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1 INTRODUCTION

The definition of a reflexive space is extended from the classical case of normed linear spaces to the
asymmetric cone spaces setting Approximative properties of sets in asymmetric cone spaces are studied
with the main emphasis on existence of nearest points in cone subspaces Many problems of geometric
approximation theory are closely related to reflexivity type properties For some results on linear spaces
with asymmetric norm, see [1] [6] For some results and problems of geometric approximation theory in
asymmetric spaces, see [7] [24]

Let B be a convex subset of a linear space X over R with the following properties:

1) 0 € B;

2) any line ¢ = {te | t € R := [—o00, +0]} (e # 0) passing through the origin intersects B in an extended
closed interval; that is, BN ¢ = {te | t € [o, ] C R} Here, we assume that « = —oco (f = +00) if /N B is
not upper (lower) bounded With B we will associate the extended Minkowski functional pp : X — [0, +00]
by setting, for all z € X \ {0},

pp(x) == inf{t € Ry :=[0,+0o0] | tB > z}.

If = does not lie in ¢B for any finite ¢ > 0, then we define pg(x) = +0o We also set pp(0) =0

Now the formula

I 1:=ps(")

defines on X an extended (or generalized) asymmetric seminorm Let Z :={e € X | e # 0, |le|] < 400} The
cone space K = K(X) for a seminorm || - | is defined by K = {te | t > 0, e € Z} So, K = Z U {0} Let
L = L(K) be the maximal linear manifold consisting of the vectors te (¢t € R, +e € Z) If |le| > 0 for any
nonzero e € Z, then the extended seminorm || - | is called the extended norm

By definition, we set

B:={zeX||z| <1}, Blzo,r)=zo+rB={zeX||z—z|<r} (z0€X, r>0).
Similarly, given o € X, r > 0, we define

B(zg,r) =20 +rB={ze€ X ||z — x| <},
S(z,r) := B(wo,r) \ B(zo,7),
For brevity, we write S := S(0,1) (the unit sphere) Note that if || - | is a norm, the ball B(0,1) consists of

intervals of the form [0, z], where € S If || - | is a seminorm, then the ball B(0,1) contains in addition all
the rays {te | t > 0}, where e € K is an arbitrary nonzero point such that |le| =0

Definition 1.1. A set A C K is called bounded if there exists a ball B(0, R) containing the set A
A sequence in a cone space is called bounded if it lies in a bounded set, and, therefore, in some ball B(0, R)

The (natural) topology on X is generated by the subbase of the balls { B(z, ) }ar
Let L* be the set of all bounded (the definition is given below) linear functionals, and let S*(L) be the
set of all linear norm one functionals from space L* (see [5], [6])
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Given = € X and a nonempty set A C X, ANK, # &, where K, = (K + ), we define
o(z, A) = inf{|ly — x| | y € A}

(an analogue of the distance from a point = to a set A)
In the case ANK, = &, we set o(z, A) = +o0
The extended norm (seminorm) || - | : X — R on a linear space X has the following properties:
1 ||az| = «a||z| for all @ > 0 and z € X
2 |z +yl <[l + [ly| for all z,y € X;
3 x| 2 0forallz € X, and ||z| = 0 < z = 0 (for a seminorm, the last condition is replaced by [|0] = 0)
From an asymmetric norm (seminorm) we define the symmetric generalized norm (seminormy) by

[ = max{]] - [, | = -} - X — R

If the norm || - | is not equivalent to the symmetrization norm | - [|*¥™, then we say that (X, || - |) is an
essentially asymmetric space

A linear functional z* : X — R is bounded if *(z) < C||z| (for some C > 0) for all z € X In the actual
fact, this inequality can be considered only for € K The asymmetric norm (seminorm) ||z*|. of a bounded
linear functional x* (as defined in [5], [6]) is the smallest constant C for which the above inequality is satisfied
forall x € K

Let X° be the set of all linear functionals on X, and let K* C X° be the cone of all bounded linear
functionals on X The cone space K* is equipped with the asymmetric norm (seminorm) || - |, which is
extended to a generalized norm on X° via ||2*|, := +oo for all X°\ K* Indeed, this norm (seminorm) is the
Minkowski functional of the set of all linear functionals on X upper bounded by 1 The cone space K* will
be called the dual space to K Here it is worth pointing out that the dual space to an essentially asymmetric
linear space is not a linear space (see [1])

The second dual cone K** := (K*)*, its dual, etc , are defined similarly

As supports of extended norms || - |, || - |« and || - |«« we may consider, respectively, in place of the linear
spaces X, X° and X°° := (X°)°, the linear hulls of the cones K, K* and K** or any linear spaces which
contain these cones If necessary, the corresponding extended (generalized) norms are extended by 400 Any
point = € K can be looked upon as an element of the second dual cone if x is evaluated on any z* from the
cone space K* by

The duality between = and «* (that is, the action of a point onto a different one) is conveniently written as
(z,z").

This correspondence between elements of a cone space K and the cone space K** will be called the natural
embedding

J:K— K"

of a cone space K into the cone space K** By Remark 2 3 (see below), the norm ||J(z)|«. coincides with the
norm ||z| for all z € K In this way, the elements J(z) and x are identified under the natural embedding J

Remark 1.1. A linear functional * : X — R (and, in particular, that from Remark 2 3) can be considered
as an affine functional on K (that is, convex and concave functional on K) whose restriction to L is a linear
functional Its (semi) norm (as a affine functional), as defined by

sup z*(x),
x€EB

coincides with its asymmetric (semi)norm This means that the cone space K* can be interpreted as a family
of affine functionals on X with finite norm sup,. 5 *(x) whose restrictions to the maximal linear manifold
L(K) are linear functionals In particular, such affine functionals vanish at some nonzero point Moreover,
these bounded functionals on the cone K do not take the values +00, but can assume the values —oco on K
In order to define the extended distance between such affine functionals, it suffices to extend them as linear
functionals to the linear hull of the cone space K (this extension is defined uniquely), and then evaluate the
extended norm of its difference
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REFLEXIVITY FOR SPACES WITH EXTENDED NORM 401

Definition 1.2. A sequence {z,} C X is a Cauchy sequence (an inverse Cauchy sequence) if, for any
€ > 0, there exists N € N such that ||z, — zn| <& (|tn —xm| <) forallm>2n> N

An asymmetric space X = (X, || -|) is right (left ) complete if, for any Cauchy sequence {z,,} C X, there
exists a point € X such that ||z — z,| — 0 (||, — x| — 0) as n — oo A right complete space will be
simply called a complete space

An asymmetric space X = (X, || - |) is called inversely right (left ) complete if, for any inverse Cauchy
sequence {x,} C X, there exists a point z € X such that ||z — z,] — 0 (||xt, — 2| — 0) as n — o0 An
inversely right complete space will be simply called an inversely complete space

This definition of completeness applies to spaces with usual asymmetric norms or seminorms, and also to
those with extended norms or seminorms This definition also extends verbatim to spaces with asymmetric
metric or semimetric

Example 1.1. Let M(Q) be the linear space of all functions f : @ — R equipped with the extended
seminorm

11 =1fla@ = fggh(t), where  fi.(t) := max{f(t),0}.

We claim that M (Q) is a right complete space Indeed, let {fx} be a Cauchy sequence in M (Q) There exists
a subsequence {¢y, := fp,} (n1 = 1) for which the series >~ |lor+1 — @] is convergent One of the limits
of this sequence (and, therefore, of the original sequence) is the function

e1(t) + Z(@kﬂ — Pk)+-
k=1

As another limit we can also consider the function limsup,, f,(¢) or its upper envelope sup,, f(t)
Remark 1.2. The cone space K* is right complete

Proof Let {z},} C K* be a Cauchy sequence There exists a subsequence {z}, } such that the series
Yoneo Iz, ., — an, | is convergent Setting x;, = 0, we get that the series Y77 (x},, ., — 5, ) converges
in the space X° pointwisely to a linear functional s : X — R whose norm is upper bounded by the sum

of the series Y-, |25,., — @5, So, any bounded functional s which is the right limit of the partial sums

SK 1= Z?ZO (xj;kH —xy ) = T, is also the right limit of the original Cauchy sequence This proves the
claim in the remark

The next result shows that any asymmetric space can be isometrically embedded into M (Q) for some Q

Theorem 1.1. Let || -| be an extended norm or seminorm on a linear space X, let Q@ C X be a nonempty
subset Consider the mapping M : Q — M(Q) associating with each x € Q the function p,(y) := ||x — y|
Then ||u —v| = [|9M(u) — M(v)|rr(q) for all u,v € Q

Proof For any w € @, we have ||ju —w| — ||[v —w| < ||u—v| This inequality becomes an equality at the point
w = v Hence supg(M(u) — M(v))+ = [[u — v, proving the claim

In view of Theorem 1 1, we can always assume (up to a natural isometry) that @ is a subset of M(Q)
In this case, for each Cauchy sequence in ), we may consider its upper envelop as a limit In this way, by
augmenting @ with all these limits, we get the right completion of the set () This method of completion can
be called the method of right completion for an asymmetric metric

Nevertheless, a different construction can be conveniently applied in the case of linear asymmetric
spaces Y Namely, consider K* = Y*, and, further, K** By Remark 12, the cone space K** is a right
complete cone space Hence the right closure of J(Y) in K** is a right complete cone This closure can be
conveniently considered as the right completion (or, for simplicity, the right closure) of the space Y, which
we identify with J(Y) Of course, with the right completion of K, some bounded affine functionals (on the
cone space K*) are added, these functionals can take the values —co on K*

For various results on reflexivity in asymmetric spaces, see Cobzag [5] In the present paper, we will
consider give the definition of reflexivity in the case where a cone space K is contained in the right closure
of L(K) With this approach, some classical results for usual normed spaces can be carried over to the
case asymmetric spaces In particular, from Theorems 31 5 2 (see below) it will follow that the 1 regular
cone space (see § 2 below) are more appropriate for this aim
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Let us now briefly discuss the problem of extension (or, more precisely, recovery) of an affine functional f :
K — R that vanishes at the origin to the linear hull £ of the cone K On the cone —K this functional can
be defined by

fl=z):=—f(x), zeK.

Hence any finite linear combination ) coa of vectors {4} can be written as

E Cala + E Cala,

acq =20 a:ca <0

where the first sum is € K, and the second sum is y € —K This defines the linear functional f on £ by
(D2 cawa) = F(@) + 1 (y).

Next, this functional can be extended also to X if on the algebraic complement £ to X it is defined to be,
say, zero

Note also that if a linear functional f : X — R is nonpositive on K, then its seminorm | f|. :=
sup,cp f(x) = sup,ecp f+(x) is zero So, if our aim is to generate a norm from a seminorm, we need at
least to identify all such functionals with the zero functional

We claim that if a functional f assumes positive values, then from the set K1 := {x € K| f(x) > 0} one
can uniquely recover the linear functional f on £ which extends f to Ky If K = K, then this extension is
obtained by the above scheme If the set K_ := {z € K| f(z) < 0} = K\ K is nonempty, then by convexity
of K_ and K, these sets can be separated by a linear functional ¢ : £ — R so that ¢ would be positive
at each point from K := {z € K| f(z) > 0} and negative on K_ (see, for example, [27]) It is easily seen
that the set Ko := {z € K | p(z) = 0} = Ker p N K is uniquely determined from f and is independent of
a separating functional ¢ Let P1 be the convex hull of K4 U (—K_) UKo U (—Kj) Then the functional f
is uniquely extended to the cone Py, and f > 0 on P, The functional f is uniquely extended to the cone
P_, which is the convex hull of the set K_ U (—K;)UKyU (—Kj) Note that P~ = —P;, and f <0 on P_
Next, f is uniquely extended to the linear hull of the cones P, and P_, which coincides with £ (this fact is
proved by the same arguments) Further, f > 0 (f < 0) on Py (P_), that is, Ker f separates these cones,
and, therefore, Ko := {x € K | f(z) = 0} To verify that f on K, uniquely determines f on £, we assume
that there exists a linear functional f; which coincides with f on K and which is different from f on the
nonempty set K_ We have Kg = Ker f N K = Ker f; N K For arbitrary points z € K and y € K_ such
that f(y) # f1(y), there exists a point z € (z,y) NKy The functional f — f; vanishes at the points x and z,
and, therefore, on the interval [z,y], which contradicts the choice of the point y So, any affine functionals
which coincide on K are also equal on K, hence, by unique extendability of these functionals from K to £,
we find that f = f; on £

From the arguments of the preceding paragraph we get the following fact If there exists a point € K at
which f(x) > 0, then, from the known nonnegative part fi(-) of f on K, the linear functional f is uniquely
recovered on £ We also note that if f < 0 on K, then fy =0, and so from f, we recover the zero functional
This corresponds to || f|« = 0, which should lead to no confusion if such nonpositive functionals (on K) are
identified with the zero functional

2 DEFINITION OF REFLEXIVITY FOR SPACES WITH EXTENDED NORM OR SEMINORM

Definition 2.1. If a cone space K coincides with K** under the natural embedding J, which associates
with each bounded functional z** on X° a unique element z € K such that

x*(x) = 2™ (2*) for all ™ € K*,
then the cone space K will be called reflezive; the class of all reflexive cone spaces will be denoted by (Rf)

Remark 2.1. Note that if K € (Rf), then the maximal linear manifolds L = L(K) and L** := L(K**)
are identified under the natural embedding K** on K

Definition 2.2. Let Y be a linear space with (usual) asymmetric norm ||-| Given a linear space X DY,
we extend this norm (keeping the same notation) by defining it to be 400 on X \' Y Let K* = Y* be the
dual cone to K :=Y and K** be the second dual cone If the maximal linear manifold L(K**) is identified
with the space Y under the natural embedding, then Y will be called a twice predual space
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Remark 2.2. Let Y be twice predual relative to X D Y Then, by identifying the spaces Y and J(Y)
and replacing X D Y by X°° D Y, we can extend the norm (seminorm) || - | using the (seminorm) || « |.x,
and consider the cone K** as the cone space K If here the right closure of the space J(Y) = Y contains
K**, then the dual cone K* consists of the extensions of the same linear functionals from Y* (they are
uniquely defined from their values on Y') to the cone space K := K** with preservation of the original norm
(seminorm); here L(K) is identified (or, as we will say, coincides) with Y In this case, the cone space K is
naturally referred to as the reflexive extension of the twice predual space Y

Of course, if Y is a complete symmetrizable space, than it is prereflexive if and only Y is reflexive

Definition 2.3. Let Y be a twice predual linear asymmetric space for which there exists a reflexive
cone space K such that ¥ = L(K), J(Y) = L(K**), and the norm on K is an extension of the norm on Y
Such a Y will be called a prerefiezive space

Remark 2.3. Let ||-| be an extended norm (seminorm) on an asymmetric space X Then, for any z¢ € S,
there exists a linear functional * such that z*(z) < ||z| for all € X and

x*(xo) = ||zo] = 1.

Such functional z* will be said to be a support functional to the unit sphere S at a point zyp € S The
asymmetric norm of any such linear functional 1 (see [5], [6]). We also note that, for each « € K there exists
a norm one linear functional z* such that z*(z) = ||z

The next result, which is a direct analogue of the corresponding result for reflexive normed spaces, means
that any bounded linear functional in a reflexive cone space attains its norm

Theorem 2.1. Let K = K(X) be a reflexive cone space Then, for any (norm one) functional z* € S*,
there is a point xo € S such that

x*(x9) = ||zo] = 1.

Proof By applying Remark 2 3 to space X° with extended norm || - |, we find a norm one functional
** € K** on X° such that

x(z*) = 1.

By reflexivity of the cone space K, there exists g € S such that 1 = 2**(2*) = x*(x¢) This proves the
theorem

3 THE WEAK* AND REGULAR WEAK* TOPOLOGY
COMPACTNESS OF BALLS IN REGULAR CONE SPACES

In what follows, we will consider the cone spaces K such that the right closure of L(K) contains K The
cone space K* and K** will also be assumed to satisfy the same constraint

Definition 3.1. Given R > 1, we say that a cone space K is R regular if the unit ball B(0,1) of the
cone space K is contained in the right completion of B(0, R) N L This property means that K is a right
complete cone space and there exists R such that, for any © € B C K, there exists a sequence {z,} C L
such that ||z,| < R (n € N) and ||z — z,| = 0 as n — oo

A cone space K will be said to be regular if K is a right complete cone space, and, for each point from K,
there exists a bounded sequence from L(K) converging to this point (in this case, we will also say the right
closure of L(K) contains K)

A cone space K is called superregular if both K and its dual are 1 regular

Remark 3.1. Let a € K be an arbitrary point and {ax} C L be an arbitrary sequence Then any is
a Cauchy sequence {a} is bounded starting from some number Moreover, if ||a — ar| — 0 as k — oo, then,
for all f € L(K*),

liminf f(a,) < f(a) < limsup f(ay,).

n—00 n—00

of Remark 8 1 Indeed, starting from some number ng we have ||a, — an,| < 1 Hence |lan| < ||an,| + ||an —
ano| < |lan,| +1 Since f(a) — f(ax) < ||fl«]la —ag] = 0, k = oo, we have f(a) < limsup,, ,., f(a,) For all
f € L(K*), replacing f by —f, we get —f(a) < — liminf, .~ f(an), that is, liminf,, o f(an) < f(a)
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Using an analogue of the Baire theorem it can be shown that the function R*(a) := limsup,,_, ., f(ay) is
locally upper bounded, and the function R, (a) := liminf,,_, f(a,) is lower bounded Moreover, if ||a,| < C
(n € N), then f(a) < R*(a) < C| fl+

Recall that the asymmetric norm of a linear functional f : K — R is defined by

[ ]« :=sup f(x) = sup fy(x), where B C K is the unit ball.
B B

Remark 3.2. From Remark 3 1 it follows that if K is a 1 regular cone space, then

fla) < sup f(x) forany a€ B.
x€BNL

So, any linear functional f attains its norm on BNL

On the set of all bounded linear functionals (with finite norm) consider the pointwise right convergence
of a net {fu}, that is, | f(z) — fa(x)|r — 0, where ||| := ||t||r = ¢+ is an asymmetric seminorm on R, z € K
This convergence is generated by the restriction to K* of the subbase of neighborhoods of f

Opo(f) ={p | f(z) — p(x) <e}.

Note that
O,.:(f) = f+0,.(0).

For an arbitrary finite set of points {z1,...,z,} and arbitrary € > 0, consider the base of neighborhoods:
O o e (F) = () O () = {o | f2)) = pla;) <&, j=1,k},
k=1

which defines the topology of right pointwise convergence in K* Note that if {+z1,...,+2,} C L := L(K),
then the neighborhood OL,, ., .(f) reduces to

Ouy,wne(f) = Ao | [f(z)) = plaj)| <&, j =1k}

So, the topology of pointwise convergence generates on L the usual pointwise convergence of nets { f, }, that
is, |f(z) — fa(z)| = 0 for all z € LL

Remark 3.3. Let B* = {f € K* | || f|. < 1}, and {fa}acw be a net in B* Then there exists a subnet
{fs}pes converging in the usual sense on L such that |f(z) — fo(z)| — 0, where f is a linear functional
whose norm is majorized by 1 on L This result follows from w* compactness of the unit ball in L* (see [5],
[6])

Let g(x) = limsupg fg(x) = limgsup, 4 f+(x) for all z € K Then g is convex and finite on K From
Theorem 4 25 in [27], it follows that the set Z(g) of all linear functionals f < g is nonempty Moreover,
—f(x) = f(—z) < g(—z) = —liminfg fg(x) for all x € L, that is,

1imBinf fa(z) < f(z) < limsup fz(z) on L.
B

Hence limg fg(x) = f(z) on L by the choice of the net {fs}gecz It is easily seen that [|f|. < 1 for all
f € P(g) Moreover, for each x € K, f(x) is a || - |z limit point of the net {fs(z)}s3 We claim that
f € B* is a limit point in the topology of right pointwise convergence Indeed, for any € > 0, we can choose
a subnet {f,},cr such that, for any fixed 2, € K and all v € ', we have f,(zx) > g(zx) —¢, k = 1,n So,
f(zr) < fy(zr) +eforall k = 1,n and v € I' Hence the neighborhood O, . _(f) contains points of
the original net As a result, f is a limit point in the topology of right pointwise convergence We also have
f(z) < g(x) = limsupg fz(z) < limsupg ||z = ||lz[ for all x € K, and, therefore, || f|. <1

Note that the restrictions of the neighborhoods Oy, . 4, -(f) ({z1,...,z,} C L) on K* generates a for
mally weaker topology then the topology of right pointwise convergence, and hence the ball B* is compact
also in this topology, which will be called the weak* (or w* ) topology in K* So, the w* topology coincides
with the topology of pointwise convergence on L

The following result is a direct consequence of Remark 3 3
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Corollary 3.1. The unit ball B* is compact in the topology of weak™ right pointwise convergence, and
also in the topology of weak™ convergence in the cone space K*

Corollary 3 1 implies that the balls B*(f,r) := rB* + f (f € K*) are w* compact However, in view of
Remark 3 2, these balls are w* closed only if the cone space K is 1 regular This follows from the fact that
if f € K*\ B*, then there exists x € L(K) N B such that f(z) > 1, whereas ¢(z) < 1 for all ¢ € B* Note
that these balls are of course closed in the topology of weak™ right pointwise convergence

Another important property is also worth pointing out For each a € L and any « € R,

{y* e K*| (a,y") =2 a} and {y* € K* | (a,y") < a} is closed relative to K*,

and
{y* € K" | (a,y") > a} and {y* € K" | (a,y") < a} is open relative to K*.

Similarly, we define the w* topology on K** generated by the subbase of the restrictions of the neighbor
hoods
Ous,wn (™) = {y™ € X°% | |(2],y™ —2™)| <e, j =1,n} to the set K**,

where {27} ; C L(K*), 2™ € K** In this case, the unit ball B** in K** is w* compact
As a simple corollary, we get

Theorem 3.1. A cone space is reflexive if and only if its unit ball is weakly compact in the topology of
right pointwise convergence Moreover, if the ball of a cone space K is weakly compact and K* is 1 reqular,
then K is reflexive

Proof Let K be reflexive Being dual to K*, the unit ball of the cone space K** is compact in the topology
of right pointwise convergence on K*, which implies weak compactness of the ball of the cone space K in
the topology of right pointwise convergence (we assume that this ball coincides with the unit ball K** under
the natural embedding)

Let the unit ball B of the cone space K be weakly compact in the topology of right pointwise convergence
Under the natural embedding, this ball coincides with its w* closure in K** in the topology of right pointwise
convergence, that is, with the ball B** Hence K is reflexive

If the ball B of a cone space K is weakly compact (in the w* topology on K*) and K* is 1 regular, then
the closure in the w* topology on K* of the ball B (under the natural embedding) is contained in the unit
ball B** of the cone space K** It follows that the closure in the w* topology on K* of the ball B (under
the natural embedding) is the unit ball B** (see Theorem 4 2 below) This proves the theorem

Remark 3.4. In a reflexive cone space K with 1 regular dual K*, the unit ball B C K is compact in the
topology of weak pointwise convergence (that is, in the topology of w* pointwise convergence of functionals
from K** on K*) if and only if it is compact in the topology of weak right pointwise convergence (that is,
in the topology of weak right pointwise convergence of functionals from K** on K*)

Remark 3.5. Let the right closure of L = L(K) contain K, let z* be a w* limit point for a sequence
{25} Then 2* is also a w* limit point for any sequence {z%} such that ||z} —zX|. — 0asn — oo

Proof Consider arbitrary {a;}¥ ; C L and ¢ > 0 Let M > 0 be such that |ja;] < M, i = 1,k The
neighborhood O3 4, ....a, (2*) contains infinitely many terms of the sequence {z} Since |z — 2]« < .53,
starting from some number N, and since

(ai 2" —af) = (a1, 2" — 25) + (ar, 25 — @) < &/2+ |laill2 — 2l <& (i =1k),

it follows that the neighborhood OZ,, . (2*) contains infinitely many terms of the sequence {x} } There

fore, z* is a w* limit point for {x} }

For regular cone spaces K, the regular w* topology is introduced as follows Consider the system of neigh
borhoods

TOw_l,...@n(o) = {QO e K” | —pE K*v —(p(ﬂfk) <g, k= 1;”}3
Oy () ={p € K" | f—p €K', (f —@)(ax) <&, k=1,n}, feK"
Theorem 3.2. Let K* be a 1 regular cone space Then the ball B* is a reqular w* compact set
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Proof The set BL* := B*NL(K"*) is dense in the (strong) topology of right convergence in the ball B*, and
hence is dense in the regular w* topology We claim that any net {¢q}acr C BL* has a subnet converging
to some point f € B* By the ordinary w* compactness of the ball B*, there exists a subnet {¢g}sca
converging to f € B* in the w* topology Since ¢z € L(K*), we find that f,¢g, f — s € K* Therefore, the
subnet {3} secz converges to some f in the regular w* topology

Consider an arbitrary open (in the regular w* topology) covering {Gx}xea of B* In each element of the
covering G, for each g € G, we embed a closed neighborhood

Voo (9) ="Vai e, (9) ={p €K' [g—p € K", (9 — ) (z1) < &g, k= 1,n}

with an appropriate family ay = (z1,...,%n,€4) such that z1,...,2, € L(K) and ¢4 > 0 We claim that
there exists a finite system of neighborhoods

Oay, (95) = "4 vne,, (95) = {p €K [ g5 — 0 € K7, (g5 — ¢)(w1) < &g, k= 1,0},

4 =1, N, which cover the set BL* Assume on the contrary that there is no such finite system Then with
each set § := (ag,,..., gy ) We associate a point ¢3 € BL* not lying in the union of the neighborhoods
Oa,, (9;), 7 =1,N On the index set {3} we introduce the partial order

B1 < Ba s B1 C B

By the above, there exists a subnet {3} of {5} converging to some point f € B* in the regular w* topology
Hence O, (f) contains the terms of the subnet {13 } for all v exceeding some o, which contradicts the
construction of this subnet Thus, we have shown that there exists a finite set of neighborhoods

Oay, (95) = O vne,, (95) = {p €K [ g — 0 € K7, (g — @) (wr) < &y, k=1,n},

7 =1, N, which covers the set BL*

If the corresponding family of closed neighborhoods Vagj (95), 5 =1, N, covers the entire set B*, then the
family consisting of the points of the original covering G, such that Vagj (9j) C Gy,, is a finite subcovering
of the original covering Hence, B* is a compact set in the regular w* topology Suppose that there exists
a point go € B* not lying in the union of the sets Vo, (9), j =1,N If g; — go ¢ K*, then we choose
y; € L(K) so as to have (g; — go)(y;) > 1; otherwise we choose y; € L(K) arbitrarily Hence there exists
a neighborhood "O, (go) disjoint from any neighborhood from the family Oa,, (g5) C Vay, (95),

sees Ty Y1y YnsE0
j =1,N, and which contains the set BL*, however, this cannot be the case (see the first paragraph of the
proof) This proves the theorem

Recall (see p 405) that if K is also a 1 regular cone space, then B* is closed in the w* topology, and,
therefore, closed and in the regular w* topology (which is stronger)

Remark 3.6. A similar argument shows that the right closure N of the set BL*(R) := B*(0, R)L(K*)
is aregular w* compact set in K* It follows that if the cone space K* is R regular and if the ball B* is closed
relative to the regular w* topology, then it is a regular w* compact set in K* This condition is satisfied,
in particular, if the cone space K is 1 regular Indeed, the required compactness follows from the inclusion
B* C Npg and since the ball B* is closed in the w* topology, and, therefore, in the regular w* topology,
which is a stronger topology That the ball B* is closed in the w* topology was pointed out on p 405

Note that the regular w* topology is in fact associated with a concrete cone Hence with each cone
K7} := f+ K, f € K*, we will have to associate the cone specific regular w* topology, which will be called
the regular weak™ topology with respect to the cone K3 This topology is generated by the neighborhoods

TOr_h...,zn(f) = {QO € K* | f - P € K*v f - (p(ﬂ?k) <kg, k= 1)”}7

"Opya(f+9) ={peK" | (f+9)—9 e K" ((f+9) —¢)(zx) <&, k=1,n}, g€ K"

In particular, the above topology is the regular weak™ topology with respect to the cone K = K* Indeed,
for f,g € K*, any open set in the regular weak* topology with respect to the cone K;@ is a translation by
¢ = f—g € X° of some open set in the regular weak™ topology with respect to the cone K7, and vice versa
So, by analogy, it will be convenient to carry over this topology also to the cones Ky for f € X° (that is,
f not necessarily lies in the cone K*) However, it should be pointed out that if f € L(K*), then M C K* is
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compact relative to the regular w* topology with respect to the cone K* if and only if its compact relative
to the cone K3} A similar property also holds for the cones K} and Ki, f,g € X°if f —g € L(K*) In the
more general setting, M is compact in the regular w* topology with respect to the cone K7 if and only if
My := M + g are compact in the regular w* topology with respect to the one K%, , f,g € X°

Corollary 3.2. Let a cone space K be 1 reqular and the cone space K* be reqular Then there exists
a nondegenerate ball B*(g,r) compact in the reqular w* topology

Proof Assume that the right closure N,, = Ng, of the set BL*(R) := B*(0, R) N L(K*) is a regular w*
compact set in K* (n € N), where R,, T +00 as n — oo As in Remark 3 6, it can be shown that the sets
N,, n € N, are compact in the regular w* topology Since the cone space K* is regular, it can be covered
by a nested system of compact sets in the regular w* topology {N,}nen Since K* is right complete, an
application of the Baire theorem (see [5, § 1 2]) shows that there exists a nondegenerate ball B*(g, r) lying in
some set N, Since the cone space K is 1 regular, the ball B*(g,r) is a closed set in the regular w* topology,
and, therefore, is a compact set in the regular w* topology This proves Corollary 3 2

Definition 3.2. A cone space K is called left regular if, for any point € K and arbitrary € > 0, there
exists ¢ € L(K) such that ||¢ — x| < e A cone space K is strongly regular if it is simultaneously regular and
left regular

Corollary 3.3. Let a cone space K be 1 regular and the cone space K* be reqular Then the ball B* is
compact in the reqular w* topology

Proof By Corollary 3 2, there exists a nondegenerate ball B*(g,r) which is compact in the regular w*
topology There exists a point ¢ € L(K) such that ||¢ — g| < r/2 Hence the ball B*(p,r/2) is contained
in the ball B*(g,), and hence, since B*(p,r/2) is closed, is compact in the regular w* topology Hence the
ball B*(0,7/2) = B*(¢,r/2) + (—¢) is also compact in this topology, because —p € L(K) It follows that
the ball B* = fB*(O7 r/2) is compact in the regular w* topology This proves Corollary 3 3

The cone spaces K feature one more of weak™ convergence property This is the property of pointwise
convergence on the cone space K for all functionals L(K*) Indeed, consider an arbitrary point ¢ € K and
an arbitrary sequence {ax} C L such that |ja — ax| — 0 as k — oo Assume that, for arbitrary e > 0, there
exists ko such that ||a — ak,| < € Then, for any functional ¢ € L(K*) such that |¢(ag,)| < &, we have

p(a) = pla —ak,) + plar,) <llpl«lla = ar| +e <e(l+[lel)
and, similarly,
—pla) = —pla —ar,) = plar,) < || = @lella—an,| +e <e(l+ [ =)
Hence
p(a)] <e(l+[lol + | = ¢lv)-

For an arbitrary functionals f € K*, since f(a) — f(ax) < ||f|«|la — ax] — 0, we have || f(a) — f(ak)|g — 0

(k — 00), that is, the value at a point a is defined as the limit of the sequence {f(ax)} in the space (R, || - |r)
4 JAMES REFLEXIVITY THEOREM

In what follows, for completeness of presentation, we will carry over some standard facts from the theory
of normed linear space to the asymmetric setting

Theorem 4.1. Let A C K* be a nonempty convex w* closed set Then, for any functional f € K*\ A,
there ezists a point y € L = L(K) separating f and A, that is,

y(f) = f(y) > sup g(y) = supy(g).
geA geEA
Proof We will assume that K is naturally embedded into K** Since A is w* closed, there exists a neigh
borhood U = {y* | |y*(v:)| < &, = 1, N}, of the origin, {y;}, C L, such that (f + U)N A = & Since
U is symmetric, it follows that f does not lie in the w* open convex set A + U = A — U, and, therefore,
by the Hahn Banach theorem, there exists a linear functional F' € K** such that F(f) > sup,c 1,y F(g) >
sup,cy F(u) + F(go) for any go € A We claim that the functional F' is an action of some y € L which is
a linear combination of y;, ¢« = 1, N Indeed, P := supy F' < F(f) — F(go), where go is some fixed point
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from A, is finite, and hence, for any +y* € ﬂiil Kery; =: Ty and arbitrary ¢ > 0, we have F(+ty*) < P
Hence £F(y*) < P/t — 0 (t — +00), that is, F(y*) = 0 Let T be the linear hull 7; in the space X°,
and {z7}¥, C K* be a linearly independent system of functionals such that TN Z = {0}, where Z is the
linear hull of this system We can extend F' to the linear manifold 7'@® Z as a linear functional Note that F'
is an annihilator of T The linear space Z contains a set of elements {z}}Y; such that y;(2}) = 8;; (6;
is the Kronecker delta) Hence F' — Zi\il F(2})y; vanishes on T @ Z, and, therefore, F' = Zi\il F(z))y
on K* C T®Z Hence F is a linear combination of y; (i = 1, N), that is, a point in the space K This proves
the theorem

Theorem 4.2 (Goldstein). If K* is a 1 regular cone space, then the w* closure of the unit ball B of the
cone space K as a subset of K** under the natural embedding (relative to K*) is the unit ball B** in the
cone space K**

Proof The w* closure A of the set B (as a subset of B** under the natural embedding) is contained in B**
Let Y = K* If A # B** then for some f € B**\ A C Y*\ A in view of Theorem 4 1, there would exist
y € Y = K* (more precisely, y € L(K*)) such that f(y) > sup,c 4 9(y)

Note that ||y|. # 0, since otherwise we would have f(y) < || f|«|lyl« = 0, which, however, is impossible,
because supge 4 9(y) = 0 Since B C A and since [|y|. = sup,e y(g) > 0, we find that the right hand side of
the inequality f(y) > supge 4 g(y) is positive, and so, if necessary, we could multiply y by a positive number
so that the inequality would remain valid and its right hand side would be equal to 1 So, we may assume
without loss of generality that f(y) > sup,c4 g(y) = 1 Since the supremum here is 1 and B C A, we get
lyl <1, but f(y) > 1 for || f| < 1, which cannot be the case This proves the theorem

Remark 4.1. Note that a version of the Goldstein theorem on the density of the ball B of a linear
asymmetric space in the ball B** is Theorem 2 5 26 of [5] As in Theorem 4 2, it can be shown that the
ball B C K is dense in B** relative to the weak topology of right pointwise convergence generated by the
neighborhoods Og. .. .(f) (f € K™, 2} € K*, k =1,n) This follows from the fact that each functional
J € K** separating this neighborhood from some set can be written as Y ,_, axz} (Kuhn Tucker’s theorem;
see [26]), where a, > 0 (k = 1,n) Therefore, f € K* Next, we proceed as in the proof of Theorem 4 2
starting from the second paragraph

Since the ball B** is closed in the weak topology of right pointwise convergence, we have the following
result

The closure of the unit ball B of a cone space K in K** (under the natural embedding) relative to the
topology of weak right pointwise convergence is the unit ball B** of the cone space K**

Given a nonempty set E, consider the asymmetric space

m(E) ={z = (za)a | 2] := S‘ip(ffa)Jr < oo},

here x : E — R and z, = z(a) (o € E), (zo)+ = max{z,,0} For a bounded sequence {x,} C m(E)
(a sequence is bounded if there is a number uniformly majorizing all coordinates of this sequence), consider
the point limsup,, , . zn = (limsup,_, ., z.(@)), € m(E) We say that a point = (24)a € m(FE) attains
its supremum on E if there exists an index 3 such that g = supg = : =sup,cg Za

Below, by conv M and conv M we denote, respectively, the convex hull of a set M and its right closure
For an arbitrary sequence {z,}, the set of all elements of the form >, Az, will be denoted by conv{z,},
where {\,} is an arbitrary sequence of nonnegative numbers with > 2 | A, =1

Lemma 4.1 (Simon’s inequality). Let E be a nonempty set and let {x,,} be a bounded sequence in m(E)
Assume that, for any sequence of nonnegative numbers {\,} with Y-~ A, =1, the vector Y., \yx, attains
its supremum on E Then

sup (lim sup xn) = inf sup .
E n—00 z€conv{z,} E
Proof For each k € N, let Cj, be the set of all sums of the form Y ~_, A2, where {\,,} C Ry is such
that >~ _, A\, =1 Note that, for each a,

o0 o0
lim sup Z AmTm () < Z Am lim sup zg (o) = lim sup g ().
k—o0 m—k m—k k—o0 k—o0
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We need to show that supg (lim SUD,, 500 xn) > infyec, supgpx Consider an arbitrary € > 0 and define
2k+1 € Cry1 (k € Z4) inductively from the condition

sup(2fvg + zi1) < inf  sup(2Fug + 2)
E

3
_|_
26Cry1 E 2k+17

k .
where vg = 0 and vy = ), 5» Next, since

k k k k
Zpr1 = 28T (g r — v) = 28T oy — 2R, — 2Ry,
we have 2%uy, + zpp1 = 28 oy — 280, We also set v = 0 ) 5m Since zp = Yo, 1 Amn®n, Where
Y omeks1 Amn = 1, we have 5%, 2k=m X n = 1, and, therefore,
oo Z oo oo oo o0
-2y =2" Y7 = 3 TN Aman = Y aw Y 2 A € Cras
m=k+1 m=k+1 n=k+1 n=k+1 m=k+1
As a result,
k k k k k k €
sup(28 T oy 1 — 2F0r) = sup(2Fug + zpp1) <sup(2Fug + (280 — 2Fuy)) + ok+1
E E E
k € k €
=sup2v+ =2%supv + .
e ok+1 U gkt

Since v € C1, by the hypotheses of the lemma, there exists « € F such that v(a) = supgv The equalities
Zkil 2m =2k _ 1 for all k imply

m=0
1

k—
2k () = Z (2" i1 — 2™, (@) < (28 — 1) supv + € = 2%v(a) + ¢ — supw.
— E E

Hence supy v < 2Fv(a) — 2Fvi () + ¢, and, therefore,

inf supz < supw < limsup(2¥v(a) — 2%v(a)) + € < limsup(zx(a)) + €
zeC1 g E k—o00 k—o0

(because 2Fv — 2%v, € Chy1) Now the required inequality follows since ¢ is arbitrary This proves the
lemma

Definition 4.1. Let K be a cone space, let K* be the dual cone space, and let A be a bounded subset
of K* A set C C Ais called a James boundary for A if, for each x € K, there exists a functional g € C such
that

2(g9) = (9,2) = g(x) = sup 2(f) = sup f ().
feA feA
Remark 4.2. Given a cone space K, a bounded set A C K*, and its nonempty James boundary F, we
can map K into a subset of the space m(A) or m(E) by associating with each point € X the vector (zf)fca
or (x¢)fer, respectively, where xy = f(x) Note that sup,(vy) = supg(zy) is attained for all € K, and
hence the Simons inequality can be applied in these spaces

In the following theorem, separability will be considered with respect to L(K) of some nonempty subset
of E in the cone space Y := K By definition, F is separable with respect to L(K) if there exists a countable
set D C L(K) (here we may assume without loss of generality that D = —D) such that the right closure
of D = {a,} relative to the asymmetric norm || - | contains E If the right closure of L contains K, then
separability of E and that of E relative to L(K) are equivalent

In what follows, we will simply say that E is separable In this case, each bounded subset M of the space
Y* = K* can be equipped with a metric generating the pointwise convergence of functionals y* € M Since,
for arbitrary {as,...,a,} C D, the w* topology on M is generated by a countable system of seminorms

Par .0, (27) 1= max [(ag, 27)],
k=1n

this set is therefore metrizable (see [5]) This topology generates on L the pointwise convergence of functionals
from K; it is metrizable on M
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Note also that, in the separable case, the w* topology of right pointwise convergence is generated by
a countable family of asymmetric seminorms

Pay.....a, (27) i= max (ap, 27),
k=1,n
which determines some countable set of neighborhoods of points z* € M Hence, M is compact if and only
if it is sequentially compact

Theorem 4.3 (Godefroy). Let K be a cone space, let A be a bounded right closed convex subset of the
dual 1 regular cone space Y = K*, and let E be a separable James boundary for A Then A = conv E

Proof Let B be the unit ball in the cone space K Assume on the contrary that there exists y5 € A\ conv E
By the Hahn Banach theorem, there exist a a norm one linear functional F' € K** and numbers o, 5 : o < 3
such that F(y5) > 8 > a > F(f) for all f € E Consider the set M = {z € B | z(y5) = yj(z) = S} By
Theorem 4 2, the functional F' lies in the w* closure of the set M in the space K**, which is the intersection
of the ball B** and the set {f € K** | f(v5) = y(f) = 8} The set E is separable in Y = K*, and hence on
the bounded subsets of the space Y* = K** one can introduce a metric generating the pointwise convergence
of functionals on the set E Hence some sequence {z,,} C M converges to some functional F' at each point of
the set E, that is, z,(f) — F(f) for all f € E, and, therefore, supp, (limsupnHoo xn) =supy F < a (here
{zy} is considered in m(E) (see Remark 4 2)) On the other hand, conv{z,} C M and y} € A, and hence
supp x =supgx = x(y}) > f for all x € conv{x,} By the Simons inequality (see Lemma 4 1),

a > sup (lim sup xn) > inf supz = (3,

E n—oo rz€conv{z,} E
contradicting the inequality v < f This proves the theorem

Remark 4.3. The closure in the weak right pointwise topology (that is, in the topology of right pointwise
convergence on K*) of the ball B under the natural embedding coincides with B**, and hence, a similar
argument shows that A = conv E without the additional requirement that the cone space K* should be
1 regular

Theorem 4.4 (James). Let K be a cone space

1) If C C K is a compact set in the topology of weak right pointwise convergence (on K*), then each
functional f € K* attains its supremum C

2) If C is a nonempty closed (relative to the topology generated by open balls) of convex bounded subset of
a separable cone space K for which each functional f from the 1 regular cone space K* attains its norm, then
C is compact in the topology of weak right pointwise convergence, and, therefore, and in the weak topology

Proof Let us prove the first assertion If C' is a compact set in the topology of weak right pointwise con
vergence, then, since each functional f € K* is upper semicontinuous in this topology, f assumes on C' its
largest value

Let us verify the second assertion By the assumption on norm attainability of functionals, the set B (the
unit ball in K) is a James boundary of the w* closure of this set in the space K**, which is the unit ball B**
of the cone space K** Next, choosing A = B** and E' = B, and proceeding as in the proof of Theorem 4 3,
we find that B = conv B = B** (up to a natural embedding) Hence both B = B** and kB are compact sets
in the topology of weak right pointwise convergence Since C' is bounded, we have C C kB for some k > 0
Next, K = K**, and hence, since C is closed, it follows from the Hahn Banach theorem that C is closed in
the topology of weak right pointwise convergence Hence C is a compact set in the topology of weak right
pointwise convergence, and, therefore, in the weak topology This proves Theorem 4 4

Remark 4.4. A similar argument gives the following modification of the last assertion in Theorem 4 4
(without the assumption that K* is 1 regular): if C is a nonempty closed (relative to the topology generated
by open balls) convex bounded subset of a separable cone space K in which each functional f € K* attains
its norm, then C is compact in the topology of weak right pointwise convergence

To prove this result, we use Remark 4 3 as in Theorem 4 4 and the fact that C is sequentially compact in
the topology of weak right pointwise convergence (since E is separable)

The following result is a direct consequence of Remark 4 1, the previous theorem, and its proof

Corollary 4.1 (James). Let a cone space K be separable relative to L(K) Then K is reflezive if and
only if each functional f € K* attains its norm
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From Theorem 3 1 we have

Corollary 4.2 (James). Let a cone space K be separable relative to L(K) and let K* be 1 regular Then K
is reflexive if and only if the unit ball in K is a compact set in the weak topology of right pointwise convergence
(and so any closed convex bounded set is compact in the weak topology of right pointwise convergence)

Corollary 4.3. In any nonreflexive right complete cone space K whose right closure L(K) contains K
and for which K* is 1 reqular, there exists a right complete separable nonreflezive cone space Ky

Proof We will assume that K is naturally embedded into K** Since K ¢ (Rf) and K* is 1 regular, the unit
ball B under the natural embedding in K** is not a weakly compact set, and its weak closure is the ball B**
(under the natural embedding) In this case, each sequence in B has a limit point in B** In addition, the
linear space L(K) is narrower than L(K**), for otherwise the right closure L(K) would coincide with the
right closure of L(K**), that is, K = K** But this is impossible, since K is nonreflexive

Proceeding as in Lemma 2 (see [28, Ch 8, §2, p 285]), we construct, for each point F' € L(K**)\ K such
that || Fl.« < 1, a sequence {z,,} C K such that ||z,| < 1 and for which F is a limit point By Remark 3 5,
this sequence can be taken from L(K) We can assume that, for any separable linear manifold .¥ C L(K),
there exists 6 = (%) > 0 such that

|F—y|>d forall ye.2, |yl<1,

because otherwise the corresponding right strongly closure £ is a separable nonreflexive space, for which
the conclusion of the corollary holds

We construct by induction the aforementioned sequence {x,} C L(K) whose linear hull is .&

On p 407, we have shown that the topology of weak* right convergence on the maximal linear hull of the
dual space coincides on this hull with the weak* pointwise convergence on Y = K* (in particular, on the unit
ball B* CY) Applying this property to Y* and Y, we find that there exists f; € B* for which there exists
z1 € L(K), ||#1] < 1, such that |(F —21)(f1)| <1 Consider the space Yo C K** spanned by the functionals
F and F —z; There exist {f1,..., fk,} C S* such that

max{G(fn) |2 < m < ko) > ) [[Gls

for any G € Y5
Arguing as in the previous paragraph, we find o € L(K), ||22| < 1, such that

max{|(F — 22)(fu)] | 1< m < ko) < .

Consider the cone space Y3 C K** spanned by the functionals F', F—x; and F — x4, and find { fi,, ..., frxs} C
S* such that

1
max{G(fm) | k2 <m <k} >, |Gl

for any G € Y3 There exists a point 23 € L(K) such that ||z3] < 1 such that
max{|(F — 23) ()| | 1< m < s} < .

Continuing this process, we get a sequence {x,} C L(K) such that ||z, | < 1 and satisfying
max{G(fm) | Koy S m < k) > Gl

for any G € Y, where Y,, is the space spanned by the functionals F', F—x1, ..., F—2p, and { fey+1,- - -, frs } C

S* such that )
masc{|(F = 2)(fu)| |1 <M< B} <

Let © € K** be a limit point of the sequence {z,} in the weak topology Note that if  does not lie in the
right strong closure of .Z, then this closure is a separable nonreflexive space, which proves the result required
in the corollary

Assume that x does not lie in the right strong closure of .2 Then F' —z € K** and

1
max{(F —z)(fm) |1 <m < o0} > 2||F — T -
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For a fixed m, we have |(F — z,,)(fm)] < 11) for n > k, > m. Hence

[(F = 2)(fm)| < [(F = 2n)(fm)| + | frn (20 — )| < ]19 + [fm (20 — )]

for n > k, > m Since x is a limit point of the sequence {z,} in the weak topology, for any N > m there
exists n > ky = m such that |f,(x, — )| < ]{7 For this z,, (note that kx > m) we can put p = N Hence
we have [(F — z,)(fm)| + | frn(2n — )| < ]%7 Since N is arbitrary, we get (F — x)(fm) =0 for all m € N By
the assumption, there exists a point y € % such that ||z — y| < 2 < 4IIF —y| Hence
0= sup (F —z)(fm) = sup ((F = y)(fm) = (z = y)(fm))
me

meN

1 1 1
> sup ((F = y)(fm) = o =yl) = JIF =yl = [IF—yl=  IF -yl
meN

and, therefore, 0 = |F — y| > 4, which is impossible

Let By be the right completion of the intersection of B with the linear hull of the sequence {x,,} Similarly,
let Ko be the right completion (which coincides with right closure in K**) of the intersection of K with the
linear hull of {x,,} It is easily seen that By is not a weakly compact set, since otherwise all the w* limit points
(under the natural embedding in K**) of the sequence {J(x,)} would lie in J(By) Therefore, Ko ¢ (Rf)
This proves the corollary

Remark 4.5. The proof of Corollaries 4 2 and 4 3 (without the assumption that K* is 1 regular) is
similar It suffices to employ the fact that the unit ball in any nonreflexive cone space K is not compact in
the weak topology of right pointwise convergence (see Theorem 3 1) In any nonreflexive right complete cone
space K for which the right closure L(K) contains K, there exists a right complete separable nonreflexive
cone space Kj

5 NONSEPARABLE VARIANT OF THE JAMES THEOREM

Consider a sequence of linear functionals {¢,} on X bounded in the space m(K) Let Z({pn}) be the
set of all linear functionals w satisfying

liminf @, (z) < w(z) < limsup g, (x) for all X.

Note that (see [27, Theorem 4 25]) that there exists a linear function ¢(-) on X D K satisfying

liminf @, () < £(x) < limsup p,(x).

n—00 n—00
This inequality means that £ ({¢,}) is nonempty

Lemma 5.1. Let K be an arbitrary cone space, let 0 < 0 < 1, and let {f,} C K*, ||fu] <1 (n € N)
Suppose that o(w,conv{f,}) = 6 for all w € L({fn}) Then, for any sequence of positive numbers {\,},
Y nAn =1, there exist a number o € [0,2] and a sequence {gn} C K*, ||gn| < 1, with the following properties:

for each functional w € Z({gn}),
H Z/\”(g" — w)‘ =«

and, for each functional w € £ ({gn}) and any N,

Hi)\n(gn—w)‘<oz(1—9 i )\n).
n=1

n=N+1

Proof Let g, > 0 be such that

= An€
> o N <1-0.
We construct the sequence {g,} by induction Let wfo) = f; (1 e N) We set
ay := inf{sup{flg —w| [ w € L({p:i})}},
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where the infimum is taken over all g € conv{, 0)} and all sequences {p;} satisfying ¢ € conv{wl(o)}fik for
all k Let g1 € conv{w )} and let a sequence {gpZ )} be such that cp( ) e conv{wl(o)}fik for all k and

on <sup{flgr — w| [ w e LD} < ar (1 +e).
Next, we choose w’ € 92”({%(-1)}) such that
ar(l—e1) < |lg1 —w'| < ar(1 +&1).

Let z € K, ||z| < 1, be such that
a1(l—e1) < (g1 — w')(z).

Since lim inf; <p1(-1)($) < w'(x), there exists a subsequence {¢§”} of {%(,1)} such that, for any w €

2"y,
liminf oV (2) = lim M (z) = w(z) < w'(2).

This means that by replacing w’ by w we get

a1(1—e1) < (g1 —w)().
Next, we set

o9 1= inf{sup{H)\lgl + Z Ang — w| Tw e j({%})}},

where the infimum is taken over all g € conv{w )}002 and sequences {¢; } satisfying ¢y € conv{w )}OO for

all k Let g2 € conv{wl(l)} <, and {¢(®)} be such that cp( ) e conv{@bg )};’ik for all k, and
ag < inf { sup {||Arg1 + Z Ang2 —w|:w € .Z({tpgz)})}} < az(1l+e9).
n=2
Next, we choose w' € X({cpl(?)}) such that

(12(1 — 52) < ||/\191 + Z)\ngg — w’| < 052(1 +5‘2).
n=2

Assume that, for some = € K such that ||z| < 1, the following condition is met:
(1 — 82 < )\1g1 + Z )\ng2 )
As above, we choose a subsequence {%@)} of {%@)} such that, for w € 5({¢§2)}),

liminf 2 (2) = limy{? (z) = w(z) < w'(2).

So, we can again replace w’ by w
Proceeding in this way, we define

aNn = inf{sup{H ]vilAngn + i )\ng—w‘ cw E X({%})}},
n=1 n=N

where the infimum is taken over all g € conv{wgifl)}g’i ~ and the sequences {;} which satisfy the relations

YL € conv{wafl)}fik for all k& Let gy € conv{wI(N*l)}fiN and let a sequence {<p1(-N)} be such that

cp,(cN) € conv{wl(N*l)}fik for all k and

N < sup{H NZ? AnGn + f: AngN — w} tw € i”({%})} <an(l+epn).
n=1 n=N
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Next, we choose w’ € f({ng)}) such that

N-—1 o)
N(l—en)< H Z AGn + Z AngN —w/‘ <an(l+en).
n=1 n=N

Assume that, for some z € K such that ||z| <1

1 — EN Z )\ngn Z )\ngN ( )

Since liminf; ngN)(x) < w'(z), we can find a subsequence {@/JZ( )} of {gpi )} such that, for any w €

2™,
liminf o™ (z) = lim ™ (z) = w(z) < W' (z).

So, as above, we can replace w’ by w, which gives the inequality

n=N

This completes the induction step
Since Z({gn}) C X({cpgN)}) for all 4, and for all NV, and any w € Z({gn}), we have

an(l —en) <HZ)\ngn+ Z)\ngN w‘<0¢N (1+en).

n=1

Note that ||gn| < 1 for all n Hence g € conv{gy} implies ||g| <1 We have ||w| < 1 for w € Z({gn}), and
hence any < 2 By definition of ay it is easily seen that the sequence {ay} is monotone increasing, and, of
course, ay = 0 by construction and the hypotheses of the lemma As a result, the limit o := limy_, o0 an

exists and satisfies
0< HZ)\N(QN —w) < 2.
N

Moreover (see [25, p 12]),

Hi&(gi— ‘ ( i )\)Zn:l ni’iol‘lg\l)?ggk)\n)ga(l—o( i /\Z)>

1=n+1 1=n+1

This proves the lemma

Remark 5.1. Under the conditions of Lemma 5 1, the functional } ", A, (g, —w) does not attain its norm
if a sequence {\,} is chosen as follows: A, > 0, A1 < AN, (n € N), > A\, = 1, where A € (0,60%/2) is
some number

For an arbitrary x € K, ||| < 1, the property
limkinf g (z) < w(z) for all w € Z(gn)
implies that there exists a sufficiently large N such that
(g1 —w)(z) < 62 —2A < af — 2A.

Hence
N
3 Mg —w)(@) <3 Aulgn — w)(@) + Ans1(ab — 24) + Z A ()
n n=1 n=N+2
HZ)\ w)(&)] + Aw1(ad — 28) +2 S A <a(1-6( i X))+

n=N+2 1=n—+1

Avir(ad —28) 428 > N, =a—(af—24) > A, <o

n=N+1 n=N+2

But « is the norm of the functional ) A, (g, — w), that is, this functional does no attain its norm
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Corollary 5.1. Let K be a nonreflexzive cone space whose right closure L = L(K) contains K Then there
exists a functional K* which does not attain its norm on K

Proof We will assume that K is naturally embedded in K** It suffices to consider the case of nonseparable K
Let Kg be a separable nonreflexive cone subspace which is the right closure of Lo := L(Kjy) (see Remark 4 5)
If Ly coincides with L(Kg**), then the right closures of these linear manifolds are equal (under the natural
embedding Ky into Ko**)

Assume that Lo := L(Ky) is different from L(Ko**) Hence there exists F € L(K{*), ||Fl« = 1, such
that F' does not lie in the right closure of Ly, since otherwise L(Ko**) would lie in K (under the natural
embedding), which would imply Ly = L(Ko**) Let By be the unit ball in Ky, and Bg* be the unit ball
in K§* There exists § > 0 such that the set 0 B§* + Lo contains F' in its boundary Consider the sequence
{z,} C L which contains a set symmetric about the origin and right complete in Ky By the proof of
Corollary 4 3, it can be assumed that F' is a limit point for {z,} in the weak topology (the w* topology
relative to K) Let L,, be the linear hull of the vectors {xx}}_,, My := 6By + L, The cone space Y := W}
consisting of the support functionals to the M,,, are annihilators of the space L,, Note that Y is the dual
space to the cone space Ky in which By + L., is the unit ball

Let B; be the unit ball in the cone space Y, and let B* be the unit ball in the cone space Y* Next,
let M}* := 0B§* + Ly, and let F,, € [0, F] lie in the boundary of M** On p 407 we have shown that the
topology of weak™ right convergence on the maximal linear hull of the dual spaces coincides on this hull with
the w* pointwise convergence on Y (in particular, on the unit ball By C Y) Applying this to Y* and Y, we
find that there exists ¢ € By such that ¢(F) > 6/2 =: § By construction, 1) vanishes on L,

We set f, :== 1 We have f,(x) = 0 as n — oo for all z € Ly = L(Ky), and the norm of the restriction
to Lo of any functional f € Ko* such that f € conv{f,} is at most 0y = 0/|| F|.«

Hence, for all wy € Z({fn}), the functional wy is an annihilator of Ly Hence, for all f € conv{f,} and
all x € Ly,

[f = wols 2 (f —wo)(x) = f(x), and hence |[f —wol« > 6o.

By Lemma 5 1, for any sequence of positive numbers {\,} such that >~ X, =1, there exist a number o €
[00,2] and a sequence {g,} C K*, ||gn| < 1, with the following properties: for each functional w € Z({g,}),

[t

and, moreover, for each functional w € £({g,}) and any N,

IS oo w| <ali-a 3 )
n=1

n=N+1
By Remark 5 1, there exists a functional from K* onto K not attaining its norm

In the following two results, by cone subspaces Kg of a cone space K we will mean convex cones Ko C K
lying in the right closure of L(Kj)

Theorem 5.1. Let K be a right complete cone space Then K is reflexive if and only if so is each right
complete separable cone subspace Ky

Proof Necessity Let K be reflexive If there exists proper separable nonreflexive cone space Ky, then, as in
the proof of Corollary 5 1, it can be shown that there exists a functional not attaining its norm But this
contradicts Theorem 2 1 This contradiction proves that each right complete separable cone subspace Kj is
reflexive

Sufficiency Suppose that each right complete separable cone subspace Ky is reflexive Assume on the
contrary that K ¢ (Rf) Then there exists a bounded linear functional z* € K* not attaining its norm
on K Hence there exists a sequence {x,} C L(K) such that x*(z,) — ||z*|« as n — oo Let Lg be the linear
subspace spanned by {z,}, and Kq be the right closure of Ly in the cone space K Then the linear functional
x(, which is the restriction of the functional 2* to Ko, has the same norm on Ky as z*, and this norm is not
attained on Ko Hence by Theorem 2 1 it follows that Ko ¢ (Rf), which contradicts the assumption This
proves the theorem

The following result is a direct consequence of Corollary 4 3
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Theorem 5.2. Let K be a right complete cone space Then K is reflexive if and only if each right complete
cone subspace K is reflexive

Example 5.1. Let 1 < p,q < 400, 2 C R™ be a measurable set relative to the Lebesgue measure pu, > be
a o algebra of measurable subsets of Q, L, := L,(,3, 1), Lq := Ly(Q,%, 1) Consider the linear manifold
L := L,N Ly, which we equip with the asymmetric norm || f|, 4.1 := || f+|z, + ||f-|z, or with the asymmetric
norm || f|p.q,00 := max{|[f4|z,;|f-|z,} The right completion of the linear manifold is the cone space K of
measurable functions f : @ — R with finite norm || f|,,4,», where r = 1V oo We denote this cone space by
Ly, qr The dual cone space K* is the set of all measurable functions f : @ — R with finite norm || f|p~ ¢« =,
where p* = pfl, g = qzl, r* = oo (respectively, 1) if = 1 (respectively, co) The second dual cone space is
K Note that cone space K and its dual are strongly regular and 1 regular So, the cone space K is reflexive
and is superregular,

The arguments in the above example show that each right complete cone subspace in L, 4 is an existence
set, that is, for any point « € Ly, 4 ,, there is a || - |, 4,» nearest point in this cone subspace
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