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Abstract. We discuss homogenization of a strongly elliptic operator Aε = −divA(x, x/ε#)∇ on a
bounded C1,1 domain in R

d with either Dirichlet or Neumann boundary condition. The function A
is piecewise Lipschitz in the first variable and periodic in the second one, and the function ε# is
identically equal to εi(ε) on each piece Ωi, with εi(ε) → 0 as ε → 0. For μ in a resolvent set, we
show that the resolvent (Aε − μ)−1 converges, as ε → 0, in the operator norm on L2(Ω)

n to the
resolvent (A0 − μ)−1 of the effective operator at the rate ε∨, where ε∨ stands for the largest of εi(ε).
We also obtain an approximation for the resolvent in the operator norm from L2(Ω)

n to H1(Ω)n with

error of order ε
1/2
∨ .
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1. INTRODUCTION

Consider an elliptic operator - divAε∇ on a domain Ω with Dirichlet or Neumann boundary condition.
Here we assume that the parameter ε is small and positive and the coefficient Aε is locally periodic, i.e.,
Aε(x) = A(x, x/ε) with A depending smoothly on the “slow” variable x and periodically on the “fast”
variable x/ε. One can think of Aε as a rapidly oscillating nearly periodic function with slowly changing
amplitude. As is well known, for a given f ∈ L2(Ω), the solution of, e.g., the Dirichlet problem

− divAε∇uε = f in Ω,

uε = 0 on ∂Ω,

converges, as ε → 0, to the solution u0 of a similar problem

− divA0∇u0 = f in Ω,

u0 = 0 on ∂Ω,

where the coefficient A0 is no longer oscillating; see, e.g., [2], [1], and [11]. The classical results yield the
strong convergence of uε to u0 in L2(Ω); in other words, the inverse of - divAε∇ converges to the inverse of
- divA0∇ in the strong operator topology on L2(Ω). More recent studies following the pioneering works [3],
[4], and [12], reveal that it converges in fact in the uniform operator topology on L2(Ω) at the rate ε provided
that A is Lipschitz in the slow variable; see [6], where this was proved for the first time but with a worse
rate, and [8] and [9]. In [7] and [10], the smoothness of A was relaxed to the assumption that A is Hölder
continuous of order s ∈ [0, 1] in the slow variable, which led to the convergence at the slower rate εs (or just
convergence if s = 0). In this paper, we are interested in similar results for the case in which the coefficient Aε

loses the continuity in the slow variable, thus becoming piecewise locally periodic. In addition, we allow Aε

to have different periodic structures in each of the pieces. Although the main focus of this paper is the
(piecewise) locally periodic case, the last assumption makes our results interesting even in the most heavily
studied case of purely periodic operators, when the coefficients do not depend on the slow variable.

It is worth noting that, while we discuss only the Dirichlet and the Neumann problems on C1,1 domains
with piecewise Lipschitz coefficients, our results carry over to problems on Lipschitz domains with fairly
general conditions and at least piecewise uniformly continuous coefficients (although the rates can change).
We refer to [10] for details.

2. PROBLEM FORMULATION

For simplicity, we assume that there is only one interface on which A is not Lipschitz in the slow variable.
Thus, let Ω be a bounded C1,1 domain in R

d, which is divided into two subdomains by a (d− 1)-dimensional
C1,1 closed surface Γ in Ω. These subdomains are denoted by Ω1 (the inner one) and Ω2 (the outer one);
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Fig. 1.

see Fig. 1. Let Q stand for the unit cube in R
d centered at the origin. We introduce the set A of func-

tions Akl : Ω × R
d → C

n×n satisfying A ∈ C0,1(Ω̄i; L̃∞(Q)) for any i, i.e., A|Ωi×Rd is Lipschitz in the first
variable and periodic (with respect to the lattice Zd) in the other. The scale of the periodic structure on each
Ωi is described by a function εi : ε �→ εi(ε) tending to 0 as ε tends to 0. We set Aε

kl(x) = Akl(x, x/ε#(x, ε)),
where ε#(x, ε) = εi(ε) for x ∈ Ωi.

Next, let H1(Ω) be either the complex Sobolev space H1(Ω) or the subspace H̊1(Ω) of all functions in
H1(Ω) that vanish on ∂Ω. The former corresponds to the case of the Neumann problem, and the latter to
the Dirichlet problem. The dual of H1(Ω) is denoted by H−1(Ω).

Now we define the matrix operator Aε : H1(Ω)n → H−1(Ω)n by

Aε = − divAε∇ = −
d∑

k,l=1

∂kA
ε
kl∂l.

We suppose that Aε is strongly elliptic and coercive uniformly in ε for ε ∈ E = (0, ε0], i.e., there are cA > 0
and CA < ∞ such that, for any ε ∈ E ,

Re(Aεu, u)L2(Ω) � cA‖∇u‖2L2(Ω) − CA‖u‖2L2(Ω), u ∈ H1(Ω)n.

This implies that Aε is m-sectorial and, for any μ outside the corresponding sector S ⊂ C, the resolvent
(Aε − μ)−1 is bounded uniformly in ε ∈ E .

For such a μ, we want to approximate the resolvent in the operator norms from L2(Ω)
n to the spaces L2(Ω)

n

and H1(Ω)n. As usual, these approximations are described in terms of the effective operator and a corrector,
which we proceed to define.

3. THE EFFECTIVE OPERATOR AND A CORRECTOR

First, we need to introduce an auxiliary function, the solution of the so-called cell problem. For x ∈ Ω
and ξ ∈ C

d×n, let us look at the problem

− divA(x, ·)(∇Nξ(x, ·) + ξ) = 0,
∫

Q

Nξ(x, y) dy = 0,

on the cube Q with periodic boundary conditions. It follows from the coercivity of Aε that this problem is
strongly elliptic, and there is a unique vector-valued solution in the periodic Sobolev space H̃1(Q)n. Next,
Nξ is linear in ξ, so the mapping ξ �→ Nξ acts as the multiplication by a function. One can easily check
that this function, denoted by N , is as regular in the first variable as the function A is, and, therefore,
N ∈ C0,1(Ω̄i; H̃

1(Q)) for each i ∈ {1, 2}.
The effective operator A0 : H1(Ω)n → H−1(Ω)n is given by

A0 = − divA0∇,

where

A0(x) =

∫

Q

A(x, y)(∇N(x, y) + I) dy.

It turns out that A0 − μ is an isomorphism whenever Aε − μ is. By the regularity of A and N , we see that
A0 ∈ C0,1(Ω̄i) for any i, and then, according to the usual elliptic regularity theory, the resolvent (A0 −μ)−1

maps L2(Ω)
n to H1(Ω)n ∩H2(Ωi)

n continuously.
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To define the corrector, we fix, for i ∈ {1, 2}, an extension operator Ei taking H1(Ωi) and H2(Ωi) into
H1(Rd) and H2(Rd), respectively, and extend the functions A|Ωi and N |Ωi to Lipschitz mappings Ai and
Ni on the entire R

d. Then introduce the operator Kε
μ : L2(Ω)

n → L2(Ω)
n by

Kε
μf(x) =

∫

Q

Ni(x+ εi(ε)z, x/εi(ε))DEi(A0 − μ)−1f(x+ εi(ε)z) dz

for x ∈ Ωi. It can be readily seen that Kε
μ is bounded as an operator from L2(Ω)

n to each H1(Ωi)
n but,

generally, not to H1(Ω)n, which is not sufficient for our purposes. Thus, let ρε ∈ C0,1(Ω̄) be a cutoff function
with support in the two-sided (nonsymmetric) 3ε#-neighborhood of Γ (see Fig. 2) such that ρε is identically 1
in the 2ε#-neighborhood of Γ and ‖∇ρε‖L∞(Ωi) � Cεi(ε)

−1. Now, if χε = 1− ρε, then the range of ε#χεKε
μ

lies in H1(Ω)n, and this is the operator that we shall use as a corrector for an approximation in the operator
norm from L2(Ω)

n to H1(Ω)n.
We note that our corrector is basically just a classical corrector regularized with the Steklov smoothing

and the cutoff function. From another point of view, it can be thought of as the sum of the regularized
corrector ε#Kε

μ, which first appeared in the locally periodic settings in [6] (and is good enough in that
context), and a boundary-layer correction term −ρεε#Kε

μ.

4. MAIN RESULTS

Theorem 4.1. For any ε ∈ E and f ∈ L2(Ω)
n, we have

‖(Aε − μ)−1f − (A0 − μ)−1f‖L2(Ω) � Cε∨‖f‖L2(Ω), (4.1)

‖∇(Aε − μ)−1f −∇(A0 − μ)−1f − ε#∇χεKε
μf‖L2(Ω) � Cε

1/2
∨ ‖f‖L2(Ω), (4.2)

where ε∨ is the largest of εi(ε). The constants can be written down explicitly in terms of d, n, μ, the
C1,1 structures of Ω and Γ, the C0,1 norms of Ai, and the constants cA and CA.

For locally periodic operators, the second estimate is improved as soon as we step away from the bound-
ary [10, Corollary 6.5]. This is also true now if, in addition, we require that A is Lipschitz on the corresponding
subset and the periodic structure does not change there, e.g., if the subset intersects Γ. In the latter case,
the extensions used in Kε

μ can be chosen (and we actually do so) in such a way that ranKε
μ ⊂ H1(Ω)n.

Theorem 4.2. Suppose that A is Lipschitz in the first variable on an open set Σ with Σ̄ ⊂ Ω and that
ε# is constant on Σ. Then, for any ε ∈ E and f ∈ L2(Ω)

n,

‖∇(Aε − μ)−1f −∇(A0 − μ)−1f − ε#∇Kε
μf‖L2(Σ) � Cε∨‖f‖L2(Ω). (4.3)

The constants can be written down explicitly in terms of d, n, μ, the C1,1 structures of Ω and Γ, the
C0,1 norms of Ai, and the constants cA and CA.
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5. SCHEME OF THE PROOF

Our approach here is an extension of that in [10]. The core of the proof is a suitable operator identity for
the difference of (Aε − μ)−1 and the first-order approximation composed of (A0 − μ)−1 and ε#χεKε

μ.
For f ∈ L2(Ω)

n and f+ ∈ (H1(Ω)n)∗, we set u0 = (A0 − μ)−1f , Uε = Kε
μf , and u+

ε = ((Aε − μ)+)−1f+,
where (Aε − μ)+ stands for the adjoint of Aε − μ. Then

((Aε − μ)−1f − (A0 − μ)−1f − ε#χεKε
μf, f

+)L2(Ω)n

= (f, u+
ε )L2(Ω)n − (u0, f

+)L2(Ω)n − (ε#χεUε, f
+)L2(Ω)n . (5.1)

Using the definition of u0 and u+
ε again, we see that

(f, u+
ε )L2(Ω)n − (u0, f

+)L2(Ω)n = (A0Du0, Du+
ε )L2(Ω)n − (AεDu0, Du+

ε )L2(Ω)n .

As for the last term in (5.1), we introduce a cutoff function ρ′ε ∈ C0,1(Ω̄) that vanishes outside the
3ε2-neighborhood of ∂Ω and is identically 1 in the 2ε2-neighborhood of ∂Ω with ‖∇ρ′ε‖L∞(Ω2) � Cε2(ε)

−1.
If ξε = ρε + ρ′ε and ηε = 1− ξε, then ε#ηεUε belongs to H1(Ω)n, and we may write

(ε#ηεUε, f
+)L2(Ω)n = (AεDε#ηεUε, Du+

ε )L2(Ω)n − μ(ε#ηεUε, u
+
ε )L2(Ω)n .

Thus,

((Aε − μ)−1f − (A0 − μ)−1f − ε#χεKε
μf, f

+)L2(Ω)n

= (ηεA
0Du0, Du+

ε )L2(Ω)n − (ηεA
εD(u0 + ε#Uε), Du+

ε )L2(Ω)n + μ(ε#ηεUε, u
+
ε )L2(Ω)n

+ (ξε(A
0 −Aε)Du0, Du+

ε )L2(Ω)n + (ε#A
εDξε · Uε, Du+

ε )L2(Ω)n − (ε#ρ
′
εUε, f

+)L2(Ω)n .

After rather intricate and lengthy calculations to appropriately extract those terms that live near either the
surface Γ or the boundary ∂Ω, we arrive at an identity of the form

(Aε − μ)−1 − (A0 − μ)−1 − ε#χε∇Kε
μ|L2(Ω)n = Iε

μ + Bε
μ, (5.2)

where Iε
μ and Bε

μ are the “interior” and the “boundary” parts (cf. [10, (8.11)]).
The terms in Bε

μ involve integration over the 5ε#-neighborhoods of Γ and ∂Ω and are handled with the
following lemma (see [5, Lemma 5.1]).

Lemma. Let Σ be a bounded C0,1 domain in R
d and ∂Σδ be the δ-neighborhood of ∂Σ in Σ. Then for

any δ > 0 and u ∈ H1(Σ),

‖u‖2L2(∂Σδ)
� Cδ‖u‖H1(Σ)‖u‖L2(Σ), (5.3)

where the constant depends on d and the C0,1 structure of Σ.

With this lemma, we show that

‖Bε
μf‖H1(Ω) � Cε

1/2
∨ ‖f‖L2(Ω) (5.4)

for all f ∈ L2(Ω)
n (cf. [10, Lemma 8.6]).

On the other hand, the terms in Iε
μ involve the integration over an interior of Ω \ Γ away from Γ and

∂Ω, and this is where homogenization actually takes place. Using the decomposition ηε = η1,ε + η2,ε, where
ηi,ε = ηε|Ωi is a cutoff function supported in Ωi, we split each integral in these terms into two integrals, one
over Ω1 and another over Ω2. The key point here is that the coefficient Aε is locally periodic in both Ω1 and
Ω2, and, therefore, all these terms can be treated in exactly the same way as in the locally periodic case; see
[10, Lemma 8.3]. As a result,

‖Iε
μf‖H1(Ω) � Cε∨‖f‖L2(Ω). (5.5)

The bounds (5.4) and (5.5) clearly imply (4.2). Once we have the approximation (4.2), a more careful
analysis of the boundary part Bε

μ also yields that

‖Bε
μf‖L2(Ω) � Cε∨‖f‖L2(Ω) (5.6)

(cf. [10, Lemma 8.7]). Combining this with (5.5), we obtain (4.1), which completes the proof of Theorem 4.1.
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Theorem 4.2 is proved similarly, except that there is no boundary part in an analog of the operator
identity (5.2), since the set Σ is away from both the interface and the boundary. Namely, instead of (5.2),
we now have

(Aε − μ)−1η(Aε − μ)η′
(
(Aε − μ)−1 − (A0 − μ)−1 − ε#∇Kε

μ

)∣∣
L2(Ω)n

= I̊ε
μ, (5.7)

where η and η′ are C0,1 cutoff functions such that η|Σ = 1 and η′|supp η = 1; see [10, (8.21)]. As before, the
interior part satisfies

‖I̊ε
μf‖H1(Ω) � Cε#|Σ‖f‖L2(Ω). (5.8)

Setting fε = η(Aε − μ)η′vε with vε = uε − u0 − εUε, we see that ‖fε‖H−1(Ω) � Cε#|Σ‖f‖L2(Ω). Then (4.3)
follows from the Caccioppoli inequality

‖Dηvε‖L2(Ω) � C
(
‖vε‖L2(Ω) + ‖fε‖H−1(Ω)

)

and from the estimate (4.1) applied to vε.
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