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Abstract — In L2(R
d), we consider an elliptic differential operator Aε=−div g(x/ε)∇+ε−2V (x/ε),

ε > 0, with periodic coefficients. For the nonstationary Schrödinger equation with the Hamiltonian
Aε, analogs of homogenization problems related to an arbitrary point of the dispersion relation of the
operator A1 are studied (the so called high-energy homogenization). For the solutions of the Cauchy
problems for these equations with special initial data, approximations in L2(R

d)-norm for small ε are
obtained.
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INTRODUCTION

0.1. Periodic homogenization

The study of the wave propagation in periodic structures is of significant interest both for applications and
from the theoretical point of view. Direct numerical simulations of such processes may be difficult. One of the
approaches to study these problems is the application of homogenization theory. The aim of homogenization
is to describe the macroscopic properties of inhomogeneous media by taking into account the properties of
the microscopic structure. An extensive literature is devoted to homogenization problems. First of all, we
mention the books [1–3].

Let us discuss a typical problem of homogenization theory. Let Γ be a lattice in R
d, and let Ω be the cell

of Γ. For any Γ-periodic function F (x), we denote F ε(x) := F (ε−1x), where ε > 0 is a (small) parameter.
In L2(R

d), consider a differential operator (DO) formally given by

̂Aε = − div gε(x)∇, (0.1)

where g(x) is a Hermitian Γ-periodic (d × d)-matrix-valued function, bounded and positive definite. The
operator (0.1) models the simplest cases of microinhomogeneous media with εΓ-periodic structure. Let uε(x)
be a (weak) solution of the elliptic equation

− div gε(x)∇uε(x) + uε(x) = f(x), (0.2)

where f ∈ L2(R
d). For ε → 0, the solution uε converges to the solution u0 of the “homogenized” equation:

− div g0∇u0(x) + u0(x) = f(x). (0.3)

The operator ̂Ahom = − div g0∇ is called the effective operator for ̂Aε. The matrix g0 is determined by a
well-known procedure (see, e.g., [1, Chap. 2, § 3], [4, Chap. 3, § 1]) that requires solving an auxiliary boundary
value problem on the cell Ω. Besides finding the effective coefficients, the following questions are of great
interest. What is the type of convergence uε → u0? What is an estimate for uε − u0?

0.2. Operator error estimates in homogenization

M. Birman and T. Suslina (see [4]) suggested the operator-theoretic (spectral) approach to homogenization
problems in R

d, based on the scaling transformation, the Floquet–Bloch theory, and the analytic perturbation
theory.

Let uε be the solution of equation (0.2), and let u0 be the solution of equation (0.3). In [4], it was proved
that

‖uε − u0‖L2(Rd) � Cε‖f‖L2(Rd). (0.4)
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Since uε = ( ̂Aε + I)−1f and u0 = ( ̂Ahom + I)−1f , estimate (0.4) can be rewritten in operator terms:

‖( ̂Aε + I)−1 − ( ̂Ahom + I)−1‖L2(Rd)→L2(Rd) � Cε. (0.5)

Parabolic equations were studied in [5, 6]. In operator terms, the following approximation for the parabolic

semigroup e−τ ̂Aε , τ > 0, was obtained:

‖e−τ ̂Aε − e−τ ̂Ahom

‖L2(Rd)→L2(Rd) � Cε(τ + ε2)−1/2, τ > 0. (0.6)

Estimates (0.5), (0.6) are order-sharp; the constants C are controlled explicitly in terms of the problem data.
These estimates are called operator error estimates in homogenization. More accurate approximations for
the resolvent and the exponential with correctors taken into account were found in [7–10].

A different approach to operator error estimates (the so called shift method) for the elliptic and parabolic
problems was suggested by V. Zhikov and S. Pastukhova in the papers [11–13]. See also the survey [14].

The situation with homogenization of nonstationary Schrödinger-type equations and hyperbolic equations
is quite different. The papers [15–20] were devoted to such problems. In operator terms, the behavior of the

operator-functions e−iτ ̂Aε and cos(τ ̂A1/2
ε ), ̂A−1/2

ε sin(τ ̂A1/2
ε ) (where τ ∈ R) for small ε was studied. For

these operator-functions, it is impossible to obtain approximations in the operator norm on L2(R
d), and we

are forced to consider the norm of operators acting from the Sobolev space Hq(Rd) (with a suitable q) to
L2(R

d). In [15], the following sharp-order estimates were proved:

‖e−iτ ̂Aε − e−iτ ̂Ahom

‖H3(Rd)→L2(Rd) � C(1 + |τ |)ε, (0.7)

‖ cos(τ ̂A1/2
ε )− cos(τ( ̂Ahom)1/2)‖H2(Rd)→L2(Rd) � C(1 + |τ |)ε. (0.8)

In [16], the result for the operator ̂A−1/2
ε sin(τ ̂A1/2

ε ) was obtained:

‖ ̂A−1/2
ε sin(τ ̂A1/2

ε )− ( ̂Ahom)−1/2 sin(τ( ̂Ahom)1/2)‖H1(Rd)→L2(Rd) � C(1 + |τ |)ε. (0.9)

Moreover, in [16], an approximation of the operator ̂A−1/2
ε sin(τ ̂A1/2

ε ) for a fixed τ in the (H2 → H1)-norm
with error of order O(ε) (with a corrector taken into account) was obtained. Next, in [17–20], it was shown
that these results are sharp with respect to the norm type as well as with respect to the dependence on τ
(for large τ). On the other hand, it was shown that under some additional assumptions (e.g., if the matrix
g(x) has real entries) estimates (0.7)–(0.9) can be improved:

‖e−iτ ̂Aε − e−iτ ̂Ahom‖H2(Rd)→L2(Rd) � C(1 + |τ |1/2)ε,
‖ cos(τ ̂A1/2

ε )− cos(τ( ̂Ahom)1/2)‖H3/2(Rd)→L2(Rd) � C(1 + |τ |1/2)ε, (0.10)

‖ ̂A−1/2
ε sin(τ ̂A1/2

ε )− ( ̂Ahom)−1/2 sin(τ( ̂Ahom)1/2)‖H1/2(Rd)→L2(Rd) � C(1 + |τ |1/2)ε. (0.11)

More accurate approximations of the operators e−iτ ̂Aε , cos(τ ̂A1/2
ε ), ̂A−1/2

ε sin(τ ̂A1/2
ε ) with correctors taken

into account were found in [21, 22, 23].
Note that in [4–10, 15–23], a much broader class of operators than (0.1) (including matrix DOs) was

studied. In particular, operators of the form

Aε = − div ǧε(x)∇ + ε−2V ε(x) (0.12)

were considered. Here ǧ(x) is a Γ-periodic positive definite and bounded (d×d)-matrix-valued function with
real entries, V (x) is a Γ-periodic real-valued function, V ∈ Lp(Ω) with a suitable p (and it is assumed that
inf specA1 = 0). For operator (0.12), it is impossible to find an operator Ahom with constant coefficients
such that the corresponding operator-functions converge to the operator-functions of Ahom. However, some
approximations can be found if we “border” operator-functions of ̂Ahom by appropriate rapidly oscillating
factors. In particular, an analog of (0.5) is as follows:

‖(Aε + I)−1 − [ωε]( ̂Ahom + I)−1[ωε]‖L2(Rd)→L2(Rd) � Cε,

where ω(x) is a positive Γ-periodic solution of the equation

− div ǧ(x)∇ω(x) + V (x)ω(x) = 0
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satisfying the normalization condition ‖ω‖2L2(Ω) = |Ω|, and ̂Ahom is the effective operator for operator (0.1)

with the matrix g(x) = ǧ(x)ω2(x).
Let us explain the method using the example of operator (0.1). The scaling transformation reduces the

investigation of the behavior of the operator ( ̂Aε+ I)−1, ε → 0, to studying the operator ( ̂A+ ε2I)−1, where
̂A = ̂A1 = − div g(x)∇. Next, by the Floquet–Bloch theory, the operator ̂A expands in the direct integral

of the operators ̂A(k) acting in the space L2(Ω). The operator ̂A(k) is defined by the differential expression
− divk g(x)∇k, where ∇k = ∇ + ik, divk = div+i〈k, ·〉, with periodic boundary conditions. The spectrum

of the operator ̂A(k) is discrete. It turns out that the behavior of the resolvent ( ̂A+ ε2I)−1 can be described

in terms of the threshold characteristics of ̂A at the edge of the spectrum, i.e., it is sufficient to know the
spectral decomposition of ̂A only near the lower edge of the spectrum. In particular, the effective matrix g0

is a Hessian of the first band function E1(k) at the point k = 0.
Finally, we mention the recent paper [24], where the authors investigated the problem of convergence rates

for a solution of the initial-Dirichlet boundary value problem for a wave equation; analogs of estimates (0.10),
(0.11) as well as results with the Dirichlet corrector were obtained.

0.3. High-frequency homogenization

As stated above, only a small neighborhood of the bottom of the spectrum (i.e., waves with low frequencies)
contributes to homogenization. However, we can consider problems of wave propagation when the frequency is
proportional to ε−1 or ε−2 (the high-frequency mode). In this case, even the leading order of the asymptotics
oscillates rapidly. These problems were studied in [2, Chapter 4] using WKB-ansatz.

Traditional methods of homogenization theory, related to asymptotic expansions in two scales, were ap-
plied to these problems in [25, 26]. We also cite the paper [27], where application of the results of [25] to
photonic crystals was considered. In [25], an asymptotic expansion for solutions of the equation

div gε(x)∇uε(x) + ν2ρε(x)uε(x) = 0,

which are perturbations of the standing waves, was obtained (the functions g(x), ρ(x) were supposed to be
sufficiently smooth and Γ-periodic). In [26], a similar problem for travelling waves was considered.

For a nonstationary Schrödinger equation, results of this kind are called effective mass theorems (see,
e.g., the course [28] and references therein). In the paper [29], homogenization of the Cauchy problem for a
nonstationary Schrödinger equation with well-prepared initial data concentrating on a Bloch eigenfunction
was studied using techniques of two-scale convergence and suitable oscillating test functions; a rigorous
derivation of effective mass theorems was obtained (in terms of the strong two-scale convergence). In [30],
the effective mass approximation and the k · p multi-band models, well known in solid-state physics, were
discussed. Such homogenization asymptotics were investigated by using the envelope-function decomposition.
These models were proved to be close (in the strong sense) to the exact dynamics. Moreover, the position
density was proved to converge weakly to its effective mass approximation.

Finally, we also mention the papers [31, 32], where asymptotics of Green’s function for different values of
the spectral parameter has been studied.

Now, let us discuss error estimates for high-frequency homogenization. This topic has been studied in [33–
37] in the one-dimensional case (d = 1) and in [38–40] in the case of arbitrary dimension d. It is well-known
that the spectrum of A has a band structure and may have gaps. For the sake of simplicity, we consider the
case where d = 1 and Γ = Z; in this case we shall use the notation Aε for operator (0.12). Let σ > 0 be a
(non-degenerate) left edge of a band with an odd number (� 3) in the spectrum of the operator A = A1.
Then for Aε, this edge ”moves” to the point ε−2σ (to the high-frequency (high-energy) region). Instead
of (0.2), we consider the equation

− d

dx
gε(x)

d

dx
uε(x) − (ε−2σ − κ

2)uε(x) = f(x), (0.13)

where f ∈ L2(R). It is supposed that κ > 0 is such that the point ε−2σ−κ
2 belongs to the gap in the spectrum

of the operator Aε. Similarly to (0.5), the question is reduced to studying the operator (Aε−(ε−2σ−κ
2)I)−1.

In [33], the following result was proved:

‖(Aε − (ε−2σ − κ
2)I)−1 − [ϕε

σ](A
hom
σ + κ

2I)−1[ϕε
σ]‖L2(R)→L2(R) � Cε. (0.14)

Here Ahom
σ = −bσ

d2

dx2 is the corresponding effective operator, bσ > 0 is the coefficient in the asymptotics of
the band function E(k) corresponding to the band for which σ is the left edge: E(k) ∼ σ+ bσk

2, k ∼ 0; and
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ϕσ is a real-valued periodic solution of the equation Aϕσ = σϕσ, normalized in L2(0, 1). Consequently, the
possibility of homogenization for equation (0.13) is a threshold effect near the edge of an internal gap.

Estimate (0.14) was obtained in [33] in the case where V (x) = 0. In [38], an analog of estimate (0.14)
was proved for operators (0.12) in arbitrary dimension d � 1. More accurate approximations with correctors
were obtained in [34, 35, 39].

Parabolic equations in the one-dimensional case were studied in [36]. It was proved that

‖e−τAεEAε [ε
−2σ,∞)− e−τσ/ε2 [ϕε

σ]e
−τAhom

σ [ϕε
σ]‖L2(R)→L2(R) � Ce−τσ/ε2ε(τ + ε2)−1/2, τ > 0,

and a more accurate approximation with a corrector was found. Here EAε [ε
−2σ,∞) is the spectral projection

of the operator Aε corresponding to the interval [ε−2σ,∞). The generalization of this result for the case of
arbitrary dimension was obtained in [40].

In the paper [37], operator error estimates for high-frequency homogenization of nonstationary Schrödinger
equations and hyperbolic equations in the one-dimensional case (d = 1) were studied. Let f1, f2 ∈ L2(R).
Consider the Cauchy problems

⎧

⎨

⎩

i
∂

∂τ
uε(x, τ) = (Aεuε)(x, τ),

uε(x, 0) = (Υεf1)(x),

⎧

⎨

⎩

∂2

∂τ2
vε(x, τ) = −(Aεvε)(x, τ) + ε−2σvε(x, τ),

vε(x, 0) = (Υεf1)(x), (∂τvε)(x, 0) = (Υεf2)(x),
(0.15)

where

(Υεf)(x) := (2π)−1/2

∫

R

(Φf)(k)

∞
∑

j=s

eikxϕj(x/ε, εk)χ˜Ωj−s+1
(εk) dk.

Here {eikxϕj(x, k)}∞j=s are the Bloch waves corresponding to the bands with the numbers j � s; ˜Ωj =
(−jπ,−(j−1)π]∪ ((j−1)π, jπ], j ∈ N, are the Brillouin zones. The initial data of problems (0.15) are super-
positions of the Bloch waves with the amplitudes, which are equal to the Fourier images (Φf1)(k), (Φf2)(k)
of the functions f1(x), f2(x), and belong to the subspace EAε [ε

−2σ,∞)L2(R). The following approximations
were found:

‖uε(·, τ) − e−iτε−2σϕε
σu0(·, τ)‖L2(R) � C(1 + |τ |1/2)ε‖f1‖H2(R), f1 ∈ H2(R), (0.16)

‖vε(·, τ) − ϕε
σv0(·, τ)‖L2(R) � C(1 + |τ |1/2)ε(‖f1‖H3/2(R) + ‖f2‖H1/2(R)),

f1 ∈ H3/2(R), f2 ∈ H1/2(R).
(0.17)

Here u0 and v0 are the solutions of the effective problems
⎧

⎨

⎩

i
∂

∂τ
u0(x, τ) = (Ahom

σ u0)(x, τ),

u0(x, 0) = f1(x),

⎧

⎨

⎩

∂2

∂τ2
v0(x, τ) = −(Ahom

σ v0)(x, τ),

v0(x, 0) = f1(x), (∂τv0)(x, 0) = f2(x).

Note that estimates (0.16), (0.17) can be formulated in operator terms; see [37, (6.6), (6.21)–(6.23)].

0.4. Main results

In the present paper, we study error estimates for high-energy homogenization of nonstationary Schrödinger
equations in the case of an arbitrary dimension. Let (k◦, λ0) be an arbitrary point of the dispersion rela-
tion BA of the operator A := A1. In particular, it may be a ”regular” edge of a spectral band (see Re-
mark 4.3 below) or a point where two branches of the dispersion relation meet (they often form the so-called
Dirac cone, see [41, Sec. 5.10]). Let {ei〈k◦,x〉ςj(k

◦,x)}nj=1 be corresponding Bloch waves; we suppose that
(

ςj(k
◦, ·), ςk(k◦, ·)

)

L2(Ω)
= δjk. We are interested in the behavior of the solutions uj,ε(x, τ), x ∈ R

d, τ ∈ R,

j = 1, . . . , n, of the following Cauchy problems for the nonstationary Schrödinger equation

⎧

⎨

⎩

i
∂

∂τ
uj,ε(x, τ) = (Aεuj,ε)(x, τ),

uj,ε(x, 0) = eiε
−1〈k◦,x〉ςεj (k

◦,x)fj(x),

as ε → 0, where ςεj (k
◦,x) := ςj(k

◦,x/ε), and fj(x), j = 1, . . . , n, are given functions. Main results of the
paper are the following estimates:

‖uj,ε(·, τ)− ueff
j,ε(·, τ)‖L2(Rd) � C(1 + |τ |)ε‖fj‖H3(Rd), j = 1, . . . , n,
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where

ueff
j,ε(x, τ) := eiε

−1〈k◦,x〉
n
∑

l=1

ςεl (k
◦,x)veffjl,ε(x, τ)

and veff
j,ε(x, τ) = (veffj1,ε(x, τ), . . . , v

eff
jn,ε(x, τ))

t is the solution of the ”effective” system

⎧

⎨

⎩

i
∂

∂τ
veff
j,ε(x, τ) = Aeff

ε veff
j,ε(x, τ),

veff
j,ε(x, 0) = fj(x)ej .

Here Aeff
ε is an effective operator with constant coefficients (its definition is given below in (4.3), (4.4)), and

ej is the element of the canonical basis in C
n.

0.5. Plan of the paper

The paper consists of Introduction and four more sections. In Section 1, a precise definition of the operator
A is given, its factorization is described. Next, in Section 2, we describe a spectral expansion of the operator
A (partial diagonalization via the Gelfand transformation). Then, in Section 3, spectral approximations
for the operator A in some neighbourhood of the point (k◦, λ0) ∈ BA are obtained, and also the effective
characteristics are calculated. Finally, in Section 4, we formulate and prove the main result of the paper.

0.6. Notation

Let H and H∗ be complex separable Hilbert spaces. The symbols (·, ·)H and ‖·‖H denote the inner product
and the norm in H. The symbol ‖ · ‖H→H∗ stands for the norm of a bounded linear operator from H to H∗.
Sometimes we omit the indices. By I = IH we denote the identity operator in H. If A : H → H∗ is a linear
operator, then DomA and RanA stand for its domain and range, respectively. If N is a subspace in H, then
N⊥ := H � N. If P is the orthogonal projection of H onto N, then P⊥ is the orthogonal projection of H
onto N⊥. Next, if A is a selfadjoint operator in some Hilbert space, then we use the notation specA for the
spectrum of A.

The symbol 〈·, ·〉 stands for the standard inner product in C
n; � = �n is the identity (n × n)-matrix.

For z ∈ C, by z∗ we denote the complex conjugate number. If a is an (m × n)-matrix, then at denotes the
transpose matrix, and a∗ stands for the adjoint (n ×m)-matrix. By {ej}nj=1 we denote the canonical basis
in C

n.
The standard Lp classes of functions in a domain O ⊂ R

d are denoted by Lp(O), 1 � p � ∞; Hq(O)
are the Sobolev classes of functions in a domain O ⊂ R

d of order q ∈ R and integrability index 2. If f is a
measurable function, then the operator of multiplication by the function f in the space L2 is denoted by the
same symbol.

Next, x = (x1, . . . , xd) ∈ R
d, iDj =

∂
∂xj

, j = 1, . . . , d, D = −i∇ = (D1, . . . , Dd).

By Φ := Φx→k we denote the Fourier transform on R
d defined on the Schwartz class by the formula

(Φv)(k) = (2π)−d/2

∫

R

e−i〈k,x〉v(x) dx, v ∈ S(Rd),

and extended by continuity up to the unitary mapping Φ: L2(R
d) → L2(R

d). For the ball of radius κ

centered at k′ ∈ R
d, we use the notation Bκ(k

′).

1. THE OPERATOR A

Let Γ be a lattice in R
d generated by a basis a1, . . . , ad:

Γ =
{

a ∈ R
d : a =

d
∑

j=1

njaj , n
j ∈ Z

}

,

and let Ω be the elementary cell of the lattice Γ:

Ω :=
{

x ∈ R
d : x =

d
∑

j=1

ξjaj , 0 < ξj < 1
}

.
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The basis b1, . . . ,bd dual to a1, . . . , ad is defined by the relations
〈

bl, aj
〉

= 2πδlj . This basis generates the

lattice ˜Γ, dual to the lattice Γ. By ˜Ω we denote the central Brillouin zone of the lattice ˜Γ. This is the set
with the interior

Int ˜Ω =
{

k ∈ R
d : |k| < |k− b|, 0 = b ∈ ˜Γ

}

(a centrally symmetric convex polytope), which contains only one face from each pair of opposite ones. By
˜H1(Ω) we denote the subspace of functions in H1(Ω), whose Γ-periodic extension to R

d belongs to H1
loc(R

d).
In L2(R

d), d � 1, we consider a selfadjoint Γ-periodic Schrödinger operator A generated by the differential
expression

A = − div ǧ(x)∇ + V (x) = D∗ǧ(x)D + V (x) (1.1)

with metric ǧ(x) and potential V (x). It is supposed that

ǧ is a measurable symmetric matrix-valued function with real entries,

α0�d � ǧ(x) � α1�d, 0 < α0 � α1 < ∞,

}

(1.2)

and V (x) is a real-valued function such that

V ∈ Lq(Ω), q > d/2 for d � 2, q = 1 for d = 1.

The precise definition of the operator A is given in terms of the semi-bounded closed quadratic form

a[u, u] =

∫

R

(〈ǧ(x)Du,Du〉+ V (x)|u(x)|2) dx, u ∈ H1(Rd). (1.3)

Adding an appropriate constant to V , we assume that inf specA = 0. Under this assumption the operator
A admits a convenient factorization (see, e.g., [42], [4, Chap. 6, Sec. 1.1]). To describe this factorization, we
consider the equation

D∗ǧ(x)Dω(x) + V (x)ω(x) = 0

(which is understood in the weak sense). There exists a (strictly) positive Γ-periodic solution ω ∈ ˜H1(Ω) of
this equation defined up to a constant factor. This factor can be fixed so that

‖ω‖2L2(Ω) = |Ω|. (1.4)

It turns out that ω ∈ Cκ for some κ > 0. Moreover, the function ω is a multiplier in H1(Rd) and in
˜H1(Ω). The substitution u = ωψ transforms form (1.3) to the form

a[u, u] =

∫

Rd

ω2(x) 〈ǧ(x)Dψ,Dψ〉 dx, u = ωψ, ψ ∈ H1(Rd). (1.5)

This yields the factorization

A = ω(x)−1D∗g(x)Dω(x)−1, g = ω2(x)ǧ(x). (1.6)

We take the representation (1.6) of the operator A as the initial definition, i.e., we assume that A is the
operator generated by form (1.5), where ǧ and ω are Γ-periodic functions satisfying (1.2), (1.4) and the
conditions ω(x) > 0; ω, ω−1 ∈ L∞. We can return to representation (1.1) putting V = −ω−1(D∗ǧDω).
However, the potential V may be highly singular.

2. SPECTRAL DECOMPOSITION OF THE OPERATOR A

We need to describe the spectrum of the operator (1.6). For this, let us introduce the objects associated
with the spectral resolution of operator (1.6). Put

H1(O) = {f : ω−1f ∈ H1(O)}, where O = R
d or Ω,

˜H1(Ω) = {f : ω−1f ∈ ˜H1(Ω)}, ‖f‖H1(O) = ‖ω−1f‖H1(O).

In L2(Ω), consider the family of quadratic forms

a(k)[u, u] =

∫

Ω

〈

g(x)(D + k)ω−1u, (D+ k)ω−1u
〉

dx, u ∈ ˜H1(Ω), k ∈ R
d. (2.1)
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The operator generated by form (2.1) is denoted by A(k). Formally, we can write

A(k) = ω(x)−1(D+ k)∗g(x)(D+ k)ω(x)−1.

The parameter k ∈ R
d is called the quasimomentum. Let El(k), l ∈ N, be consecutive (counted with

multiplicities) eigenvalues of the operator A(k), and let ϕl(·,k), l ∈ N, be the corresponding normalized
eigenfunctions:

ω(x)−1(D+ k)∗g(x)(D+ k)ω(x)−1ϕl(x,k) = El(k)ϕl(x,k), l ∈ N. (2.2)

The functions El(k) are called band functions ; they are ˜Γ-periodic. Next, ϕl(x,k) are Γ-periodic in x, and

the functions ei〈k,x〉ϕl(x,k) can be chosen to be ˜Γ-periodic in k.

Remark 2.1. Multiplying (2.2) by ω(x) from the left and putting φl(x,k) := ω(x)−1ϕl(x,k), we arrive
at the following equation for φl(x,k):

(D+ k)∗g(x)(D+ k)φl(x,k) − El(k)ω(x)
2φl(x,k) = 0, l ∈ N. (2.3)

Separating the real and imaginary parts in (2.3), we obtain a system of two equations with real-valued
coefficients and identical principal parts. In [43, Chap. VII, § 3, Theorem 3.1], it was proved that solutions
of such systems with Dirichlet conditions belong to the Hölder class as functions of x. However, the proof
carries over to the case of periodic boundary conditions without significant changes. This together with
ω ∈ L∞ yields ϕl ∈ L∞, l ∈ N. See also [44, § 4, Sec. 9] and [38, § 1, Sec. 1].

Initially, the Gelfand transformation G is defined on functions of the Schwartz class v ∈ S(Rd) by the
formula

ṽ(x,k) = (G v)(x,k) = |˜Ω|−1/2
∑

a∈Γ

e−i〈k,x+a〉v(x+ a), x ∈ R
d, k ∈ R

d.

The function ṽ(x,k) is Γ-periodic in x and ˜Γ-quasiperiodic in k (i.e. the function ei〈x,k〉ṽ(x,k) is ˜Γ-periodic

in k). So, it suffices to consider ṽ(x,k) for x ∈ Ω and k ∈ T
d, where T

d is the torus Rd/˜Γ with the induced

R
d-metric. Points of the torus k ∈ T

d can be realized, for example, as points in ˜Ω. The inverse transform is
given by

v(x) = (G −1ṽ)(x) = |˜Ω|−1/2

∫

Td

ṽ(x,k)ei〈x,k〉dk, x ∈ R
d. (2.4)

Since
∫

Td

∫

Ω
|ṽ(x,k)|2dx dk =

∫

Rd |v(x)|2dx, the transformation G extends by continuity up to a unitary
mapping:

G : L2(R
d) →

∫

Td

⊕L2(Ω) dk =: K.

The relation v ∈ H1(Rd) is equivalent to the fact that ṽ(·,k) ∈ ˜H1(Ω) for a.e. k ∈ T
d and

∫

Td

∫

Ω

(

|(D+ k)ṽ(x,k)|2 + |ṽ(x,k)|2
)

dx dk < ∞.

Under the Gelfand transformation G , the operator of multiplication by a bounded Γ-periodic function in
L2(R

d) turns into multiplication by the same function on the fibers of the direct integral K. The operator

D applied to v ∈ H1(Rd) turns into the operator D+ k applied to ṽ(·,k) ∈ ˜H1(Ω).
Under the Gelfand transformation G the operator A expands in the direct integral of the operators A(k):

GAG −1 =

∫

Td

⊕A(k) dk. (2.5)

This means the following. If v ∈ H1(Rd), then

ṽ(·,k) ∈ ˜H1(Ω) for a.e. k ∈ T
d, (2.6)

a[v, v] =

∫

Td

a(k)[ṽ(·,k), ṽ(·,k)] dk. (2.7)

Conversely, if ṽ ∈ K satisfies (2.6) and the integral in (2.7) is finite, then v ∈ H1(Rd) and (2.7) is valid.
From (2.5) it follows that the spectrum of A is the union of segments (spectral bands) RanEj , j ∈ N.
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Introduce the operator P0 acting as averaging over the cell Ω:

P0u = |Ω|−1

∫

Ω

u(x) dx, u ∈ L2(Ω).

The operator P0 is the orthogonal projection of L2(Ω) onto the subspace of constants

N0 = {u ∈ L2(Ω): u = c ∈ C}.

The following relation is valid (see, e.g., [7, § 6, Sec. 6.1]):

([P0]G u)(k) = |Ω|−1/2(Φu)(k), u ∈ L2(R
d), k ∈ R

d. (2.8)

Here [P0] is the projection in K that acts on fibers as the operator P0. Conversely, if supp c ⊂ Bκ(k
′)

with some k′ ∈ R
d and sufficiently small κ, and c(k) ∈ N0, k ∈ Bκ(k

′), then from (2.4) and the relation

|Ω||˜Ω| = (2π)d it follows that

(G −1c)(x) = |Ω|1/2(Φ∗c)(x). (2.9)

In (2.9), the points k ∈ T
d are realized as points from a set ˜Ωk′ such that Bκ(k

′) ⊂ ˜Ωk′ .
Let us fix some point k◦ ∈ T

d and a number s ∈ N. Put λ0 := Es(k
◦). Let n be the multiplicity of

the eigenvalue λ0 of the operator A(k◦), and let d0 be the distance from the point λ0 to the rest of the
spectrum of A(k◦). By the continuity of the band functions, we can choose κ > 0 such that for |δk| � κ,
δk := k − k◦, there are exactly n eigenvalues (counted with multiplicities) of the operator A(k) on the
segment [λ0 − d0/3, λ0 + d0/3], and

(

[λ0 − 2d0/3, λ0 − d0/3) ∪ (λ0 + d0/3, λ0 + 2d0/3]
)

∩ specA(k) = ∅.

Introduce the notation N := Ker(A(k◦)−λ0I). Let P be the orthogonal projection of L2(Ω) onto N; by F (k)
we denote the spectral projection of the operator A(k) corresponding to the segment [λ0 − d0/3, λ0 + d0/3].

3. SPECTRAL APPROXIMATIONS

3.1. Approximations for F (k) and A(k)F (k)

In this section, we want to find approximations for the operators F (k) and A(k)F (k) for |δk| � κ. For
this, we shall integrate the difference of the resolvents for A(k) and A(k◦) along an appropriate contour
(see, e.g., [4, Chap. 1, Sec. 1.7, § 2, 3], [45, § 4, Sec. 4.2, the third method]). Here we apply the method
of [45]. However, there is the complication that the (standard) second resolvent identity is not applicable,
because, in general, the difference A(k)−A(k◦) makes no sense. In order to overcome this difficulty, we use
the following lemma. (Here and throughout this section we drop the indices in the inner product and the
norm in L2(Ω).)

Lemma 3.1. We have
((

(A(k) − ζI)−1 − (A(k◦)− ζI)−1
)

η, ϑ
)

= −
(

a(k)− a(k◦)
)

[(A(k) − ζI)−1η, (A(k◦)− ζ∗I)−1ϑ],

η, ϑ ∈ L2(Ω), ζ ∈ ρ(A(k)) ∩ ρ(A(k◦)).

(3.1)

Proof. Consider the form (a(k)−a(k◦))[u, v] on the elements u = (A(k)−ζI)−1η and v = (A(k◦)− ζ∗I)−1ϑ,
where η, ϑ ∈ L2(Ω), ζ ∈ ρ(A(k)) ∩ ρ(A(k◦)). Obviously, (A(k) − ζI)−1η ∈ DomA(k) and

A(k)(A(k) − ζI)−1 = I + ζ(A(k) − ζI)−1,

whence

(a(k)− a(k◦))[u, v] = (A(k)u, v) − (u,A(k◦)v) = (η, (A(k◦)− ζ∗I)−1ϑ)− ((A(k) − ζI)−1η, ϑ)

+ (ζ(A(k) − ζI)−1η, (A(k◦)− ζ∗I)−1ϑ)− ((A(k) − ζI)−1η, ζ∗(A(k◦)− ζ∗I)−1ϑ).

The last two terms cancel out, which yields (3.1).
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Denote
R(k, ζ) := (A(k) − ζI)−1, R0(ζ) := R(k◦, ζ) = (A(k◦)− ζI)−1.

Let γ be a contour on the complex plane that is equidistant to the interval [λ0 − d0/3, λ0 + d0/3] and passes
through the point λ0 + d0/2. Its length is equal to

lγ =
π + 4

3
d0.

The resolvent on this contour satisfies the estimates

‖R(k, ζ)‖ � 6d−1
0 , ‖R0(ζ)‖ � 6d−1

0 , |δk| � κ, ζ ∈ γ. (3.2)

Passing from forms to operators, we rewrite identity (3.1) as

R(k, ζ) = R0(ζ)− Y0(δk, ζ
∗)∗X (k, ζ) −X0(ζ

∗)∗Y(δk,k, ζ) − Y0(δk, ζ
∗)∗Y(δk,k, ζ), (3.3)

where
X (k, ζ) = g1/2(D+ k◦)ω−1R(k, ζ), Y(δk,k, ζ) = g1/2(δk)ω−1R(k, ζ),

X0(ζ) = g1/2(D+ k◦)ω−1R0(ζ), Y0(δk, ζ) = g1/2(δk)ω−1R0(ζ).
(3.4)

Let us estimate the norms of the operators X (k, ζ), X0(ζ), Y(δk,k, ζ) and Y0(δk, ζ) for |δk| � κ, ζ ∈ γ.
Clearly,

‖Y(δk,k, ζ)‖ � C1|δk|, ‖Y0(δk, ζ)‖ � C1|δk|, |δk| � κ, ζ ∈ γ; (3.5)

C1 := 6‖g‖1/2L∞
‖ω−1‖L∞d−1

0 .

Next, using the identity A(k)R(k, ζ) = I + ζR(k, ζ) and taking (3.2) into account, we get

‖A(k)R(k, ζ)‖ � 1 + (λ0 + d0/2)(6d
−1
0 ) = 4 + 6λ0d

−1
0 , |δk| � κ, ζ ∈ γ; (3.6)

‖A(k)1/2R(k, ζ)u‖2 = (A(k)R(k, ζ)u,R(k, ζ)u) � (24d−1
0 + 36λ0d

−2
0 )‖u‖2,

u ∈ L2(Ω), |δk| � κ, ζ ∈ γ;

whence

‖X (k, ζ)‖ � ‖g1/2(D+ k)ω−1R(k, ζ)‖ + ‖g1/2(δk)ω−1R(k, ζ)‖
= ‖A(k)1/2R(k, ζ)‖ + ‖g1/2(δk)ω−1R(k, ζ)‖

� (24d−1
0 + 36λ0d

−2
0 )1/2 + 6‖g‖1/2L∞

‖ω−1‖L∞κd−1
0 =: Č2, |δk| � κ, ζ ∈ γ;

(3.7)

‖X0(ζ)‖ � (24d−1
0 + 36λ0d

−2
0 )1/2 =: C2, |δk| � κ, ζ ∈ γ. (3.8)

Now, iterating, we apply identity (3.3) for the resolvent R(k, ζ), contained in the terms Y0(δk, ζ
∗)∗X (k, ζ)

and X0(ζ
∗)∗Y(δk,k, ζ) in (3.3). Thus, the terms of order |δk| will not contain R(k, ζ):

R(k, ζ) = R0(ζ) − Y0(δk, ζ
∗)∗X0(ζ)−X0(ζ

∗)∗Y0(δk, ζ) + R1(δk,k, ζ). (3.9)

Here R1(δk,k, ζ) is defined by the expression

R1(δk,k, ζ) = Y0(δk, ζ
∗)∗X0(ζ)Y̌(δk)∗X (k, ζ) + Y0(δk, ζ

∗)∗X̌0(ζ)Y(δk,k, ζ)
+ Y0(δk, ζ

∗)∗X0(ζ)Y̌(δk)∗Y(δk,k, ζ) + X0(ζ
∗)∗Y0(δk, ζ)Y̌(δk)∗X (k, ζ)

+ X0(ζ
∗)∗Y̌(δk)X0(ζ

∗)∗Y(δk,k, ζ) + X0(ζ
∗)∗Y0(δk, ζ)Y̌(δk)∗Y(δk,k, ζ) − Y0(δk, ζ

∗)∗Y(δk,k, ζ).

We have denoted

X̌0(ζ) := g1/2(D+ k◦)ω−1
(

g1/2(D+ k◦)ω−1R0(ζ
∗)
)∗
, Y̌(δk) := g1/2(δk)ω−1. (3.10)

Let us estimate the norms of the operators X̌0(ζ) and Y̌(δk). Write X̌0(ζ) as

X̌0(ζ) = g1/2(D+ k◦)ω−1
(

g1/2(D+ k◦)ω−1R0(ζ
∗)A(k◦)1/2A(k◦)−1/2

)∗

= g1/2(D+ k◦)ω−1A(k◦)−1/2
(

g1/2(D+ k◦)ω−1R0(ζ
∗)A(k◦)1/2

)∗

= g1/2(D+ k◦)ω−1A(k◦)−1/2
(

g1/2(D+ k◦)ω−1A(k◦)−1/2A(k◦)R0(ζ
∗)
)∗
.
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We have
‖X̌0(ζ)‖ � ‖g1/2(D+ k◦)ω−1A(k◦)−1/2‖2‖A(k◦)R0(ζ

∗)‖.
By (3.6) and the identity ‖g1/2(D+ k◦)ω−1A(k◦)−1/2‖ = 1,

‖X̌0(ζ)‖ � 4 + 6λ0d
−1
0 =: C3, |δk| � κ, ζ ∈ γ. (3.11)

Next, obviously,

‖Y̌(δk)‖ � C4|δk|, C4 := ‖g‖1/2L∞
‖ω−1‖L∞ , |δk| � κ, ζ ∈ γ. (3.12)

In order to get rid of the resolvent R(k, ζ) in the terms of order |δk|2, we apply identity (3.3) once again:

R(k, ζ) = R0(ζ)− Y0(δk, ζ
∗)∗X0(ζ) −X0(ζ

∗)∗Y0(δk, ζ) − Y0(δk, ζ
∗)∗Y0(δk, ζ)

+ Y0(δk, ζ
∗)∗X0(ζ)Y̌(δk)∗X0(ζ) + Y0(δk, ζ

∗)∗X̌0(ζ)Y0(δk, ζ)

+ X0(ζ
∗)∗Y0(δk, ζ)Y̌(δk)∗X0(ζ) + X0(ζ

∗)∗Y̌(δk)X0(ζ
∗)∗Y0(δk, ζ) + R2(δk,k, ζ),

(3.13)

where

R2(δk,k, ζ) = Y0(δk, ζ
∗)∗X0(ζ)Y̌(δk)∗Y(δk,k, ζ) + X0(ζ

∗)∗Y0(δk, ζ)Y̌(δk)∗Y(δk,k, ζ)
− Y0(δk, ζ

∗)∗X0(ζ)Y̌(δk)∗X0(ζ)Y̌(δk)∗X (k, ζ) − Y0(δk, ζ
∗)∗X0(ζ)Y̌(δk)∗X̌0(ζ)Y(δk,k, ζ)

− Y0(δk, ζ
∗)∗X0(ζ)Y̌(δk)∗X0(ζ)Y̌(δk)∗Y(δk,k, ζ) − Y0(δk, ζ

∗)∗X̌0(ζ)Y̌(δk)Y0(δk, ζ
∗)∗X (k, ζ)

− Y0(δk, ζ
∗)∗X̌0(ζ)Y̌(δk)X0(ζ

∗)∗Y(δk,k, ζ) − Y0(δk, ζ
∗)∗X̌0(ζ)Y̌(δk)Y0(δk, ζ

∗)∗Y(δk,k, ζ)
−X0(ζ

∗)∗Y0(δk, ζ)Y̌(δk)∗X0(ζ)Y̌(δk)X (k, ζ) −X0(ζ
∗)∗Y0(δk, ζ)Y̌(δk)∗X̌0(ζ)Y(δk,k, ζ)

−X0(ζ
∗)∗Y0(δk, ζ)Y̌(δk)∗X0(ζ)Y̌(δk)∗Y(δk,k, ζ) −X0(ζ

∗)∗Y̌(δk)X0(ζ
∗)∗Y̌(δk)Y0(δk, ζ

∗)∗X (k, ζ)

−X0(ζ
∗)∗Y̌(δk)X0(ζ

∗)∗Y̌(δk)X0(ζ
∗)∗Y(δk,k, ζ) −X0(ζ

∗)∗Y̌(δk)X0(ζ
∗)∗Y̌(δk)Y0(δk, ζ

∗)∗Y(δk,k, ζ)
+ Y0(δk, ζ

∗)∗Y̌(δk)Y0(δk, ζ
∗)∗X (k, ζ) + Y0(δk, ζ

∗)∗Y̌(δk)X0(ζ
∗)∗Y(δk,k, ζ)

+ Y0(δk, ζ
∗)∗Y̌(δk)Y0(δk, ζ

∗)∗Y(δk,k, ζ).

The operators R1(δk,k, ζ) and R2(δk,k, ζ) satisfy the estimates

‖R1(δk,k, ζ)‖ � C5|δk|2, ‖R2(δk,k, ζ)‖ � C6|δk|3, |δk| � κ, ζ ∈ γ; (3.14)

C5 = 2C1C2Č2C4 + C2
1C3 + 2C2

1C2C4κ + C1C
2
2C4 + C2

1 ,

C6 = 3C2
1C2C4 + 3C1C

2
2 Č2C

2
4 + 3C2

1C2C3C4 + 3C2
1C

2
2C

2
4κ

+ C2
1 Č2C3C4 + C3

1C3C4κ + C1C
3
2C

2
4 + C2

1 Č2C4 + C3
1C4κ.

Proposition 3.2. The operator-valued functions X (k, z), Y(δk,k, z) and X0(z), Y0(δk, z), X̌0(z) are
holomorphic in z on the domains C \ specA(k) and C \ specA(k◦), respectively.

Proof. The holomorphy of Y(δk,k, z) and Y0(δk, z) directly follows from the holomorphy of the resolvents.
Next, consider X0(z) and X (k, z). We have

X0(z) = g1/2(D+ k◦)ω−1R0(z) = g1/2(D+ k◦)ω−1(A(k◦) + I)−1
(

(A(k◦) + I)R0(z)
)

.

The operator g1/2(D+ k◦)ω−1(A(k◦) + I)−1 is bounded, since

‖g1/2(D+ k◦)ω−1(A(k◦) + I)−1‖ = ‖A(k◦)1/2(A(k◦) + I)−1‖ � 1

2

(here we have used the spectral theorem and the inequality t1/2/(t+1) � 1/2, t � 0), and the operator-valued
function (A(k◦) + I)R0(z) is holomorphic on C \ specA(k◦), because A(k◦)R0(z) = I + zR0(z). Therefore,
X0(z) is holomorphic. Then,

X (k, z) = g1/2(D+ k)ω−1R(k, z)− Y(δk,k, z).

Similarly, it is easy to check that the first term is holomorphic on C\specA(k). Thus, X (k, z) is holomorphic.
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It remains to show the holomorphy of X̌0(z). Let us write

X̌0(z) =
(

g1/2(D+ k◦)ω−1(A(k◦) + I)−1/2
)

(A(k◦) + I)R0(z)
(

g1/2(D+ k◦)ω−1(A(k◦) + I)−1/2
)∗

.

It is easy to check, that the operator g1/2(D+ k◦)ω−1(A(k◦) + I)−1/2 is bounded:

‖g1/2(D+ k◦)ω−1(A(k◦) + I)−1/2‖ = ‖A(k◦)1/2(A(k◦) + I)−1/2‖ � 1,

and the operator-valued function (A(k◦) + I)R0(z) is holomorphic on C \ specA(k◦). This completes the
proof.

In this section, our goal is to find approximations for F (k) and A(k)F (k). Let us start with the operator
F (k). By virtue of Riesz–Dunford operator calculus,

F (k) =
−1

2πi

∮

γ

(A(k) − ζI)−1dζ. (3.15)

Substituting (3.3) into (3.15) and using relations (3.5), (3.7), (3.8), and the identity

P =
−1

2πi

∮

γ

(A(k◦)− ζI)−1dζ,

we obtain the following result:

‖F (k)− P‖ � C7|δk|, |δk| � κ; (3.16)

C7 = (2π)−1lγ(C1C2 + C1Č2 + C2
1κ).

We also need more precise approximation for the projector F (k). For this, we substitute (3.9) into (3.15):

F (k) = P + F1(δk) + Φ(δk,k), |δk| � κ; (3.17)

F1(δk) :=
1

2πi

∮

γ

(

Y0(δk, ζ
∗)∗X0(ζ) + X0(ζ

∗)∗Y0(δk, ζ)
)

dζ, (3.18)

Φ(δk,k) :=
−1

2πi

∮

γ

R1(δk,k, ζ)dζ.

Calculate the integral in the expression for F1(δk). Recall notation (3.4), take into account the decomposition
of the resolvent

R0(ζ) = R0(ζ)P +R0(ζ)P
⊥ = (λ0 − ζ)−1P +R0(ζ)P

⊥, ζ ∈ γ, (3.19)

the holomorphy of the operator-valued function R⊥
0 (ζ) := R0(ζ)P

⊥ inside the contour γ, the equality
∮

γ(λ0 − ζ)−2dζ = 0, and use the fact that integral over γ of a holomorphic function inside the contour
is equal to zero. Therefore,

F1(δk) =
1

2πi

∮

γ

(( 1

λ0 − ζ
P +R⊥

0 (ζ)
)

ω−1(δk)∗g(D+ k◦)ω−1
( 1

λ0 − ζ
P +R⊥

0 (ζ)
)

+
(

(D+ k◦)ω−1
( 1

λ0 − ζ∗
P +R⊥

0 (ζ
∗)
))∗

g(δk)ω−1
( 1

λ0 − ζ
P +R⊥

0 (ζ)
))

dζ

= F×
1 (δk) + F×

1 (δk)∗,

(3.20)

where the operator F×
1 (δk) takes N⊥ into N and is defined by the expression

F×
1 (δk)

=
1

2πi

∮

γ

(

1
λ0−ζPω−1(δk)∗g(D+ k◦)ω−1R⊥

0 (ζ) +
(

(D+ k◦)ω−1 1
λ0−ζ∗P

)∗
g(δk)ω−1R⊥

0 (ζ)
)

dζ

= −Pω−1(δk)∗g(D+ k◦)ω−1R⊥
0 (λ0)− ((D+ k◦)ω−1P )∗g(δk)ω−1R⊥

0 (λ0).

(3.21)

By (3.14), the remainder Φ(δk,k) satisfies the estimate

‖Φ(δk,k)‖ � C8|δk|2, |δk| � κ; C8 := (2π)−1lγC5. (3.22)
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Using integral representation (3.18) and (3.5), (3.8), and the relation F×
1 (δk) = PF1(δk)P

⊥, we estimate
the operator F×

1 (δk) as follows:

‖F×
1 (δk)‖ � π−1lγC1C2|δk|, |δk| � κ. (3.23)

We also note that

F×
1 (δk)P = 0, PF×

1 (δk)∗ = 0, P⊥F×
1 (δk) = 0. (3.24)

Moreover, we need to consider the operator F×
1 (δk)F (k). Applying (3.17), (3.20), (3.22), (3.23), the first

and the third equalities (3.24), we obtain that

F×
1 (δk)F (k) = F×

1 (δk)(F (k) − P )F (k) = F×
1 (δk)F×

1 (δk)∗F (k) + F×
1 (δk)Φ(δk,k)F (k); (3.25)

‖F×
1 (δk)Φ(δk,k)F (k)‖ � C9|δk|3, |δk| � κ; C9 := 2−1π−2l2γC1C2C5. (3.26)

The operator F×
1 (δk)F×

1 (δk)∗ has the form

F×
1 (δk)F×

1 (δk)∗ = Pω−1(δk)∗g(D+ k◦)ω−1R⊥
0 (λ0)

(

(D+ k◦)ω−1R⊥
0 (λ0)

)∗
g(δk)ω−1P

+ Pω−1(δk)∗g(D+ k◦)ω−1R⊥
0 (λ0)

2ω−1(δk)∗g(D+ k◦)ω−1P

+
(

(D+ k◦)ω−1P
)∗
g(δk)ω−1R⊥

0 (λ0)
(

(D+ k◦)ω−1R⊥
0 (λ0)

)∗
g(δk)ω−1P

+
(

(D+ k◦)ω−1P
)∗
g(δk)ω−1R⊥

0 (λ0)
2ω−1(δk)∗g(D+ k◦)ω−1P.

(3.27)

Let us now turn to the approximation for the operator A(k)F (k). We have

A(k)F (k) =
−1

2πi

∮

γ

ζ(A(k) − ζI)−1dζ. (3.28)

By substituting (3.13) into (3.28), one obtains

A(k)F (k) = λ0P +G1(δk) +G2(δk) + Ξ(δk,k), |δk| � κ, (3.29)

where

G1(δk) =
1

2πi

∮

γ

ζ
(

Y0(δk, ζ
∗)∗X0(ζ) + X0(ζ

∗)∗Y0(δk, ζ)
)

dζ,

G2(δk) =
−1

2πi

∮

γ

ζT (δk, ζ)dζ, (3.30)

T (δk, ζ) := Y0(δk, ζ
∗)∗X0(ζ)Y̌(δk)∗X0(ζ) + Y0(δk, ζ

∗)∗X̌0(ζ)Y0(δk, ζ)

+ X0(ζ
∗)∗Y0(δk, ζ)Y̌(δk)∗X0(ζ) + X0(ζ

∗)∗Y̌(δk)X0(ζ
∗)∗Y0(δk, ζ) − Y0(δk, ζ

∗)∗Y0(δk, ζ),
(3.31)

Ξ(δk,k) =
−1

2πi

∮

γ

ζR2(δk,k, ζ)dζ. (3.32)

Recall the definitions of operators (3.4), (3.10), decomposition of the resolvent (3.19), and consider first the
representation for G1(δk):

G1(δk) =
1

2πi

∮

γ

ζ
(( 1

λ0 − ζ
P +R⊥

0 (ζ)
)

ω−1(δk)∗g(D+ k◦)ω−1
( 1

λ0 − ζ
P +R⊥

0 (ζ)
)

+
(

(D+ k◦)ω−1
( 1

λ0 − ζ∗
P +R⊥

0 (ζ
∗)
))∗

g(δk)ω−1
( 1

λ0 − ζ
P +R⊥

0 (ζ)
))

dζ.

Similarly to (3.21), calculating the integral with the help of the formula for the derivative of the Cauchy
integral f ′(z) = 1

2πi

∮

γ
f(ζ)(ζ − z)−2dζ (where f is a holomorphic function in the domain restricted by the

contour γ), we have

G1(δk) = G
◦
1(δk) + λ0

(

F×
1 (δk) + F×

1 (δk)∗
)

, (3.33)

G
◦
1(δk) := Pω−1(δk)∗g(D+ k◦)ω−1P + ((D+ k◦)ω−1P )∗g(δk)ω−1P, G

◦
1(δk) : N → N. (3.34)
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Recall that F×
1 (δk) was calculated in (3.21). By virtue of (3.29),

G1(δk) = 0,
if the form

(

(A(k)F (k) − λ0P )u, u
)

, u ∈ L2(Ω), |δk| � κ,

is sign-definite.
(3.35)

This together with (3.16), (3.21), the second equality (3.24), (3.25), (3.26), and (3.33) yields

PG1(δk)F (k) = P
(

G
◦
1(δk) + λ0F

×
1 (δk)F×

1 (δk)∗ + λ0F
×
1 (δk)Φ(δk,k)

)

F (k)

= PG
◦
1(δk)P +O(|δk|2) = 0,

if the condition in (3.35) is satisfied. Thus,

G
◦
1(δk) = 0,

if the form
(

(A(k)F (k) − λ0P )u, u
)

, u ∈ L2(Ω), |δk| � κ,

is sign-definite.
(3.36)

Let us now turn to expression (3.30) for G2(δk). We write (3.31) as

T (δk, ζ) = T ◦(δk, ζ) + T×(δk, ζ) + T×(δk, ζ∗)∗ + T⊥(δk, ζ), (3.37)

where

T ◦(δk, ζ) = PT (δk, ζ)P

=
1

λ0 − ζ
Pω−1(δk)∗g(D+ k◦)ω−1R0(ζ)ω

−1(δk)∗g(D+ k◦)ω−1 1

λ0 − ζ
P

+
1

λ0 − ζ
Pω−1(δk)∗g(D+ k◦)ω−1

(

(D+ k◦)ω−1R0(ζ
∗)
)∗
g(δk)ω−1 1

λ0 − ζ
P

+
(

(D+ k◦)ω−1 1

λ0 − ζ∗
P
)∗

g(δk)ω−1R0(ζ)ω
−1(δk)∗g(D+ k◦)ω−1 1

λ0 − ζ
P

+
(

(D+ k◦)ω−1 1

λ0 − ζ∗
P
)∗

g(δk)ω−1
(

(D+ k◦)ω−1R0(ζ
∗)
)∗
g(δk)ω−1 1

λ0 − ζ
P

− 1

λ0 − ζ
Pω−1(δk)∗g(δk)ω−1 1

λ0 − ζ
P,

T×(δk, ζ) = PT (δk, ζ)P⊥, T⊥(δk, ζ) = P⊥T (δk, ζ)P⊥.

Substituting (3.37) into (3.30), we obtain

G2(δk) = G◦
2(δk) +G×

2 (δk) +G×
2 (δk)

∗ +G⊥
2 (δk), (3.38)

Gr
2(δk) =

−1

2πi

∮

γ

ζT r(δk, ζ) dζ, r ∈ {◦,×,⊥}. (3.39)

The operator G◦
2(δk) acts on N; using the elementary equality ζ

(ζ−λ0)2
= 1

ζ−λ0
+ λ0

(ζ−λ0)2
and the formula for

the derivative of Cauchy integral, we get

G◦
2(δk) = Pω−1(δk)∗g(δk)ω−1P

− Pω−1(δk)∗g(D+ k◦)ω−1
(

R⊥
0 (λ0) + λ0(R

⊥
0 )

′(λ0)
)

ω−1(δk)∗g(D+ k◦)ω−1P

− Pω−1(δk)∗g(D+ k◦)ω−1
(

(D+ k◦)ω−1
(

R⊥
0 (λ0) + λ0(R

⊥
0 )

′(λ0)
))∗

g(δk)ω−1P

−
(

(D+ k◦)ω−1P
)∗
g(δk)ω−1

(

R⊥
0 (λ0) + λ0(R

⊥
0 )

′(λ0)
)

ω−1(δk)∗g(D+ k◦)ω−1P

−
(

(D+ k◦)ω−1P
)∗
g(δk)ω−1

(

(D+ k◦)ω−1
(

R⊥
0 (λ0) + λ0(R

⊥
0 )

′(λ0)
))∗

g(δk)ω−1P.

Here (R⊥
0 )

′(λ0) := d
dλR

⊥
0 (λ)

∣

∣

λ=λ0
. From the first resolvent identity it directly follows that (R⊥

0 )
′(λ0) =

R⊥
0 (λ0)

2. Next, we have

G×
2 (δk)P = 0, PG×

2 (δk)
∗ = 0, PG⊥

2 (δk) = 0, (3.40)
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and
G◦

2(δk) + λ0F
×
1 (δk)F×

1 (δk)∗ = Pω−1(δk)∗g(δk)ω−1P

− Pω−1(δk)∗g(D+ k◦)ω−1R⊥
0 (λ0)ω

−1(δk)∗g(D+ k◦)ω−1P

− Pω−1(δk)∗g(D+ k◦)ω−1
(

(D+ k◦)ω−1R⊥
0 (λ0)

)∗
g(δk)ω−1P

−
(

(D+ k◦)ω−1P
)∗
g(δk)ω−1R⊥

0 (λ0)ω
−1(δk)∗g(D+ k◦)ω−1P

−
(

(D+ k◦)ω−1P
)∗
g(δk)ω−1

(

(D+ k◦)ω−1R⊥
0 (λ0)

)∗
g(δk)ω−1P =: G◦

2(δk);

(3.41)

to obtain (3.41), we have used (3.27). Moreover, we need to estimate the operator G×
2 (δk)F (k). According

to (3.5), (3.8), (3.11), (3.12), and (3.31), the operator T (δk, ζ) satisfies the estimate

‖T (δk, ζ)‖ � (3C1C
2
2C4 + C2

1C3 + C2
1 )|δk|2, |δk| � κ, ζ ∈ γ,

whence, by (3.39),

‖G×
2 (δk)‖ � C10|δk|2, |δk| � κ; (3.42)

C10 = (2π)−1(λ0 + d0/2)lγ(3C1C
2
2C4 + C2

1C3 + C2
1 ).

Using (3.16), the first relation (3.40), and (3.42), we arrive at

‖G×
2 (δk)F (k)‖ = ‖G×

2 (δk)(F (k) − P )‖ � C7C10|δk|3, |δk| � κ. (3.43)

At the end of this section, we give an estimate for the remainder Ξ(δk,k). From (3.14), (3.32) it follows that

‖Ξ(δk,k)‖ � (2π)−1(λ0 + d0/2)lγC6|δk|3, |δk| � κ. (3.44)

3.2. Approximations for the operator exponential

We put
G

◦(δk) := λ0P +G
◦
1(δk) +G

◦
2(δk), G

◦(δk) : N → N. (3.45)

Here the operators G◦
1(δk) and G◦

2(δk) were defined in (3.34) and (3.41). In this section, we want to approx-
imate the operator e−iτA(k)P , τ ∈ R, by e−iτG◦(δk)PP . Consider the difference

(

e−iτA(k) − e−iτG◦(δk)P
)

P

= P
(

e−iτA(k)F (k)− e−iτG◦(δk)PP
)

+ e−iτA(k)(P − F (k)) + (F (k)− P )e−iτA(k)F (k).

By (3.16), the last two terms admit the estimates

‖e−iτA(k)(P − F (k))‖ � C7|δk|, ‖(F (k) − P )e−iτA(k)F (k)‖ � C7|δk|, |δk| � κ.

Next (cf. [15, the proof of Theorem 2.1]),

P
(

e−iτA(k)F (k) − e−iτG◦(δk)PP
)

= Pe−iτG◦(δk)PΣ(k, τ),

where Σ(k, τ) := eiτG
◦(δk)PF (k)e−iτA(k) − P . We have

Σ(k, τ) = Σ(k, 0) +

∫ τ

0

Σ′(k, τ̃ )dτ̃ .

Obviously, Σ(k, 0) = F (k) − P , and, by (3.16), ‖Pe−iτG◦(δk)PΣ(k, 0)‖ � C7|δk|, |δk| � κ. Next,

Σ′(k, τ) :=
dΣ

dτ
(k, τ) = −ieiτG

◦(δk)P
(

A(k)F (k) −G
◦(δk)P

)

F (k)e−iτA(k)F (k).

Consider the operator P
(

A(k)F (k) − G◦(δk)P
)

F (k). Using the second identity in (3.24), (3.25), (3.29),
(3.33), (3.38), the second and the third identities in (3.40), (3.41), and (3.45), we have

P
(

A(k)F (k) −G
◦(δk)P

)

F (k)

= P
(

A(k)F (k) − λ0P −G1(δk)−G2(δk)
)

F (k) + λ0F
×
1 (δk)Φ(δk,k)F (k) +G×

2 (δk)F (k)

= PΞ(δk,k)F (k) + λ0F
×
1 (δk)Φ(δk,k)F (k) +G×

2 (δk)F (k),
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whence, by (3.26), (3.43), (3.44),

∥

∥P
(

A(k)F (k) −G
◦(δk)P

)

F (k)
∥

∥ � C11|δk|3, |δk| � κ;
∥

∥

∥

∥

Pe−iτG◦(δk)P

∫ τ

0

Σ′(k, τ̃ ) dτ̃

∥

∥

∥

∥

� C11|τ ||δk|3, |δk| � κ;

C11 = λ0C9 + C7C10 + (2π)−1(λ0 + d0/2)lγC6.

Recalling the expressions for the constants, from what has been said above we deduce the following result.

Theorem 3.3. Let τ ∈ R and |δk| � κ. We have

∥

∥

(

e−iτA(k) − e−iτG◦(δk)P
)

P
∥

∥ � 3C7|δk|+ C11|τ ||δk|3,

where the constants C7 and C11 are defined by

C7 = (2π)−1lγ(C1C2 + C1Č2 + C2
1κ),

C11 = 2−1π−2λ0l
2
γC1C2

(

2C1C2Č2C4 + C2
1C3 + 2C2

1C2C4κ + C1C
2
2C4 + C2

1

)

+ (2π)−2(λ0 + d0/2)l
2
γ

(

C1C2 + C1Č2 + C2
1κ
)(

3C1C
2
2C4 + C2

1C3 + C2
1

)

+ (2π)−1(λ0 + d0/2)lγ
(

3C2
1C2C4 + 3C1C

2
2 Č2C

2
4 + 3C2

1C2C3C4 + 3C2
1C

2
2C

2
4κ

+ C2
1 Č2C3C4 + C3

1C3C4κ + C1C
3
2C

2
4 + C2

1 Č2C4 + C3
1C4κ

)

.

3.3. Calculation of the operator G◦(δk) in a basis of N

Let {ςp}np=1 be an orthonormal basis in N. In this section, our aim is to calculate the matrix elements of
operator (3.45) in this basis.

First of all, obviously, (λ0Pςp, ςl) = λ0δlp. Let us proceed to calculation of (G◦
1(δk)ςp, ςl). We have

(D+ k◦)ω−1ςp = −i
{(

∂
∂x1

+ ik◦1
)

(ω−1ςp), . . . ,
(

∂
∂xd

+ ik◦d
)

(ω−1ςp)
}t
,

(δk)ω−1ςp =
{

(δk1)ω
−1ςp, . . . , (δkd)ω

−1ςp
}t
, p = 1, . . . , n,

whence

(Pω−1(δk)∗g(D+ k◦)ω−1Pςp, ςl)

= (g(D+ k◦)ω−1Pςp, (δk)ω
−1Pςl) = i

d
∑

r=1

(δkr)g̃
1,lp
r , p, l = 1, . . . , n,

(3.46)

g̃
1,lp
r := −

d
∑

s=1

∫

Ω

grs(x)ω(x)
−1ςl(x)

∗
(

∂
∂xs

+ ik◦s

)

(

ω(x)−1ςp(x)
)

dx.

Next, since the operator
(

(D+k◦)ω−1P
)∗
g(δk)ω−1P is adjoint to Pω−1(δk)∗g(D+k◦)ω−1P , it is seen that

((

(D+ k◦)ω−1P
)∗
g(δk)ω−1Pςp, ςl

)

= −i

d
∑

r=1

(δkr)(g̃
1,pl
r )∗, p, l = 1, . . . , n. (3.47)

Thus, from (3.34), (3.46), (3.47) it follows that

(G◦
1(δk)ςp, ςl) =

〈

g
1,lp, δk

〉

, p, l = 1, . . . , n, (3.48)

where g1,lp = (g1,lp1 , . . . , g1,lpd )t is the column-vector with the entries

g
1,lp
r = i

(

g̃
1,lp
r − (g̃1,plr )∗

)

= i

d
∑

s=1

∫

Ω

grs(x)

(

ω(x)−1ςp(x)
∂

∂xs

(

ω(x)−1ςl(x)
∗)− ω(x)−1ςl(x)

∗ ∂

∂xs

(

ω(x)−1ςp(x)
)

)

dx

+ 2

d
∑

s=1

k◦s

∫

Ω

grs(x)ω(x)
−2ςp(x)ςl(x)

∗dx, r = 1, . . . , d.
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Let us proceed to calculation of the matrix elements of the operatorG◦
2(δk), defined by (3.41). It is convenient

to write this operator as

G
◦
2(δk) = −

(

Pω−1(δk)∗g(D+ k◦)ω−1 +
(

(D+ k◦)ω−1P
)∗
g(δk)ω−1

)

×
(

R⊥
0 (λ0)ω

−1(δk)∗g(D+ k◦)ω−1P +
(

(D+ k◦)ω−1R⊥
0 (λ0)

)∗
g(δk)ω−1P

)

+ Pω−1(δk)∗g(δk)ω−1P.

Denote by Λp(δk) the result of the action of the operator

(

R⊥
0 (λ0)ω

−1(δk)∗g(D+ k◦)ω−1P +
(

(D+ k◦)ω−1R⊥
0 (λ0)

)∗
g(δk)ω−1P

)

on the basis element ςp. Obviously, Λp(δk) ∈ ˜H1(Ω) is the (weak) solution of the equation

(

A(k◦)− λ0I
)

Λp(δk) = ω−1(δk)∗g(D+ k◦)ω−1ςp + ω−1(D+ k◦)∗g(δk)ω−1ςp, Λp(δk) ⊥ N.

The right-hand side of this equation is linear in δk and has the following form:

− i

d
∑

r,s=1

ω(x)−1(δkr)grs(x)

(

∂

∂xs
+ ik◦s

)

(

ω(x)−1ςp(x)
)

− i

d
∑

r,s=1

ω(x)−1

(

∂

∂xs
+ ik◦s

)

(

gsr(x)(δkr)ω(x)
−1ςp(x)

)

.

Therefore, Λp(δk) can be written as Λp(δk) = −i
∑d

r=1(δkr)Λ
p
r , where Λp

r ∈ ˜H1(Ω) is the solution of the
equation

(

A(k◦)− λ0I
)

Λp
r(x) =

d
∑

s=1

ω(x)−1grs(x)

(

∂

∂xs
+ ik◦s

)

(

ω(x)−1ςp(x)
)

+

d
∑

s=1

ω(x)−1

(

∂

∂xs
+ ik◦s

)

(

gsr(x)ω(x)
−1ςp(x)

)

, Λp
r ⊥ N.

Next, let us calculate the inner product

−
(

(

Pω−1(δk)∗g(D+ k◦)ω−1 +
(

(D+ k◦)ω−1P
)∗
g(δk)ω−1

)

Λp(δk), ςl

)

, p, l = 1, . . . , n.

Similarly to (3.46), (3.47), one obtains

−
(

(

Pω−1(δk)∗g(D+ k◦)ω−1 +
(

(D+ k◦)ω−1P
)∗
g(δk)ω−1

)

Λp(δk), ςl

)

= −
d
∑

q,r,s=1

(δkr)(δkq)

×
∫

Ω

gqs(x)

(

ω(x)−1Λp
r(x)

∂

∂xs

(

ω(x)−1ςl(x)
∗)− ω(x)−1ςl(x)

∗ ∂

∂xs

(

ω(x)−1Λp
r(x)

)

)

dx

+ 2i

d
∑

q,r,s=1

(δkr)(δkq)k
◦
s

∫

Ω

gqs(x)ω(x)
−2Λp

r(x)ςl(x)
∗dx, p, l = 1, . . . , n.

Finally,

(Pω−1(δk)∗g(δk)ω−1Pςp, ςl) = (g(δk)ω−1Pςp, (δk)ω
−1Pςl)

=

d
∑

r,q=1

(δkr)(δkq)

∫

Ω

gqr(x)ω(x)
−2ςp(x)ςl(x)

∗dx, p, l = 1, . . . , n.

Thereby, we have obtained a formula for the matrix elements of the operator G◦
2(δk):

(G◦
2(δk)ςp, ςl) =

〈

g
2,lp(δk), (δk)

〉

, p, l = 1, . . . , n,
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where g2,lp is (d× d)-matrix with the entries

g2,lprq = −
d
∑

s=1

∫

Ω

gqs(x)

(

ω(x)−1Λp
r(x)

∂

∂xs
(ω(x)−1ςl(x)

∗)− ω(x)−1ςl(x)
∗ ∂

∂xs
(ω(x)−1Λp

r(x))

)

dx

+ 2i
d
∑

s=1

k◦s

∫

Ω

gqs(x)ω(x)
−2Λp

r(x)ςl(x)
∗dx+

∫

Ω

gqr(x)ω(x)
−2ςp(x)ςl(x)

∗dx, r, q = 1, . . . , d.

As a result, the operator (3.45) is represented in the basis {ςp}np=1 by the matrix

g(δk) :=
{

λ0δlp +
〈

g
1,lp, δk

〉

+
〈

g
2,lp(δk), (δk)

〉}n

l,p=1
.

At the end of this section, consider the action of the exponential e−iτG◦(δk) on the element ςj . It is easy
to check that

e−iτG◦(δk)ςj =
n
∑

l=1

cjl(τ)ςl, (3.49)

where {cj1(τ), . . . , cjn(τ)}t =: cj(τ) = e−iτg(δk)ej is the solution of the system

{

i
∂

∂τ
cj(τ) = (g(δk)cj)(τ), cj(0) = ej .

4. MAIN RESULTS OF THE PAPER

In this section, we formulate the main results of the paper. Let ε > 0 be a small parameter. If F (x) is a
Γ-periodic function, then we put F ε(x) := F (ε−1x). In L2(R

d), we consider the operator formally defined
by the differential expression

Aε = −ωε(x)−1 div gε(x)∇ωε(x)−1, g(x) = ǧ(x)ω(x)2. (4.1)

Here ǧ and ω are Γ-periodic functions satisfying conditions (1.2), (1.4), and ω(x) > 0; ω, ω−1 ∈ L∞. The
precise definition of the operator Aε is given in terms of the corresponding quadratic form (cf. (1.5)).
Operators (1.6) and (4.1) satisfy the following relation:

Aε = ε−2T ∗
ε ATε,

where Tε is the operator of scaling transformation: (Tεu)(x) = εd/2u(εx).
Let {ςj}nj=1 be an (arbitrary) orthonormal basis in N and let fj ∈ L2(R

d), j = 1, . . . , n. We suppose that

the functions ςj(x), j = 1, . . . , n, are Γ-periodically extended to R
d. We study the behavior of the solutions

uj,ε(x, τ), x ∈ R
d, τ ∈ R, j = 1, . . . , n, ε → 0, of the following Cauchy problem for the nonstationary

Schrödinger equation
⎧

⎨

⎩

i
∂

∂τ
uj,ε(x, τ) = (Aεuj,ε)(x, τ),

uj,ε(x, 0) = eiε
−1〈k◦,x〉ςεj (x)fj(x).

(4.2)

In L2(R
d;Cn), we consider the operator

Aeff
ε =

⎛

⎜

⎝

Aeff,11
ε · · · Aeff,1n

ε
...

. . .
...

Aeff,n1
ε · · · Aeff,nn

ε

⎞

⎟

⎠
, DomAeff

ε = H2(Rd;Cn), (4.3)

Aeff,lp
ε := ε−2λ0I − iε−1

〈

g
1,lp,∇

〉

− div g2,lp∇, (4.4)

which is called the effective operator. Let veff
j,ε(x, τ) be the solution of the corresponding “homogenized”

problem
⎧

⎨

⎩

i
∂

∂τ
veff
j,ε(x, τ) = Aeff

ε veff
j,ε(x, τ),

veff
j,ε(x, 0) = Jjfj(x).

(4.5)
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Here the operator Jj : C → C
n is defined by the rule a �→ aej . Put

ueff
j,ε(x, τ) := eiε

−1〈k◦,x〉
n
∑

l=1

ςεl (x)v
eff
jl,ε(x, τ). (4.6)

The solutions of problems (4.2), (4.5) and ueff
j,ε can be represented as follows:

uj,ε(·, τ) = e−iτAεeiε
−1〈k◦,·〉ςεj fj , veff

j,ε(·, τ) = e−iτAeff
ε Jjfj,

ueff
j,ε(·, τ) = eiε

−1〈k◦,·〉
n
∑

l=1

ςεl J̃le
−iτAeff

ε Jjfj,
(4.7)

where J̃l : C
n → C is defined by the formula J̃lc = 〈c, el〉.

Theorem 4.1. Let uε be the solution of problem (4.2), and let ueff
j,ε be defined by (4.6). Let ε > 0, τ ∈ R,

fj ∈ H3(Rd). We have

‖uj,ε(·, τ) − ueff
j,ε(·, τ)‖L2(Rd) � C(1 + |τ |)ε‖fj‖H3(Rd), j = 1, . . . , n, (4.8)

with the constant C, which depends only on λ0, κ, d0, ‖g‖L∞, ‖ω−1‖L∞, and ‖ςl‖L∞, l = 1, . . . , n.

Proof. By (4.7), estimate (4.8) can be reformulated in the operator terms:

∥

∥

∥e−iτAεeiε
−1〈k◦,·〉ςεj − eiε

−1〈k◦,·〉
n
∑

l=1

ςεl J̃le
−iτAeff

ε Jj

∥

∥

∥

H3(Rd)→L2(Rd)
� C(1 + |τ |)ε, (4.9)

where τ ∈ R, ε > 0. Thus, our aim is to prove (4.9). Since the operator (−Δ + I)3/2 is an isometric
isomorphism of the Sobolev space H3(Rd) onto L2(R

d), we have

∥

∥

∥e−iτAεeiε
−1〈k◦,·〉ςεj − eiε

−1〈k◦,·〉
n
∑

l=1

ςεl J̃le
−iτAeff

ε Jj

∥

∥

∥

H3(Rd)→L2(Rd)

=
∥

∥

∥

(

e−iτAεeiε
−1〈k◦,·〉ςεj − eiε

−1〈k◦,·〉
n
∑

l=1

ςεl J̃le
−iτAeff

ε Jj

)

(−Δ+ I)−3/2
∥

∥

∥

L2(Rd)→L2(Rd)
.

From the unitarity of the scaling transformation it directly follows that

∥

∥

∥

(

e−iτAεeiε
−1〈k◦,·〉ςεj − eiε

−1〈k◦,·〉
n
∑

l=1

ςεl J̃le
−iτAeff

ε Jj

)

(−Δ+ I)−3/2
∥

∥

∥

L2(Rd)→L2(Rd)

=
∥

∥

∥

(

e−iτε−2Aei〈k
◦,·〉ςj − ei〈k

◦,·〉
n
∑

l=1

ςlJ̃le
−iτε−2Aeff

Jj

)

ε3(−Δ+ ε2I)−3/2
∥

∥

∥

L2(Rd)→L2(Rd)
,

where
Aeff = {Aeff,lp}nl,p=1, Aeff,lp := λ0I − i

〈

g
1,lp,∇

〉

− div g2,lp∇.

Next, we need the following operator identities:

Φ∗ε3(|δk|2 + ε2)−3/2Φei〈k
◦,x〉 = ei〈k

◦,x〉ε3(−Δ+ ε2I)−3/2, (4.10)

Φ∗J̃le
−iτε−2

g(δk)Jjε
3(|δk|2 + ε2)−3/2Φei〈k

◦,x〉 = ei〈k
◦,x〉J̃le

−iε−2τAeff

Jjε
3(−Δ+ ε2I)−3/2. (4.11)

Introduce the projection Fκ := Φ∗χBκ(0)(k)Φ. Here χBκ(0)(k) is the characteristic function of the ball Bκ(0).

Obviously, ε3(|δk|2 + ε2)−3/2(1−χBκ(0)(δk)) � κ
−1ε. Applying (4.10) and taking into account Remark 2.1,

we have

∥

∥

∥

(

e−iτε−2Aei〈k
◦,·〉ςj − ei〈k

◦,·〉
n
∑

l=1

ςlJ̃le
−iτε−2Aeff

Jj

)

ε3(−Δ+ ε2I)−3/2(I − Fκ)
∥

∥

∥

L2(Rd)→L2(Rd)

�
(

‖ςj‖L∞ +

n
∑

l=1

‖ςl‖L∞

)

κ
−1ε.
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Consider the operator

(

e−iτε−2Aei〈k
◦,·〉ςj − ei〈k

◦,·〉
n
∑

l=1

ςlJ̃le
−iτε−2Aeff

Jj

)

ε3(−Δ+ ε2I)−3/2Fκ ,

which, by virtue of (4.10), (4.11), can be written as

(

e−iτε−2Aςj −
n
∑

l=1

ςlΦ
∗J̃le

−iτε−2
g(δk)JjΦ

)

Φ∗ε3(|δk|2 + ε2)−3/2χBκ(0)(δk)Φe
i〈k◦,x〉.

Recall that the operator A is decomposed into direct integral (2.5). Using (2.8) and (2.9) (with k′ = k◦),
one obtains

∥

∥

∥

(

e−iτε−2Aςj −
n
∑

l=1

ςlΦ
∗J̃le

−iτε−2
g(δk)JjΦ

)

Φ∗ε3(|δk|2 + ε2)−3/2χBκ(0)(δk)Φe
i〈k◦,x〉

∥

∥

∥

L2(Rd)→L2(Rd)

= ess-sup
k∈Td

∥

∥

∥

(

e−iτε−2A(k)ςj −
n
∑

l=1

ςlJ̃le
−iτε−2

g(δk)Jj

)

ε3(|δk|2 + ε2)−3/2χBκ(0)(δk)P0

∥

∥

∥

L2(Ω)→L2(Ω)
.

From the inclusion Ran ςjP0 ⊂ N and (3.49) it is seen that

(

e−iτε−2A(k)ςj −
n
∑

l=1

ςlJ̃le
−iτε−2

g(δk)Jj

)

ε3(|δk|2 + ε2)−3/2χBκ(0)(δk)P0

=
(

e−iτε−2A(k) − e−iτε−2
G

◦(δk)P
)

Pςjε
3(|δk|2 + ε2)−3/2χBκ(0)(δk)P0.

Application of Theorem 3.3 (with τ replaced by τε−2) together with the equality ‖ςj‖L2(Ω) = 1 gives the
estimate with the constants that do not depend on k:

∥

∥

(

e−iτε−2A(k) − e−iτε−2
G

◦(δk)P
)

Pςjε
3(|δk|2 + ε2)−3/2χBκ(0)(δk)P0

∥

∥

L2(Ω)→L2(Ω)

�
(

3C7|δk|+ C11ε
−2|τ ||δk|3

)

ε3(|δk|2 + ε2)−3/2 � (3C7 + C11|τ |)ε.

This completes the proof.

Remark 4.2. Interpolating between (4.9) and the estimate

∥

∥

∥e−iτAεeiε
−1〈k◦,·〉ςεj − eiε

−1〈k◦,·〉
n
∑

l=1

ςεl J̃le
−iτAeff

ε Jj

∥

∥

∥

L2(Rd)→L2(Rd)
� ‖ςj‖L∞ +

n
∑

l=1

‖ςl‖L∞ ,

we obtain

∥

∥

∥e−iτAεeiε
−1〈k◦,·〉ςεj − eiε

−1〈k◦,·〉
n
∑

l=1

ςεl J̃le
−iτAeff

ε Jj

∥

∥

∥

Hq(Rd)→L2(Rd)

�
(

‖ςj‖L∞ +

n
∑

l=1

‖ςl‖L∞

)1−q/3

Cq/3(1 + |τ |)q/3εq/3, 0 � q � 3, j = 1, . . . , n.

When applied to Cauchy problem (4.2), this leads to the estimate

‖uj,ε(·, τ)− ueff
j,ε(·, τ)‖L2(Rd) �

(

‖ςj‖L∞ +

n
∑

l=1

‖ςl‖L∞

)1−q/3

Cq/3(1 + |τ |)q/3εq/3‖fj‖Hq(Rd),

j = 1, . . . , n,

for ε > 0, τ ∈ R, fj ∈ Hq(Rd), and 0 � q � 3.
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Remark 4.3. Suppose that λ0 is a spectral edge of the operator A and the corresponding extremal value
is attained by one band function: λ0 = Es(k

◦), λ0 = El(k
◦), l = s. In this case, n = 1, and, by (3.36), (3.48),

g1,11 = 0. Let uε(x, τ) := u1,ε(x, τ) be the solution of problem (4.2), and let ṽeff(x, τ) be the solution of the
problem

⎧

⎨

⎩

i
∂

∂τ
ṽeff(x, τ) = ˜Aeff ṽeff(x, τ),

ṽeff(x, 0) = f1(x),

where ˜Aeff = − div g2,11∇. Let ε > 0, τ ∈ R, f1 ∈ H3(Rd). We have

‖uε(·, τ) − e−iτε−2λ0eiε
−1〈k◦,x〉ςε1(x)ṽ

eff(·, τ)‖L2(Rd) � C(1 + |τ |)ε‖f1‖H3(Rd).
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