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Abstract — The aim of this paper is to study probabilistic versions of the degenerate Stirling
numbers of the second kind and the degenerate Bell polynomials, namely the probabilisitc degenerate
Stirling numbers of the second kind associated with Y and the probabilistic degenerate Bell polynomi-
als associated with Y, which are also degenerate versions of the probabilisitc Stirling numbers of the
second and the probabilistic Bell polynomials considered earlier. Here Y is a random variable whose
moment generating function exists in some neighborhood of the origin. We derive some properties,
explicit expressions, certain identities and recurrence relations for those numbers and polynomials. In
addition, we treat the special cases that Y is the Poisson random variable with parameter a(> 0) and
the Bernoulli random variable with probability of success p.
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1. INTRODUCTION

It is amusing to witness that various degenerate versions of many special numbers and polynomials have
been studied recently not only with their number-theoretic or combinatorial interests but also with their
applications to others, including probability, quantum mechanics and differential equations. This exploration
for degenerate versions began with the work by Carlitz on the degenerate Bernoulli and degenerate Fuler
polynomials in [4]. It is remarkable that many different tools, like generating functions, combinatorial meth-
ods, p-adic analysis, umbral calculus, operator theory, differential equations, special functions, probability
theory and analytic number theory, are employed in the course of this quest (see [5, 9, 11-19] and the
references therein).

Let Y be a random variable satisfying the moment conditions (see (15)). The aim of this paper is to
introduce and study probabilistic versions of the degenerate Stirling numbers of the second kind and the
degenerate Bell polynomials, namely the probabilisitc degenerate Stirling numbers of the second kind associ-
ated with Y and the probabilistic degenerate Bell polynomials associated with Y, which are also degenerate
versions of the probabilisitc Stirling numbers of the second and the probabilistic Bell polynomials considered
in [2]. The definitions for those numbers and polynomials in (20) and (23) are very natural, as one can easily
figure out. Then we derive some properties, explicit expressions, certain identities and recurrence relations
for those numbers and polynomials. In addition, we consider the special cases that Y is the Poisson random
variable with parameter a(> 0) and the Bernoulli random variable with probability of success p, and derive
several identities.

The outline of this paper is as follows. In Section 1, we recall the degenerate exponentials and degenerate
logarithms. We remind the reader of the partial and complete Bell polynomials. We recall the degenerate
Stirling polynomials and numbers of the second kind together with their explicit expressions. We also remind
the reader of the degenerate Bell polynomials ¢, (). Assume that Y is a random variable such that the
moment generating function of Y, E[e!Y] =Y " E[Y"], (|t| <r), exists for some r > 0. Let (¥;);>1
be a sequence of mutually independent copies of the random variable Y, and let Sy, = Y1+Ya+---+ Yy, (k>
1), with Sy = 0. Then we recall the probablistic Stirling numbers of the second kind associated with Y,
Sy (n,m), which are defined in terms of the nth moments of Si, (k = 0,1,...,m), (see [2]). Section 2 is
the main result of this paper. Let (Yj);>1, Sk, (K = 0,1,...) be as in the above. Then we first define
the probabilistic degenerate Stirling numbers of the second kind associated with the random variable Y,
{Z}Y \» as a degenerate version of Sy (n, k). We derive for {Z}Y , an explicit expression in Theorem 2.1
and an expression in term of the partial Bell polynomial in Theorem 2.10. Next, we define the probabilistic
degenerate Bell polynomials associated with the random variable Y, (;SZ) ,(z), as a natural extension of the
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numbers {Z}YA' Then we derive for QSX A (x) a Dobinski-like formula in Theorem 2.2 and an expression

in terms of the partial Bell polynomials in Theorem 2.3. We obtain for ¢Z) y(z) a recurrence formula in
Theorem 2.4 and a binomial identity in Theorem 2.5. In Theorem 2.6, three identities all related to the
partial Bell polynomials are obtained. An expression for the kth derivative of QSX A () is derived in Theorem
2.7. In Theorems 2.8 and 2.9, some identities involving the degenerate Stirling polynomials of the second kind
and the generalized falling factorials are obtained. Let Y be the Poisson random variable with parameter
a(> 0). Then we derive an identity involving ¢, (ko) and {’z}y)\, (k = 0,1,...,m), in Theorem 2.11
and an expression of ¢,’;A(x) in terms of {Z})\ and ¢y (x) in Theorem 2.12. Let Y be the Bernoulli random
variable with probability of success p. Then we show (;557 A(@) = ép a(pr) in Theorem 2.13. Also, we find an

integral representation for the finite sum lerl ((1)n,>\ + 2+ + (k)n,A) in Theorem 2.14.

For any nonzero A € R, the degenerate exponentials are defined by

CI(E) = (14 )5 = i (xl)ﬂ’fv*tk, (see [4,10,19]), (1)
=0 '

where the generalized falling factorials are given by
@or =1 (@nr=2(@—-N(@—-2X)--(z-(n-1)A), (n=1). (2)

For x = 1, we write ex(t) = el (t).
Let log, (t) be the degenerate logarithm which is the compositional inverse of e (t) satisfying

ex(logy (1)) = logy (ex(t)) =*.

Then we have
o0 tkAk_l
oga(14+0) =317 (Dian,  (see 9]). 3)
k=1

For any integer k > 0, the partial Bell polynomials are given by

[e%s} k [e’e]
1 tm tm
N ( Zl xmm!> = Bni(a1,za,. .. nkn) o (see [6,10,18], (4)
m= n==k
where
Bn,k(x17x27 . 7xn7k+l)

n! a \" 22\ Tpoprr \ (5)
B 2 11!12---znk+1!<1!> <2!) "'((n—k+1)!) '

it Flp 1=k
li+2l+-+(n—k+1)l, _p11=n

The complete Bell polynomials are defined by

n

=t = t
exp <in“> = Bu(z1,72,... ) o (see [6,10,18)). (6)
i=1 n=0

The Stirling numbers of the second are given by

n=k
From (5) and (6), we note that
Boi(l,1,...,1) = {Z} (see [1,6,18)), (7)
and
By(x,z,...,x) = ¢u(x), (n=0), (8)
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where ¢,,(x) are the Bell polynomials given by
(et > tn
e?(e 1) = Z¢n(x) al’ (see [1-24]).

The degenerate Stirling numbers of the second kind are defined by

@ =3 {3} @ @020, (e ) 0
From (9), we note that
Lew-1 =Y {1} I az0. e, (10)
! P AN
Thus, by (10), we easily get
k
{Z}A = ]i, 3 (’;) (1) (s (n=k>0), (see [9,12,13,16]). (11)

" iso

Note that limyo {}}, = {3}, (n,k > 0). In [11], the degenerate Stirling polynomials of the second kind
are introduced by Kim as

;! (ex(t) — 1)kes(t) = Z S (n, k|z) ’i; (k> 0). (12)

Note that {}'}, = S2x(n,k|0), (n,k > 0). From (12), we have

Soa(n, klx) = ! Z < > @+ G)ar, (m=k=0), (see [11]). (13)

Recently, Kim-Kim introduced the degenerate Bell polynomials given by

n

@O0 3 o (e [8,13,15,16)). 14
) n'
n=0 )

Note that limy_,0 ¢n A (z) = dn(x), (n > 0).

We assume that Y is a random variable satisfying the moment conditions

E[Y|"] <00, mneNU{0}, lim

n—00

t|I"EY ™
EINTT _ o < (15)

for some r > 0, where E stands for the mathematical expectation. The equation (15) guarantees the existence
of the moment generating function of Y given by

E[e™] = BIY™, (see [2,21,22)). (16)
n!
n=0
Let (Y;);>1 be a sequence of mutually independent copies of the random variable Y, and let

Sg=Y1+Yo+---+Y,, keN, (Sy=0). (17)

The probabilistic Stirling numbers of the second kind associated with the random variable Y are defined by

Sy (n,m) = ! (m> (—D)™*E[S?], (0<m<n), (see[2)). (18)
k=0
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2. PROBABILISTIC DEGENERATE BELL POLYNOMIALS
ASSOCIATED WITH RANDOM VARIABLES

Let (Y;);>1 be a sequence of mutually independent copies of the random variable Y, and let
So=0, Sp=Y1+Ys+---4+Y,, keN (19)

Now, we consider the probabilistic degenerate Stirling numbers of the second kind associated with the random
variable Y given by

1 N ) "
(B @] -1) = n; {k}mn!, (k> 0). (20)
On the other hand, by (1), we get
k ,
a (B -1) = 5 (5 e (s o) 1)
=0
1 o- (k .y 1 o (k o Vit
00 1 k k » m
:ngo(k'jzo (J)(—l)k E[(Y1+Y2+ +Yj)n’A]> !
00 1 k k » i
"2 2 O C
Thus, by (20) and (21), we get
k
{Z}m “ 2 B CAM RN CEY ) (22)

By (11), we note that if ¥ = 1, then {}'}, , = {}},. Therefore, by (22), we obtain the following theorem.

Theorem 2.1. For n,k withn > k > 0, we have

(£

We define the probabilistic degenerate Bell polynomials associated with the random variable Y by

" (n
L@= {1} o wzo. (23)
k=0 Y, A
Note that if Y =1, then ¢} ,(z) = ¢na(2), (n >0). For =1, ¢} \ = ¢n.x(1) are called the probabilistic
degenerate Bell numbers associated with the random variable Y. From (23), we note that
z(E[e) — - 1 k
RO = 3k (Bl @] - ) (24
n=0
S n} "
= x
Z {k Y)\n!
- T - (bn)\(x) :
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By (24), we get

3 tn Y - —x T €Y
Z qb,iﬂa:)m — #(Blex (0]-1) _ o=z zEex (¥)] (25)

=e * Z x" kl! (E[e}\/(t)]) * =e 7 Z z" ;!E[e§1+'"+y"‘ )]
k=0

k=0
$n

Zeiwzxk;!E[(Yl +}/2+"'+Yk)n,A] !
:Z _sz Sknﬂtrz.

Therefore, by comparing the coefficients on both sides of (25), we obtain the following Dobinski-like formula.

Theorem 2.2. For n > 0, we have

From, (24), we have

0o m _ L
> @) = PO B 26)

o0

L& 7"
= kZ:O . (JJ;E[(Y)j,A]j!)
=" Bux (xE[(Y)l,A]v e vxE[(Y)”—’““’A]) f;

k=0n=k
- Z (ZBn,k(CEE[(Y)L)\], e ’xE[(Y)nkarL,\]) 7;"'
n=0 \Ek=0 .

Therefore, by comparing the coefficients on both sides of (26), we obtain the following theorem.
Theorem 2.3. Forn > 0, we have
=3 Buk(SBI 1Al 2BV )2l 0Bl Y ks1])-
k=0

From (24), we have

- nd o nd ey
ZQSZJFL,\@C):L, =@ ZQ%A(@Z, = dtez(E[ek ®1=1) (27)
n=0 ' '
=2E[Yel M (t)]e” e(E[e (1) - kZ:: V)il k' Z ne
—Z< Z( )e [(Ynmaﬁzk,x(x)) "
= !

Therefore, by comparing the coefficients on both sides of (27), we obtain the following recurrence relation.

Theorem 2.4. Forn > 0, we have

B 1 (@) = azz< JEL sl (o)
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Now, we observe that

o0 tn
Sl ty) = @) (BLeX (0]-1) _ go(BleX (0)-1u(BleY ()]-1

:ZQ%/,A Z¢
—ZZ< >¢k)\ P k)\(y):::

n=0 k=0
Therefore, by (28), we obtain the following binomial identity.

Theorem 2.5. For n > 0, we have

nxx‘f'y i()@m )P (1)-

k=0
From (24), we note that

D Gl = e EXOID = ((HX Ot )’
’ n:
n=0

_ () Bl (0] 1)k=i<i) ]:'(Za; )k

k=0

— <i>k Z n,k <Z51 ’\’¢2>‘""’¢ka+1,>\)$
- HZ:O (Z <k> k!Bn7k(¢{Aa¢{A, - ¢Z—k+1,x)) ZZ'

k=0
Thus, by comparing the coefficients on both sides of (29), we get

n

Z,\( )= Z <i)k!Bn,k(¢{m¢§,\, e ¢1};k+1,>\)a (n >0).

k=0
Now, we observe that

ter(EGA (t)]— tZ(bj)\ Z]¢J 1)\

y (31), we get
(iﬂ'ﬁm(rﬂ)j)k = ¢k (eI<E[e§<t>1—1>)’“
=1 :
:tkiijjjll (E[e ()] — 1) _tkzij]Z{ } "
= !

|
Y)\TL.

(S-S E )

n=~k

o0

S S ()

From (4) and (32), we note that

R N (- k "Ly t\"
nz:% <§ <k>kﬂxﬂ{ ; }Y)) Y (]Z_;Jcbjm(x)j!)

= 3 B (0300, 2010 (2). 360 (@), (0 — ko D6} a(@)) .

n!
—k
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Thus, by (33), we get
nik (Z)ijj{n;k}” :Bn)k(¢KA(x),2¢{A(x) J(n—k+ )¢y \(z )). (34)

Jj=0

From (4), we note taht

o) [e%s} k
IENCACID AT TN )" = ;,(Zvﬁf,» ) (33)
e - e

=k

{2 s (L)

n=j

By comparing the coefficients on both sides of (35), we have

B 6500 0 a) = S (0} )

=k
where n > k > 0. Therefore, by (30), (34), and (36), we obtain the following theorem.

Theorem 2.6. The following identities hold true.
walz) = ) Bog (672, 0% y >0
n,A(m) - Z k Pn,k d)l,A? ¢2,)\a R (bn—k—i-l,)\ ) (n = )7
N\ (n—k
(e {" T = B (265030800 (0= k4 DY a0, (0 0
YA
and

Bk (610 G3a @) 6 1 2(@) = Z{}{} o (s h)

Jj=k

From (24), we note that

o) d k v n d k v
_ w(BleY ()]-1)
Z(di) @l = () ¢ (37)
— (B o) - 1)’“ew<E[e§<t>]fl>
k! A
(1 SNyt
- k'Z{k} n Z(ij\( )jl
=k Y A" j=0
) n—k Tl—j m
> ({7} ()
n=*k jzz:o JA( ) k A J n!

Thus, by (37), we get

(&) wao-eZaofri) ()
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In particular, for k£ = 1, we have

Zd$ n)\

(E[e;V(t)] - 1)ez<E[@§<t>1—1> (39)
§¢
<zE g

Thus, by comparing the coefficients on both sides of (39), we get

tuqs

N
Il
-

|F”18

n—1
@) = Bl (e, (40)

=0
Therefore, by (38) and (40), we obtain the following theorem.

Theorem 2.7. For n,k € N withn > k, we have

(i) so=uE ol 7}, ()

In particular, for k =1, we have
d v — v n
daz & az) = Z E[(Y)n—jn] j7,\(95) i)
j=0

Let f be a real valued function. The forward difference operator A is defined by Af(z) = f(x+1) — f(x).
For y € R, the operator A, is defined by

Ayf(z) = flz+y) - flz), (see [2]), (41)
together with the iterates
Ay17y27--->ynzf(x) = Ayl ° Ayz ° Ays 6---0 Aymf(x)7 (917927 s 7ym) eR™. (42)
From (41) and (42), we note that
m - m m—j .
Bit,..1 =" = Y (M) d), (m e N (o)), (43)
S~ =0
Thus, by (42), we get
Do f () = (CD™f @)+ D (D™ D7 fla+yi i+ i), (44)
k=1 I (K)

where
I (k) = {i1,d2,... ik € {1,2,3,...,m}|i, #is, 7 # s}, (see [2]).
From (44), we note that

B[ By @) =3 (ZL) (1) E[f(a + ) (45)

] +Z( ) ym= kE[f(Hsk)],
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where m is a positive integer.
By inversion, from (45), we have

" (m
S (") E[Brrn s )] = B[+ 50 (46)
j=0
From (42), we note that
N N N kg
IURRIED SURFSLEIED 9 oY G IO (")
k=0 k=0 k=0 m=0
N N N N
m kY m kE+1 k
Feron £ (1) EeronE (4 -(4)
m=0 k=m m=0 k=m
N
N+1\ ..
-y (mH)A (@),
m=0
where N is a nonnegative integer.
Thus, by (13) and (43), we have
1 (k 1
_ k—m _ k
Saalne) = 32 ()0 mn = A (19)
where n, k are nonnegative integers with n > k.
From (47) and (48), we note that
N N N
N+1 N+1
= A= ! , . 4
> @+ k) Z <m+ 1) "(Z) z_: <m+ 1>m52,A(n mlz) (49)
k=0 =0 m=0
The equation (49) can be rewritten as
N N
N+1 N+1
! = A" (2)p
N m
N+ 1) Z (m) i
=> (=)™ "z + k)
= <m +1 P k
N N
N4+1\ /m m—
= Z(x +k)nx Z (m+ 1) <k)( ™% (N >=0)
k=0 m=k

Therefore, by (50), we obtain the following theorem.

Theorem 2.8. For N > 0, we have

N N
N +1
] :E AN,
mE:O (m—i—l)mSZA n, m|x) kzox—l—k A k),

where

A(N, k) = i (ZE) (Z‘)(—nmk. (51)

m=k

In view of (12), we define the probabilistic degenerate Stirling polynomials of the second kind associated
with the random wvariable Y by

kl, (Bl ) - 1)ke§(t) =3 Syaln, k|a:)Zl', (k> 0). (52)
! 2 !
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On the other hand, by binomial expansion, we get
]i! (E [eX (t)] — 1) ex( = 1 Z ( ) (E[ei/(t)})jei(t) (53)
. Z (i;)( 1y [
= ni_o% (;' j_zk:o (j) (1) TE[(M+ Yo+ 4+ Y+ $)n)\]> :::
oo E ok B n
=3 (a2 () Blis v amal ) e 620
By (52) and (53), we get
Sya(n, klz) = ;! jio (];) (=D B[+ Sj)nn], Sya(n,kl0) = {Z}m’ (n>k=0). (54)
From (45), we note that
L ‘
USSR DS (;) (~D* B[+ ) (55)
j=0

=klSya(n, klz), (n>=k=>0).
y (46) and (55), we get

5 (2)ete s =£ ()5 ()len o]

k=0
:Z Z iSya(n,jlz) = Z]'SY)‘ n, jlx) Z .
=0 j=0 J §=0 =j J
m m—j
Somansn(2)E (7))
Therefore, by (56), we obtain the following theorem.
Theorem 2.9. For m,n > 0, we have
m m | o j
Z f E[(z + Sk)n Z]SYAnﬂx) i 2
k=0 7=0
The Cauchy numbers of order r are given by
ol 6,19, 20]).
<10g1+t) Z > (see [6,19,20])
Let Y be a continuous uniform random variable on (0,1), and let (Y;);>1 be a sequence of mutually inde-
pendent copies of the random variable Y. Then we have
E{ Vi Y / / E()dys - - - dy = A k(ex(t) _ 1)k (57)
A log(1 + At)
_ RS <k>t e

tkz(z{ }A 2 A"m(;i))f:-
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Thus, by (57), we get

S ({1} et (1)) = i)

n=k \m=k
::T?iE[(Yl+ +Yk>nA:| TZE(Z)E[(E +Yi)n ,M}tn'

n=k

By comparing the coefficients on both sides of (58), we get

5 (o) ()= (el

m=k

where n > k > 0.
From (46) and (55), we have

i (Z)E[(m + Sk)m_k“} - i <T]:) Zk: <I;>E{AY1,Y2,...,YJ-(x)m_k)A}

S st £ () s
=34 ()ki( )smm )

where m is a nonnegative integer. Then, from (59) and (60), we have

(G, B ()l

§=0 k=j k=0
m m l L o (m
-3 e (7):
k=0 I=k A

n=k Y, A n! J=1 ]'
= B (Ll B o B )i )
n=~k

Thus, we get
{Z}YA = Bnx (E[(Y)l,x], E[(Y)2.],---» E[(Y)n—k-u,)\]),

where n > k > 0. Therefore, by (63), we obtain the following theorem.
Theorem 2.10. Forn > k > 0, we have

n
{1} = Bk (B0l B2l B i)
YA
Let Y be the Poisson random variable with parameter «(> 0). Then we have
Z B|(Si)na] ) = BleS ()] = Blel % (1)

= E[e;(t)]E[e{z (t)] -+ E[eX¥(t)] = ekeex(O=1)

= ngo ¢n7>\(/€a) n'
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4

(64)

2023



PROBABILISTIC DEGENERATE BELL POLYNOMIALS 539

By comparing the coefficients on both sides (64), we get
E[(Sk)n,)\] = E[(Yl +Yo 4o+ Yk)n)\] = ¢n,)\(ka)7 (n = O) (65)
Therefore, by (56) and (65), we obtain the following theorem.

Theorem 2.11. Let Y be the Poisson random variable with parameter a(> 0). Then we have

m

(2o -Eaf) () oo

k=0 J

Let Y be the Poisson random variable with parameter a(> 0). Then, from (24), we note that

Z QSZ)\(@ j; — (Bl (0]-1) _ a(er ™D 1) (66)
o0 1 o0 (o)

= kz:d)k(a:)akk! (ex(t) = 1)F = kzqsk z)ak z%{ }
=0 0 n=

-3 (2 {i) o)

Therefore, by (66), we obtain the following theorem.

Theorem 2.12. Let Y be the Poisson random variable with parameter a(> 0). Then we have

n

(@ ):Z{Z}/\sﬁk(x)ak, (n>0).

k=0

Let Y be the Bernoulli random variable with probability of success p. Then we have
E[(V)a] = Y (0nap(i) = 0)arp(0) + (Darp(1) = (Dap, (0> 1). (67)
Thus, by (63) and (67), we get

n
{1} = Bus(@na. 2 i)
YA

(68)
_ .k _ k)T
=p"Bnk ((1)1,A,(1)2,A,---,(1)n—k+1,x) D {k}x,
where n > k > 0. From (68), we have
Y _ - n l’k: - xk n = X n .
L= {3}, =200 =enen. @20 (69)

Therefore, by (68) and (69), we obtain the following theorem.

Theorem 2.13. Let Y be the Bernoulli random variable with probability of success p. Then we have

oy () = dua(pr), (n=0).

U, =i

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 30 No. 4 2023
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We observe that, for n,k > 1, we have

k
Wt @t + Bna = X 0mr = X3 {1} 00 (70)

By (70), we get
Wnr+ @t o= Y- {1} (1)) wem, ()

P [+1

Let Y be the Bernoulli random variable with probability of success p, and let (Y;);>1 be mutually inde-
pendent copies of Y. Then we have

Bl @] = Ble )] B[20)] - Bl )] (72)
(e -1 +1) =3 (§)sttest -y
1=0
_ é ( >pz|§:{7z} Z (k€ N)
Thus, by (72), we get
S BV +Yat-o Yk)n,)} Z = i E[(Sk)n A} ;, (73)
n=0 : n=0

From (46) and (73), we note that

Thus, we see that

ki1z<f:> { } :Alé)(f)j‘{?}mdp- (76)
By (71) and (76), we get
kil((l)”7A+(2)”7A+'”+(k“) k+1i(]::—rll> { }A (77)

=1

[ 200

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 30 No. 4 2023

Therefore, by (77), we obtain the following theorem.
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Theorem 2.14. Let Y be the Bernoulli random variable with probability of success p. For n,k € N, we

have
b (Dt @ar+ () :/Oljio@)].{?} .

YA

3. CONCLUSION

In this paper, we studied by using generating functions probabilistic degenerate Stirling numbers of the
second associated with Y and the probabilistic degenerate Bell polynomials associated with Y as degenerate
versions of the probabilistic Stirling numbers of the second associated with Y and probabilistic Bell poly-
nomials associated with Y, respectively (see [2]). Here Y is a random variable satisfying moment conditions
in (15) so that the moment generating function of Y exists. In more detail, we derived some expressions
and related identities for {Z}Y)\ (see Theorems 2.1, 2.6, 2.10), an identity involving Sy x(n, k|z) (see The-

orem 2.9), some expressions for gb}; y(z) (see Theorems 2.2, 2.3, 2.6), a recurrence relation (see Theorem
2.4) and some properties (see 2.5, 2.7) for ¢3;>\(x), an identity (see Theorem 2.11) and an expression for
(;SZ) A () (see Theorem 2.12) when Y is a Poisson random variable with parameter a(> 0), and an expression

for xk(x) (see Theorem 2.13) and an integral representation for kil ((1),17)\ +(2)pr + 0+ (k)nA) (see

Theorem 2.14) when Y is a Bernoulli random variable with probability of success p.

As one of our future projects, we would like to continue to study degenerate versions, A-analogues and
probabilistic versions of many special polynomials and numbers and to find their applications to physics,
science and engineering as well as to mathematics.
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