU (ϕ
−1(x), dϕ(x)η), x ∈ K, η ∈ R

n,

where σAU (x, η) ∈ Sm(K,CN ). Let x∞ ∈ K̃∞, and the sequence K � hk → x∞ defines the limit operator
Ah

U with symbol

σh
AU

(x∞, η) = lim
hk→x∞

σAU (ϕ
−1(x+ hk), dϕ(x + hk)η) = σAU (x∞, (dϕ)

h
η).

The limit is understood in the sense of converges on compact sets in K×R
n. Therefore, the condition of the

local invertibility at the point x∞ is:

lim inf
x→x∞

inf
ξx∈T∗

x
(X)

det 〈ξ〉−m
σAU (x,ξx)= lim inf

y→y∞
inf

η∈Rn

∣∣∣det 〈η〉−m
σAU (y, η)

∣∣∣ > 0. (25)

Theorem 13. An operator A ∈ OPSm
sl (X,C

N ) acting from Xs(X,CN ) into Xs−m(X,CN) is a Fredholm
operator if the following conditions hold:

(i) the principal symbol σ0
A(x, ξx) is invertible at every point x, ξx ∈ T ∗

x (X)̇ : |ξx| = 1; where T ∗
x (X) is the

cotangent space to X at the point x
(ii) for every infinitely distant point x∞ ∈ X̂∞

lim inf
X�x→x∞

inf
ξx∈T∗

x
(X)

∣∣∣det 〈ξx〉−m σAU (x,ξx)
∣∣∣ > 0. (26)

Proof. Following Proposition 12. we have to consider the local invertibility of A at every point of the com-
pactification X̂ of X. It is well known (see, for instance, [46]) that A ∈ OPSm(X, E) is locally invertible
at the point x ∈ X if the principal symbol σ0

A is invertible at this point, that is condition (25) holds. Let
A = Op(a) ∈ OPSm

sl (X,C
N ) and the chart (U,ϕ) be such that U is a neighborhood of the infinitely distant

point x∞ ∈ Ũ∞, ϕ : U → K be the diffeomorphism extended to the continuous mapping ϕ̃ : Ũ → K̃, AU be
the restriction of A on the neighborhood U, and σAU (x, ξx), x ∈ U, ξx ∈ T ∗

x (X) be the symbol of the operator
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AU where T ∗
x (X) is the cotangent space to X at the point x. Let AU be the operator defined by formula (21).

Note that
σAU (x, η) = σAU (ϕ

−1(x), dϕ(x)η), x ∈ K, η ∈ R
n,

where σAU (x, η) ∈ Sm
sl (K,CN ). Let x∞ ∈ K̃∞, and the sequence K � hk → x∞ defines the limit operator

Ah
U with symbol

σh
AU

(x∞, η) = lim
hk→x∞

σAU (ϕ
−1(x+ hk), dϕ(x + hk)η) = σAU (x∞, (dϕ)

h
η).

The limit is understood in the sense of converges on compacts in K ×R
n. By Proposition 3 the condition of

local invertibility at the point x∞ is written as

lim inf
x→x∞

inf
ξx∈T∗

x
(X)

∣∣∣det 〈ξ〉−m
σA(x,ξx)

∣∣∣ > 0. (27)

Therefore, if condition (26) holds, then condition (27) holds at every point x∞ ∈ X∞, that is A is locally
invertible at every point x∞ ∈ X∞. By Proposition 12 the operator A : Xs(X,CN ) → Xs−m(X,CN ) is a
Fredholm operator.

Corollary 14. Let A = Op(a) ∈ OPSm
sl

(
X,CN

)
. Then A : Xs(X,CN ) → Xs−m(X,CN ) is a Fredholm

operator if conditions (i) holds, and condition (ii) is changed by the condition

lim inf
X�x→∞

inf
ξx∈T∗

x (X)

∣∣∣det 〈ξx〉−m
σAU (x,ξx)

∣∣∣ > 0. (28)

3. FREDHOLM THEORY OF INTERACTION PROBLEMS ASSOCIATED
WITH DIRAC OPERATORS WITH SINGULAR POTENTIALS

3.1. Realization of the Dirac operators with singular potential as the interaction problem

Let Dm,,Φ,ΓδΣ = Dm,Φ + ΓδΣ be the formal Dirac operator defined by formulas (1), (3). We assume that
Σ is a C∞−hypersurface in R

n which is a common boundary of domains Ω± ⊂ R
n, n � 2,Φ,m ∈ C∞

b (Rn),
Γi,j ∈ C∞

b (Σ), i, j = 1, ..., N. The product ΓδΣu where u ∈ Xs(Rn
�Σ,CN), s > 1

p , p ∈ (1,∞) is defined as

the distribution in D′(Rn,CN) = D′(Rn)⊗ C
N

(ΓδΣu) (ϕ) =
1

2

∫

Σ

Γ(s)
(
γ+
Σu(s) + γ−

Σu(σ)
)
· ϕ(σ)dσ, ϕ ∈ C∞

0 (Rn,CN ). (29)

dσ is the hypersurface Lebesgue measure, γ±
Σ : Xs(Ω±,C

N ) → Y s−1/p(Σ,CN ) where Y s(Ω±,C
N) =

B
s−1/p,p
p,p

(
Σ,CN

)
if Xs(Ω±,C

N) = Hs,p(Ω±,C
N ) and Y s(Ω±,C

N ) = B
s−1/p,p
p,q

(
Σ,CN

)
if Xs(Ω±,C

N ) =
Hs,p(Ω±,C

N ).
Integrating by parts and taking into account (29) we obtain that

〈Dm,Φ,ΓδΣu, ϕ〉L2(Rn,CN ) =

∫

Ω+∪Ω−

Dm,Φu(x) · ϕ(x)dx (30)

−
∫

Σ

iα · ν(σ)(γ+
Σu(σ)− γ−

Σu(σ)) · ϕ(σ))dσ

+
1

2

∫

Σ

(
Γ(σ)

(
γ+
Σu(σ) + γ−

Σu(σ)
)
· ϕ(σ)

)
dσ, ϕ ∈ C∞

0 (Rn,CN )

where ν(σ) = (ν1(σ), ..., νn(σ)) is the unit normal vectors on Σ directed to Ω−. Formula (30) yields that

DA,Φ,m,ΓδΣu (31)

= DA,Φ,mu−
[
iα · ν

(
γ+
Σu− γ−

Σu
)
− 1

2
Γ
(
γ+
Σu+ γ−

Σu
)]

δΣ,

in the distribution sense, where Dm,Φu is the regular distribution defined by the vector-valued function
Dm,Φu. Hence Dm,Φ,ΓδΣu is the regular distribution if and only if

−iα · ν
(
γ+
Σu− γ−

Σu
)
+

1

2
Γ
(
γ+
Σu+ γ−

Σu
)
= 0 on Σ. (32)
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We write condition (32) of the form

BΣu(σ) = a+(σ)γ
+
Σu(σ) + a−(σ)γ

−
Σ u(σ) = 0, σ ∈ Σ (33)

where a±(σ) are N ×N matrices

a±(σ) =
1

2
Γ(σ)∓ iα · ν(σ), σ ∈ Σ. (34)

Therefore, we can associate with the formal Dirac operator Dm,Φ,ΓδΣ the bounded operator of the inter-
action (transmission) problem

Dm,Φ,BΣu =

{
Dm,Φu on R

n
�Σ

BΣu(σ) = a+γ
+
Σu+ a−γ

−
Σu on Σ

(35)

acting from Xs(Rn
�Σ,CN ) into Xs−1(Rn

�Σ,CN )⊕ Y s−1/p(Σ,CN ), s > 1/p.p ∈ (1,∞).

3.2. Inverse operator to the Dirac operator on R
n

We consider the Dirac operator

Dm,Φ = α ·D +mαn+1 +ΦIN

defined by (1),(2) where m,Φ ∈ C∞
b (Rn). We give some properties of Dm,Φ which will be used below:

• Dm,Φ is a psdo of the class OPS1
(
R

n,CN
)
with symbol

σDm,Φ(x, ξ) = α · ξ +m(x)αn+1 +Φ(x)IN , (x, ξ) ∈ R
n

and the principle symbol .α · ξ =
∑n

j=1 αjξj , ξ = (ξ1, ..., ξn) ∈ Sn−1.

• Dm,Φ is elliptic on R
n since (α · ξ)2 = |ξ|2 IN . The ellipticity of Dm,Φ yields the a priori estimate

‖u‖Xs,L(Rn,CN ) � C
(
‖Dm,Φu‖Xs−1,L(Rn,CN ,〈x〉r) + ‖u‖Xs−1,L−1(Rn,CN )

)
, (36)

s, L ∈ R

• A priory estimate (36) yields that every solution u of the equation Dm,Φu = 0 belonging to the space
Xs(Rn,CN ) , actually, belongs to the Schwartz space S(Rn,CN ).

• It follows from Proposition 2 that Dm,Φ is a Fredholm operator from Xs(Rn,CN ) into Xs−1(Rn,CN)
if and only if

lim inf
x→∞

inf
ξ∈Rn

∣∣∣det 〈ξ〉−1
(α · ξ +m(x)αn+1 +Φ(x)IN )

∣∣∣ > 0, (37)

and ind Dm,Φ is independent from s ∈ R,and p, q ∈ (1,∞). Moreover, if m,Φ are real-valued functions,
then ind Dm,Φ = 0.

• If the operator Dm,Φ : H1,p(Rn,CN ) → L2(Rn,CN ) is invertible, then D
−1
m,Φ ∈ OPS−1(Rn,CN ) (see

[4]). Hence D
−1
m,Φ is invertible operator from Xs(Rn,CN) into Xs−1(Rn,CN ).

• Let m,Φ ∈ SO∞(Rn). Taking into account Proposition 2 we obtain that

Dm,ΦDm,−Φ =
(
−Δ+m2 − Φ2

)
IN +Q1, (38)

Dm,−ΦDm,Φ =
(
−Δ+m2 − Φ2

)
IN +Q2

where Qj(x) are N ×N matrices for every x, such that

lim
x→∞

∂αQj(x) = 0, ∀α, j = 1, 2. (39)

Proposition 3 yields that if condition

lim inf
x→∞

Re(m2(x) − Φ2(x) > 0 (40)
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is satisfied, then the operator

C =
(
−Δ+m2 − Φ2

)
IN : Xs(Rn,CN) → Xs−2(Rn,CN )

is a Fredholm operator . Moreover, it follows from the uniqueness of continuation for the operator C
that condition (40) yields that kerC = ker C∗ = {0}. That is if condition (40) holds, the operator

C : Xs(Rn,CN) → Xs−2(Rn,CN )

is invertible operator for each s ∈ R, and p, q ∈ (1,∞).

• Let the operator D−1
m,Φ be invertible, and

inf
x∈Rn

Re
(
m2(x) − Φ2(x)

)
> 0. (41)

Then formulas (38) yield that
D

−1
m,Φ = Dm,−ΦC−1 +QC.−1. (42)

Therefore,

σ
D

−1
m,Φ

(x, ξ) =
α · ξ +m(x)αn+1 − Φ(x)IN

|ξ|2 +m2(x)− Φ2(x)
+ T (x, ξ) (43)

where T (x, ξ) ∈ S̊−2(Rn,CN).

• The operator D−1
m,Φ has the integral representation

D
−1
m,Φϕ(x) =

∫

Rn

gm,Φ(x, y)ϕ(y)dy, x ∈ R
n, ϕ ∈ C∞

0 (Rn,CN ),

with the Schwartz kernel gm,Φ (the Green function of the operator Dm,Φ), is the distribution gm,Φ ∈
S′(Rn × R

n)⊗ B(Cn) which is the solution of the equation

Dm,Φgm,Φ(·, y) = δ(· − y), y ∈ R
n.

The Green function gm,Φ(x, y) has the following properties:

(i) gm,Φ ∈ C∞((Rn × R
n)�F)⊗ B(CN ) where F = {(x, y) ∈ R

n × R
n : x = y} , (ii) there exists

ε > 0 and constants Cα,β > 0 such that for all multi-indices α, β
∥∥∂α

x ∂
β
y gm,Φ(x, y)

∥∥
B(CN )

� Cα,β exp(−ε |x− y|), for |x− y| > 0, (44)

and � g(x, y)
� 

B(CN )
� C |x− y|−(n−1)

, |x− y| < ε. (45)

3.3. Reducing of interaction problems to pseudodifferential equations

10. We consider interaction problem (35)

Dm,Φ,BΣu =

{
Dm,Φu = (α ·D + αn+1m+ΦIN )u = f on R

n
�Σ

BΣu = a+γ
+
Σu+ a−γ

−
Σu = f1 on Σ

(46)

where m,Φ ∈ SO∞(Σ), and

a±(υ) =
1

2
Γ(υ)∓ iα · ν(υ),Γ(υ) = (Γkl(υ))

N
k,l=1 ,Γkl ∈ SO∞(Σ), (47)

ν(υ) is the unit normal vector to Σ at υ ∈ Σ directed to Ω−,Σ ⊂ R
n is a C∞− manifolds in R

n of the class
R(n− 1).

We use the notation
Xs(Rn

�Σ,CN ) = Xs(Ω+,C
N )⊕Xs(Ω−,C

N)

where Xs(Rn
�Σ,CN ) is the space of the restrictions of distributions in Xs(Rn,CN ) on Xs(Rn

�Σ,CN)
with the standard norm of the restriction. We consider the operator Dm,Φ,BΣ as acting from Xs(Rn

�Σ,CN)
into Xs−1(Rn

�Σ,CN)⊕ Y s−1/p(Σ,CN ), s > 1/p, p, q ∈ (1,∞).
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We assume that the operator Dm,Φ is invertible, and condition

inf
x∈Rn

Re
(
m2(x) − Φ2(x)

)
> 0, (48)

holds and we will look for solutions of the equation

DΦ,m,BΣu = (f, f1), u = (u+, u−) ∈ Xs(Rn
�Σ,CN ), (49)

(f, f1) ∈ Xs(Rn
�Σ,CN )⊕ ∂Y s−1/p

(
Σ,CN

)
.

as

u(x) = D
−1
m,Φf(x) + Pm,Φ,Σψ(x), x ∈ R

n
�Σ = Ω∗ ∪ Ω−, (50)

ψ ∈ ∂Y s−1/p(Σ,CN )

where Pm,Φ,Σ is the potential operator

Pm,Φ,Σψ(x) = D
−1
m,Φ (ψ ⊗ δΣ) =

∫

Σ

gm,Φ(x, υ)ψ(υ)dυ, x ∈ R
n
�Σ,

gm,Φ(x, y) is the Schwartz kernel of the operator D−1
m,Φ and dυ is the Lebesgue measure on the

C∞−hypersurface Σ.
The following proposition gives some of the properties of potential operators required below.

Proposition 15. Let m,Φ ∈ SO∞(Rn), and Σ ⊂ R
n be a manifold in R

n of the class R(n− 1). Then:
(i) the potential operator Pm,Φ,Σ is a bounded operator from Y s−1/p

(
Σ,CN

)
, s > 1/p into Xs(Rn

�Σ,CN );
(ii) there exist no tangential limits

P±
m,Φ,Σψ(υ) (51)

= lim
Ω±�x→υ∈Σ

Pm,Φ,Σψ(x) = ± i

2
α · ν(υ)ψ(υ) +Km,Φ,Σψ(υ), υ ∈ Σ

where ν(υ) is the unit normal vector to Σ at the point υ ∈ Σ directed to Ω−, and Km,Φ,Σ ∈ OPS0
sl(Σ,C

N )
with the symbol

σKm,Φ,Σ(υ, ξυ) =
α · ξυ +m(υ)αn+1 +Φ(υ)IN

2

√
|ξυ |2 +m2(υ)− Φ2(υ)

(52)

and principle symbol

σ0
Km,Φ,Σ

(υ, ξυ) =
α · ξυ
2 |ξυ|

, ξυ ∈ T ∗
υ (Σ)�0, v ∈ Σ, (53)

T ∗
υ (Σ) is the cotangent space to Σ at the point υ ∈ Σ.

Proof. Statement (i) is well known for the potential operators if Ω± = R
n
±, that is

Pm,Φ,Σψ(x
′) → p(x,D)(δ(xn)⊗ ψ)(x), x ∈ R

n
+ ∪ R

n
−

where the symbol p(x, ξ) ∈ S−1(Rn,CN ) and satisfying the transmission property with respect to R
n−1 (see

[8, 19, 44]). If the common boundary Σ of domains Ω± is a manifold of the class R(n − 1), we use a finite
partition of unity and the transition to local coordinates.

(ii) Formula (51) follows from [46], Proposition 3.4, page 232 for more general setting. However we will
prove that KΦ,m,Σ is a psdo of the class OPS0

sl(Σ,C
N ) with the symbol and principal symbol given by

formulas (52) and (53). First, we consider the case Ω± = R
n
± and Σ = R

n−1. Taking into account that

D
−1
m,Φψ(x) = (2π)−n

∫

R2n

σ
D

−1
m,Φ

(x, ξ)ei(x−y)·ξψ(y)dydξ,

x = (x′, xn) ∈ R
n, ψ ∈ C∞

0 (Rn,CN )

and formula (43) we will write the potential operator Pm,Φ,Rn−1 as follows
(
Pm,Φ,Rn−1ϕ

)
(x) (54)

= (2π)−n

∫

Rn×Rn

σ
D

−1
m,Φ

(x, ξ)ei(x
′−y′)·ξ′+ixnξnψ(y′)dy′dξ
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with

σ
D

−1
Φ,m

(x, ξ) = I(x, ξ) + q(x, ξ), (55)

I(x, ξ) = α · ξ +m(x)αn+1 +Φ(x)IN

|ξ|2 +m2(x)− Φ2(x)
,

q(x, ξ) ∈ S̊−2(Rn,CN ).

Formulas (54),(55) yield that

(
Pm,Φ,Rn−1ϕ

)
(x′, xn) (56)

= (2π)−(n−1)
∫∫

R2(n−1)

p(x′, xn, ξ
′)ei(x

′−y′)·ξ′ϕ(y′)dy′dξ′ (57)

where

p(x, ξ′) = p1(x, ξ
′) + p2(x, ξ

′), (58)

p1(x, ξ
′) = (2π)−1

∫

R

I(x, ξ′, ξn)eixnξndξn (59)

and

p2(x, ξ
′) = (2π)−1

∫

R

q(x, ξ′, ξn)e
ixnξndξn. (60)

Applying the residua theorem to (59) we obtain that

p1(x
′, xn, ξ

′) = e−μ(x,ξ′)|xn|
(
sgn(xn)

iαn

2
+A(x′, ξ′)

)
(61)

with μ(x, ξ′) =
√
|ξ′|2 +m2(x)− Φ2(x) and infx Re

(
m2(x) − Φ2(x)

)
> 0, and

A(x, ξ′) =
α′ · ξ′ +m(x)αn+1 +Φ(x)IN

2μ(x, ξ′)
. (62)

Taking into account that q(x, ξ) ∈ S̊−2
sl (Rn,CN) we obtain the estimates

� ∂β
x∂

α
ξ p2(x, ξ

′)
� 

B(CN )
� Cαβ(x)

∫

R

(1 + �ξ′�+ |ξn|)−2−|α|dξn (63)

� C′
αβ(x) (1 + �ξ′�)−1−|α|

with limx→∞ C′
αβ(x) = 0 for all multi-indeces α, β. Formulas (61),(62), and (63) yield that there exist limits

P±
m,Φ,Rn−1ϕ(x

′) = lim
xn→±0

(
Pm,Φ,Rn−1ϕ

)
(x′, xn)

where

P±
m,Φ,Rn−1ϕ(x

′) (64)

= ± iαn

2
ϕ(x′) +Km,Φ,Rn−1ϕ(x′), ϕ ∈ C∞

0 (Rn−1,CN )

and

σKm,Φ,Rn−1 (x
′, ξ′) =

α′ · ξ′ +m(x′, 0)αn+1 +Φ(x′, 0)IN

2

√
|ξ′|2 +m(x′, 0)2 − Φ(x′, 0)2

+R(x′, ξ′), (65)

where R(x′, ξ′) ∈ S̊−1
sl (Rn−1,CN ), α′ · ξ′ =

∑n−1
n=1 αiξi. Transition to the local coordinates at the point ν ∈ Σ

with the frame {f1,..., fn} where fn is the unit normal vector ν(υ) to Σ at the point υ, directed to Ω−, and
applying formulas (64), (65) we obtain formulas (51), (52).
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20. . Now we are ready to reduce the interaction problem (49) to the pseudodifferential equation on Σ.
Substituting

u±(s) = D
−1
m,Φf1 + P±

m,Φ,Σψ, ψ ∈ Xs−1/p(⊀,CN ), s > 1/p

in the interaction condition

BΣu(υ) = a+(υ)γ
+
Σu(υ) + a−(υ)γ

−
Σu(υ) = f2(υ), υ ∈ Σ,

and applying formulas (51) and (52) we arrive to the pseudodifferential equation on Σ with respect to
ψ ∈ Y s−1/p(Σ,CN )

Ξm,Φ,Σψ(υ) =
iα · ν(υ)

2
(a+(υ)− a−(υ))ψ(υ) + (a+(υ) + a−(υ)) (Km,Φ,Σψ) (υ) (66)

= f2(υ)−BΣD
−1
Φ,mf1(υ) ∈ Y s−1/p(Σ,CN ).

Taking into account that

a+(υ)− a−(υ) = −2iα · ν(υ) and a+(υ) + a−(υ) = Γ(υ), υ ∈ Σ

we obtain that Ξm,Φ,� = I + ΓKm,Φ,Σ is the psdo on ⊀ of the class OPS0
sl(Σ,C

N ).with the symbol

σΞm,Φ,�(υ, ξυ) = IN + Γ(υ)
α · ξυ +m(υ)αn+1 +Φ(υ)IN

2

√
|ξ|2 +m(υ)2 − Φ(υ)2

, (67)

v ∈ Σ, ξυ ∈ T ∗
υ (Σ).

The principal symbol of Ξm,Φ,� is

σ0
Ξm,Φ

(υ, ξ) = IN +
Γ(υ) (α · ξυ)

2 |ξv|
, υ ∈ Σ, ξυ ∈ T ∗

υ (Σ)�0. (68)

3.4. Interaction on closed C∞−hypersurfaces

We consider the interaction problem for a closed C∞−hypersurface Σ which is the common boundary of
the bounded open domain Ω+ and unbounded domain Ω− = R

n
�Ω̄+

Theorem 16. Let: (i) m,Φ ∈ SO∞(Rn), (ii) Σ be a C∞−closed hypersurface in R
n, and Γ ∈ C∞(Σ)⊗

B(CN), (iii) the Dirac operator Dm,Φ : H1,p(Rn,CN ) → L2(Rn,CN ) is invertible, (iv)

detσ0
Ξm,Φ

(υ, ξυ) = det

(
IN +

Γ(υ) (α · ξυ)
2 |ξυ|

)
�= 0 (69)

for each point υ ∈ Σ and ξυ ∈ T ∗
υ (Σ)�0. Then:

(a) Ξm,Φ,� is a Fredholm operator in the spaces Y s(Σ,CN ), s ∈ R, , p, q ∈ (1,∞); (b) kerΞm,Φ,� and
kerΞ∗

m,Φ,� ∈ C∞(Σ,CN ), hence ind Ξm,Φ,� is independent of s, p, q; (c) if the matrix Γ(υ) is Hermitian for
each υ ∈ Σ, then ind Ξm,Φ,� = 0.

Proof. The Fredholmness of Ξm,Φ,� in all spaces Y s(Σ,CN ) follows from Theorem 13, statements (b), follows
from a priori estimate (49), and statement (c) follows from the equality σ0

Ξm,Φ,�
= σ0

Ξ∗
m,Φ,�

which follows from

the Hermite property of the matrix Γ.

Corollary 17. Let conditions of Theorem 69 hold. Then

Dm,Φ,BΣ : Xs(Rn
�Σ,CN) → Xs−1(Rn

�Σ,CN )⊕ Y s−1/p(Σ,CN ),

s > 1/p, p, q ∈ (1,∞)

is a Fredholm operator.

Proof. Conditions (i), (ii), (iii) yield the local invertibility of the operator Dm,Φ,BΣ at the points of Rn
�Σ,

and (69) is the Lopatinsky–Shapiro condition at the points s ∈ Σ for the operator of interaction problem
Dm,Φ,BΣ (see [41, 39]). Hence the local principle yields the Fredholmness of the operator Dm,Φ,BΣ .
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3.5. Interaction on hypersurfaces of the class R(n − 1)

Theorem 18. Assume that m,Φ ∈ SO∞(Σ), the hypersurface Σ ∈ R(n− 1), Γ ∈ SO∞(Σ)⊗B(CN ), and
the Dirac operator Dm,Φ : H1,2(Rn,CN ) → L2(Rn,CN ) is invertible. Then Ξm,Φ,� is a Fredholm operator in
the space Y s(Σ,CN ) if : (i) condition (69) holds for each point υ ∈ Σ, (ii)

lim inf
Σ�υ→∞

inf
ξv∈T∗

υ (Σ)

∣∣detσΞm,Φ,�(υ, ξυ)
∣∣ > 0 (70)

where

σΞm,Φ,Σ(υ, ξυ) = IN +
Γ(υ) (α · ξυ +m(υ)αn+1 +Φ(υ)IN )

2
(
|ξυ|2 +m2(υ)− Φ2(υ)

)1/2 , ξυ ∈ T ∗
υ (Σ), υ ∈ Σ. (71)

The index of Ξm,Φ,� is independent of s ∈ R, p, q ∈ (1,∞). If m,Φ are real-valued functions, and Γ is a
Hermitian matrix, then Ind Ξm,Φ,� = 0.

Proof. Let U be a neighborhood of the infinitely distant point υ ∈ Ũ where Û is the compactification of U
in the topology Σ̂. According formula (67) the symbol of the operator Ξm,Φ,� in the neighborhood U is given
by formula (71). Thus Theorem 18.. follows from Theorem 13. Statements regarding the index are proven
using the considerations given earlier.

Theorem 19. Let conditions of Theorem 18 be satisfied. Then the operator

Dm,Φ,BΣ : Xs(Rn
�Σ,CN ) → Xs−1(Rn

�Σ,CN )⊕ Y s−1/p(Σ,CN )

is Fredholm for each s > 1/p, p, q ∈ (1,∞).

Proof. Let R
n be equipped the structure of the manifold of the class R(n). Let R̂

n be a compactification

of Rn as a manifold of the class R(n) and Σ̂ is the closure of Σ in the topology of R̂n.The local principle

on R̂
n states that Dm,Φ,BΣ : Xs(Rn

�Σ,CN ) → Xs−1(Rn
�Σ,CN )⊕ Y s−1/p(Σ,CN ) is a Fredholm operator

if and only if Dm,Φ,BΣ is a locally Fredholm operator at every point x ∈ R
n and locally invertible at every

infinitely distant point x∞ ∈ R̂
n
∞. Since the operator Dm,Φ,BΣ concedes with the operator Dm,Φ on the set

R̂
n
�Σ̂ the operator Dm,Φ,BΣ is locally Fredholm at every point x ∈ R

n
�Σ and locally invertible at every

point x∞ ∈ R̂
n
∞�Σ̂∞. Therefore, according to the local principle we need to study the local Fredholmness

of Dm,Φ,BΣ at the points υ ∈ Σ̂. The local Fredholmness at the points υ ∈ Σ follows from the Lopatinsky–
Shapiro condition at the point υ (see [41]) which concedes with condition (69), and local invertibility at the
points υ∞ ∈ Σ̂∞ It folloes from condition

lim inf
Σ�υ→υ∞

inf
ξυ∈T∗

v (Σ)

∣∣detσΞm,Φ,�(υ, ξυ)
∣∣ > 0, ∀υ∞ ∈ Σ̂∞. (72)

But condition (72) is equivalent to condition (70).

• Important examples of the hypersurfaces in R
n to which Theorems 18 and 19 apply are:

1) C∞-hypersurface Σ ⊂ R
n conical at infinity, that is such that the hypersurface ΣR = Σ∩B′

R , B′
R =

{x ∈ R
n : |x| > R} is a conical set for some R > 0;

2) C∞-hypersurface Σ ⊂ R
n slowly oscillating at infinity, that is there exists of a finite covering of

ΣR ⊂ ∪l
j=1Fj by open sets Fj such that

ΣR ∩ Fj = {x = (x′, xn) ∈ R
n : xn = fj(x

′), x′ ∈ Kj}

where Kj are open conical sets in R
n−1, fj are C∞−real-valued functions such that ∂xk

fj ∈ SO∞(Kj), k =
1, ..., n− 1. Examples of functions satisfying these conditions are:

f(x′) = A |x′|α cos logβ |x′| , 0 � α � 1, β � 0, A ∈ R.
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[7] J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin-Heidelberg-New York, 1976.

[8] A. V. Brenner and E. M. Shargorodsky, “Boundary Value Problems for Elliptic Pseudodifferential Operators”,
1996, 145–216.

[9] J. Behrndt, P. Exner, M. Holzmann, and V. Lotoreichik, “On the Spectral Properties of Dirac Operators with
Electrostatic δ-Shell Interactions”, J. Math.Pures Appl., 111 (2018), 47–78.

[10] J. Behrndt, P. Exner, M. Holzmann, and V. Lotoreichik, “On Dirac Operators in R
3 with Electrostatic and

Lorentz Scalar δ-Shell Interactions”, Quantum Stud.: Math. Found., 2019.

[11] J. Behrndt, M. Holzmann, T. Ourmières-Bonafos, and K. Pankrashkin, “Two-Dimensional Dirac Operators with
Singular Interactions Supported on Closed Curves”, J. Funct. Anal., 279:8 (2020), 108700.

[12] J. Behrndt, M. Holzmann, Ch. Stelzer, and G. Stenzel, “Boundary Triples and Weyl Functions for Dirac Oper-
ators with Singular Interactions”, 2022.

[13] J. Behrndt, M. Holzman, and M. Tusek, “Two-Dimensiomal Dirac Operators with General δ-Shell Interactions
Supported on a Straight Line”, 2022.

[14] B. Benhellal,, “Spectral Properties of the Dirac Operator coupled with δ−Shell Interactions”, 2021.

[15] B. Benhellal and K. Pankrashkin, “Curvature Contribution to the Essential Spectrum of Dirac Operators with
Critical Shell Interactions”, 2022.

[16] B. Cassano, V. Lotoreichik, A. Mas, and M. Tusek, “General δ–Shell Interactions for Two-Dimensional Dirac
Operators: Self-Adjointness and Approximation”, 2021.

[17] C. Carvalho, V. Nistor, and Yu Qiao, “Fredholm Conditions on Non-Compact Manifolds: Theory and Examples.
Operator Theory, Operator Algebras, and Matrix Theory”, 2016, 79–122.

[18] R. Delanghe, F. Sommen, and V. Soucek, “Clifford Algebra and Spinor-Valued Functions, A Function Theory
for the Dirac Operator”, 1992.

[19] J. Franke, “Besov–Triebel–Lizorkin Spaces and Boundary Value Problems”, in: Seminar Analysis (Berlin
1984/85), 1985, 89–104.

[20] M. Holzmann, “A Note on the Three Dimensional Dirac Operator with Zigzag Type Boundary Conditions”,
Complex Analysis and Operator Theory, 15:47 (2021).

[21] G. C. Hsiao and W. L. Wendland, Boundary Integral Equations, Berlin, Heidelberg, Springer, 2008.

[22] D. L. Colton and R. Kress, Integral Equation Method in Scattering Theory, Philadel. . . a, SIAM, 2013.

[23] H. Kumano-go, Pseudodifferential Operators, MIT Presss, Cambrige, 1981.

[24] A. Mas and F. Pizzichillo, “Klein’s Paradox and the Relativistic δ−Shell Interaction in R
3”, Anal. PDE, 11:3

(2018), 705–744.

[25] D. Mitrea, M. Mitrea, and M. Taylor, “Layer Potentials, the Hodge Laplacian, and Global Boundary Problems
in Nonsmooth Riemannian Manifolds”, Mem. Amer. Math. Soc., 713 (2001).

[26] I. Mitrea, M. Mitrea, and M. Taylor, “Cauchy Integrals, Calderón Projectors, and Toeplitz Operators on Uni-
formly Rectifiable Domains”, Advances in Mathematics, 268 (2015), 666–715.

[27] J. Mehringer and E. Stockmeyer, “Confinement–Deconfinement Transitions for Two-Dimensional Dirac Parti-
cles”, J. Funct. Anal., 266 (2014), 2225–2250.
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