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Abstract. In the paper, the asymptotics for the spectrum of the symbol of the oscillation equation of
a viscoelastic plate in a liquid or gas flow is studied using operator analysis methods. This equation is
the Gurtin–Pipkin equation with a relatively compact perturbation. Using an operator analog of
Rouche’s theorem, we explicitly define an asymptotic representation of nonreal points of the spectrum
for the symbol of the equation.
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1. INTRODUCTION

In the present paper, we study the equation of motion of a viscoelastic plate in a liquid or gas flow within
the piston model; the equation is written in the form (see, e.g., [1]):

D0

⎛
⎝Δ2u(x, y, t)− ε0

t∫

0

Γ0(t− τ)Δ2u(x, y, τ)dτ

⎞
⎠+ ρhü(x, y, t)

+
γp0
a0

(u̇(x, y, t) + v(n0,∇u(x, y, t))) = f(x, y, t). (1)

The plate is two-dimensional; it is a rectangle with the sides L0 in the x direction and l0 in the y direction;
u(x, y, t) describes the deviation of the plate at a point with the coordinates (x, y) at the moment t; Δ2 is
the operator

∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4
;

n0 is the direction of the velocity for the motion of gas or liquid, and v is the modulus of n0. The plate is
secured in an articulated manner on both sides along the axis Oy :

∂2

∂x2
u(x, y, t) = u(x, y, t) = 0 (2)

at x = 0 and x = L0. In this paper, we consider a one-dimensional analog of the equation (1):

D0

⎛
⎝ ∂4

∂x4
u(x, t)− ε0

t∫

0

Γ0(t− τ)
∂4

∂x4
u(x, τ)dτ

⎞
⎠+ ρhü(x, t)

+
γp0
a0

(
u̇(x, t) + v n0x

∂

∂x
u(x, t)

)
= f(x, t). (3)

Then, instead of condition (2), we take the boundary condition

∂2

∂x2
u(x, t) = u(x, t) = 0

at x = 0 and x = L0. Moreover, below, to simplify mathematical calculations, we take L0 = π and also
n0x = 1 (i.e., the liquid or gas moves along the direction x).

In [2], a lower estimate for the critical flow speed was given at which the vibrational motion of the plate
ceases to be stable. That is, an interval of speeds v was obtained for which the spectrum of the operator
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function, which is the symbol of the integro-differential equation (1), is absent in the half-plane {Rez � 0},
and the solution to this problem is asymptotically stable. The purpose of this paper is to find the asymptotics
for the spectrum of the symbol of the integro-differential equation (1). This asymptotics can be used in the
study of high-frequency vibrations of the plate, when determining the speed of the wave propagation, as well
as when compiling the Riesz basis for the given problem.

2. STATEMENT OF THE PROBLEM

Let us represent equation (3) in an operator form more convenient for subsequent investigation:

ü(t) + 2M1u̇(t) +M2
2

⎛
⎝A2u(t)−

t∫

0

Γ(t− τ)A2u(τ)dτ

⎞
⎠+M3Tu(t) = f(t), (4)

where

2M1 =
γp0
a0ρh

, M2
2 =

D0

ρh
, M3 =

vγp0
a0ρh

, Γ(t) = ε0Γ0(t),

and u(t) and f(t), for a fixed t, are already vector functions with the values in the Hilbert spaceH = L2([0, π])
with respect to x. The unbounded operator

Av(x) = − ∂2

∂x2
v(x)

acts on the space H and has the domain

D(A) = {v(x) ∈ H : v′′(x) ∈ H, v(0) = v(π) = 0}.

The operator A2v(x) =
∂4

∂x4
v(x) also acts on the space H and has the domain

D(A2) = {v(x) ∈ H : v(IV )(x) ∈ H, v(0) = v(π) = v′′(0) = v′′(π) = 0}.

The operator T acts by the rule Tv(x) =
d

dx
v(x) and has the domain

{v(x) ∈ AC([0, π]) : v′(x) ∈ H, v(0) = v(π) = 0}.

This is the Gurtin–Pipkin equation with a small modification in the form of the terms 2M1
d

dt
u(t) and

M3Tu(t).
We also assume that the function u(t) takes values in the Sobolev space W 1

2,γ([0,+∞), A) with the
following inner product (here and below, all inner products are sesquilinear):

(u(t), v(t))W 1
2,γ ([0,+∞),A) =

∞∫

0

(
(u′(t), v′(t))H + (Au(t), Av(t))He−2γtdt

)
.

Adding the initial conditions
u(0) = ϕ0(x), u′(0) = ϕ1(x), (5)

to the equation (4), we obtain a Cauchy problem.
In the present paper, we consider the kernel of the form

Γ(t) =

{
0, x < 0,

Γ1(t), x � 0,
where Γ1(t) =

∞∑
k=1

cke
−γkt (6)

cj , γj > 0, γj+1 > γj ,
∞∑
j=1

cj
γj

< 1. (7)

It is necessary to note further that the operator A2 introduced above is a self-adjoint positive operator and
the operator A−2 (inverse to A2) is compact. Then, by the Hilbert–Schmidt theorem, there is a basis of
eigenfunctions of the operator A2 in H ; en = sin(nx), n ∈ N.
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Moreover, the operator T ∗ acts by the rule T ∗v(x) =
d

dx
v(x) with the domain

D(T ∗) = {v(x) ∈ AC([0, π]) : v′(x) ∈ H}

(see, e.g., [3]). Since the operator T is closed, we can represent t in the form of a product of a partial isometry
and a self-adjoint operator using the polar decomposition:

T = U
√
T ∗T = UA

1
2 . (8)

It is also appropriate here to cite the result of the paper [2] in which an estimate for the constant M3 for
which the spectrum of the symbol (4) lies in the half-plane {z : Re z < 0} is given.

Theorem 1. Suppose that Γ(t)eγ1t is a monotone decreasing positive integrable function for some γ1 > 0
and

2M1M
2
2 (1 − ||Γ||L1)(

√
a1)

3 −M3M2
√
a1 − 2M1M3 > 0,

where a1 is the least eigenvalue of A. Then, for some γ > 0, the spectrum of the operator function L(z),
which is the symbol of the equation (4), is absent in the right half-plane {Re z � −γ}.

3. GENERAL CASE OF THE GURTIN–PIPKIN EQUATION WITH PERTURBATION

To begin with, we consider the case of the standard Gurtin–Pipkin equation with an A2-compact pertur-
bation in the Kato sense (see [4]):

u′′(t) +A2u(t)− Γ(t) ∗A2u(t) +RAθu(t) = f(t), (9)

u(0) = ϕ0, (10)

u′(0) = ϕ1, (11)

where θ ∈ [0, 2). Here u and f are some functions from R
+ to the Hilbert spaceH ; ∗ stands for the convolution

operation, A is a self-adjoint positive operator on H having compact inverse, R is a bounded operator with
the norm ‖R‖ = B. The function Γ is defined by (6), (7). Below we shall see that problem (4), (5) can be
reduced to (9)–(11) by a change of variables.

By the Hilbert–Schmidt theorem, there is a basis of the eigenvectors en of A in H ; the eigenvalues an
correspond to these eigenvectors. For the problem (4), (5), we have en = sin(nx), an = n2, n ∈ N. Moreover,
our operator obviously satisfies the relation

aθ−1
n (an − an−1)

−1 → 0, n → ∞. (12)

The application of the Laplace transform to equation (4) leads to the operator function

L(z) = z2I + (1−K(z))A2 +RAθ, (13)

which is the symbol of the original equation. Here K(z) stands for the Laplace transform of Γ(t):

K(z) =

∞∑
k=1

ck
z + γk

. (14)

Definition 1. By the resolvent set R(L) of L(z) we mean the set of all values z ∈ C for which the
operator function L−1(z) exists and is bounded. The complement of the set R(L) to the complex plane, i.e.,
σ(L) = {C \R(L)} , is called the spectrum of L(z). We are to find the asymptotics of the spectrum σ(L) of
the symbol of the given equation.

Write

ln(z) = (L(z)en, en) = z2 + (1−K(z))a2n. (15)

This function of a complex variable has only one root in the upper half-plane {Im z > 0}. This is proved,
e.g., in [5]. Denote the root by μ+

n . When cj and γj have polynomial behavior, the asymptotics of μ+
n is

studied in detail in [6]. Further, write Dn,C = {z : |z − μ+
n | < Caθ−1

n }.
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Theorem 2. Suppose that the eigenvalues of the operator A satisfy relation (12). Then there are positive
constants y0 and C such that the spectrum σ(L) of L(z) lying in the upper half-plane {z : 	 z > y0} can be
represented in the form of a family of points {μ̃+

n , n > n0} in such a way that μ̃+
n ∈ Dn,C. The number n0

is here the least positive integer such that, for every n > n0,

Dn,C ⊂ {z : 	 z > y0}. (16)

Remark 1. Using the definition of Dn,C , we can describe the asymptotics of the spectrum of L(z):

μ̃+
n = μ+

n +O(aθ−1
n ).

Proof. We need an operator analog of Rouche’s theorem (see [7]). To begin with, we introduce some
definitions.

Definition 2. Let a point z0 be a pole of the operator function L(z). In some neighborhood of the point
z0, we have an expansion

L(z) =

∞∑
j=−n

(z − z0)
jLj .

If the operators Lj , j = −n, −n+ 1, . . . ,−1 in this decomposition are finite-dimensional, then the operator
function L(z) is said to be finite meromorphic at the point z0. If L(z) is finite meromorphic at any point of
some domain G, then we say that L(z) is finite meromorphic in G. A bounded linear operator L acting on
a Banach space L is called an F-operator if it is normally solvable (i.e., the range ImL is closed), its kernel
KerL is finite-dimensional, and dim(L \ ImL) < ∞. The operator function L(z) is said to be Fredholm at
a point k if the operator L0 in the expansion (15) is am F-operator. If L(z) is Fredholm at any point of
some domain G, then we call it Fredholm in G. A point z0 is called a normal point of the operator function
L(z) if L(z) is finite meromorphic and Fredholm at the point z0 and all points of some punctured disk
0 < |z − z0| < ρ are regular for L(z). Let Γ be a simple closed rectifiable contour bounding the domain G.
An operator function L(z) which is finite meromorphic and Fredholm in G and continuous up to Γ, is said to
be normal with respect to the contour Γ if the operator L(z) is invertible for all z ∈ G∪ Γ except for finitely
many points of the domain G that are normal points L(z).

We need the following simplified version of the operator analog of Rouche’s theorem.

Theorem 3. Let L1(z) be an operator function normal with respect to some simple closed rectifiable
contour Γ bounding a domain G. If an operator function L2(z), which is finite meromorphic in G and
continuous up to Γ, satisfies the condition

||L2(z)L
−1
1 (z)|| < 1, z ∈ Γ, (17)

then the operator function L3(z) = L1(z) + L2(z) is also normal with respect to Γ. If the operator functions
L1(z) and L2(z) have no poles in the domain G and, moreover, the spectrum of the operator function L1(z)
consists of a single point of the point spectrum of multiplicity one, then the spectrum of the operator function
L3(z) in the domain G consists of a single point of the point spectrum of multiplicity one.

If we set L1(z) = z2I + (1−K(z))A2 and L2(z) = RAθ and then prove inequality (17) on the set

D = {z : Im z > y0} \
∞⋃

n=1

Dn,C

for some constants n and C, then we will be able to prove Theorem 1. Indeed, it can readily be seen that
the operator function L1(z) is normal with respect to every simple closed rectifiable contour contained in
{z : Im z > y0} or y0 > 0, and also has here only isolated points of the point spectrum; moreover, L2(z)
is by definition finite meromorphic in every domain contained in {z : Im z > y0} and is continuous on the
closure of the domain.

By condition (12), aθ−1
n � an − an−1 for large n. Then aθ−1

n � |μ+
n − μ+

n−1|, since |μ+
n | ∼ an (see, e.g.,

[8]). Therefore, we have Dn,C ∩ Dm,C = ∅ for sufficiently large n and m. Then, if we shall prove relation
(17) in the domain D, then we shall see that, inside Dn,C , for n > n0 (n0 is defined from the condition
of Theorem 1), by Theorem 2, there is only one point of the spectrum L3(z) = L(z), because the very
center of the domain Dn,C , the point μ+

n , is a unique spectral point of the operator function L1(z) inside
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192 DAVYDOV

the domain Dn,C by the spectral theorem. In this case, the contour Γ is ∂Dn,C . Indeed, by definition, μ+
n is

a simple zero of the function ln(z) = (L(z)en, en), which is the projection of the operator function L(z) to
the eigensubspace 〈en〉.

Outside the domains Dn,C , all points of the half-plane {z : Im z > y0} are regular for L(z) under condition
(17) (see, e.g., Theorem 1.16 of [4]).

Thus, it suffices to prove condition (17) on D for sufficiently large y0 and C. By the spectral theorem,

||L2(z)L
−1
1 (z)|| = ||RAθL−1

1 (z)|| � ||R|| ||AθL−1
1 (z)|| = B sup

n
|aθnl−1

n (z)| = B
(
inf
n

|a−θ
n ln(z)|

)−1

, (18)

since the norm of the operator R is equal to B.
We also need some known facts concerning the structure of zeros of ln(z) and the behavior of the function

K(z) as Im z → +∞:
10 : μ+

n = ian(1 + o(1)) as an → +∞.
Proof. A short proof is given here; for details, see [6], Theorem 3.2.5, and [8]. We make the change of

variables z = ianv in the equation ln(z) = z2+(1−K(z))a2n = 0. We then have −a2nv
2+(1−K(ianv))a

2
n = 0.

Hence,
v2 − 1 +K(ianv) = 0. (19)

By property 20, we have K(ianv) → 0 as n → ∞ uniformly with respect to v for v ≈ 1. Thus, by Rouche’s
theorem, we see that the root of the equation (19) is ṽn = 1+ o(1). Thus, the root of the equation ln(z) = 0
is equal to μ+

n = ian(1 + o(1)).
20 : |K(z)| → 0 as Im z → +∞,
30 : |zK ′(z)| → 0 as Im z → +∞.
The proofs of 20 and 30 are presented in [8].
Let us pass to the proof of condition (17) on D. For sufficiently large values of y, consider the complex

points z = x+ iy, x, y ∈ R, y > y0 > 0. Choose a point z and consider three cases, exhausting all numbers
n ∈ N.

I. Consider n such that an < y/2. Then

y − an > y/2. (20)

We have |z − ian| � | Im(z − ian)| = |y − ian|. Similarly, |z + ian| � |y + an|. Then

|ln(z)| = |(z − ian)(z + ian)− a2nK(z)| � |z − ian||z + ian| − a2n|K(z)|
� |y − an||y + an| − a2n|K(z)|. (21)

Since y > 0, we have |y + an| = y + an > y. Taking also into account that an < y/2, by the equation (20),
we obtain |y − an||y + an| > y/2 · y. Moreover, a2n < y2/4. Therefore,

|ln(z)| >
y

2
· y − y2

4
|K(z)|.

If y0 is so large that |K(z)| < 1 by property 20, then |ln(z)| > y2/4. Since an < y/2, we have

|a−θ
n ln(z)| > a−θ

n

y2

4
>

(y
2

)−θ y2

4
=

(y
2

)2−θ

.

II. Consider the values n for which an > 2y. Then an − y > an/2.
By the chain of inequalities (21), we see that |ln(z)| � |y − an||y + an| − a2n|K(z)|. Further,

|y − an| = an − y > an/2 and |y + an| = an + y > an.

However,

|ln(z)| >
an
2

· an − a2n|K(z)|.

If we take y0 so large that |K(z)| < 1/4 by property 20, then |ln(z)| > a2n/4.
Hence,

|a−θ
n ln(z)| >

a2n
4aθn

>
a2−θ
n

4
>

(2y)2−θ

4
=

y2−θ

2θ
.
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III. Consider the values n for which an ∈ [y/2, 2y].
Take an arbitrary ε > 0. We have |z| > | Im z| = y > an/2. Hence, an < 2|z| and

|a2nK ′(z)| = a2n|K ′(z)| < 2an|zK ′(z)| < εan (22)

for sufficiently large y0 by property 30. Since μ+
n is the upper root of ln(z) = 0, it follows that the modulus

of ln(z) can be represented in the form

|ln(z)| =

∣∣∣∣∣∣∣

z∫

μ+
n

l′n(λ)dλ + ln(μ
+
n )

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

z∫

μ+
n

l′n(λ)dλ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

z∫

μ+
n

(2λ− a2nK
′(λ))dλ

∣∣∣∣∣∣∣

�

∣∣∣∣∣∣∣

z∫

μ+
n

2λdλ

∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣

z∫

μ+
n

a2nK
′(λ)dλ

∣∣∣∣∣∣∣
. (23)

We have ∣∣∣∣∣∣∣

z∫

μ+
n

2λdλ

∣∣∣∣∣∣∣
=

∣∣∣∣∣λ
2

∣∣∣∣
z

μ+
n

∣∣∣∣∣ =
∣∣z2 − (μ+

n )
2
∣∣ = |z − μ+

n ||z + μ+
n |. (24)

Moreover, we can estimate according to the bound (22),

∣∣∣∣∣∣∣

z∫

μ+
n

a2nK
′(λ)dλ

∣∣∣∣∣∣∣
� |z − μ+

n | sup
[μ+

n ,z]

|a2nK ′(λ)| � |z − μ+
n |εan. (25)

By property 10, we can write

|z + μ+
n | � | Im(z + μ+

n )| = y + Imμ+
n > Imμ+

n > (1− ε)an (26)

for every sufficiently large y0.
Considering also that z belongs to the set

D = {z : Im z > y0} \
∞⋃

n=1

Dn,C

and, on this set, by the definition of Dn,C , the inequality |z − μ+
n | � Caθ−1

n holds, we can combine the
inequalities (23)–(26):

|ln(z)| > |z − μ+
n |(|z + μ+

n | − εan) > Caθ−1
n (an(1− ε)− εan) = Caθn(1 − 2ε).

Finally, we obtain
|a−θ

n ln(z)| > C(1 − 2ε).

Thus, taking into account cases I–III, we note that

|a−θ
n ln(z)| > max

(
C(1 − 2ε),

(y
2

)2−θ

,
y2−θ

2θ

)
.

It can readily be seen that, taking C > B(1− 2ε)−2, for a sufficiently large value y0, we have the inequality
|a−θ

n ln(z)| > B(1− 2ε)−1. Thus, we also have

(
inf
n

|a−θ
n ln(z)|

)
� B(1− 2ε)−1 > B.

Then (
inf
n

|a−θ
n ln(z)|

)−1

< B−1,

which, taking into account (18), gives the validity of (17), as was to be proved.
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Remark 2. For θ < 1, we see that the radii Dn,C tend to zero, and hence, μ̃+
n comes infinitely close to

μ+
n , which gives us a localization of the spectrum of the perturbed operator function (13).

Remark 3. As mentioned earlier for problem (4), (5), condition (12) holds. Moreover, obviously, for
an = nα, α > 0, for this condition to hold, it is necessary that

aθ−1
n (an − an−1)

−1 = nα(θ−1)(nα − (n− 1)α)−1 ∼ nα(θ−1)n1−α → 0, n → ∞,

since (nα − (n− 1)α) ∼ nα−1. This condition holds for α > 1/(2− θ).

Corollary 1. If
∞∑
k=1

ck < ∞, we can write out the asymptotics of the spectrum of L(z) explicitly:

μ̃+
n = ian −

∞∑
k=1

ck

2
+O(aκn), where κ = max(−1, θ − 1). (27)

Proof. By [8], we have

(μ+
n )1 = ian −

∞∑
k=1

ck

2
+O(a−1

n ).

Thus, by Theorem 1,

μ̃+
n = ian −

∞∑
k=1

ck

2
+O(a−1

n ) +O(aθ−1
n ).

This implies (27), as was to be proved.

4. SPECTRUM ASYMPTOTICS IN THE FLUTTER PROBLEM

Now consider the operator function which is the symbol of the original equation of oscillation of a vis-
coelastic plate in a liquid or gas flow (4), (5):

L(z) = z2I + 2M1zI +M2
2 (1−K(z))A2 +M3UAθ.

It is clear from relation (8) that θ = 1/2; for greater generality, we consider θ ∈ [0, 1).
Let us make the change of the spectral variable: ρ = (z +M1)/M2; z = M2ρ−M1. Then

z2 + 2M1z = (z +M1)
2 −M2

1 = M2
2 ρ

2 −M2
1 .

In this case, the symbol of the equation is transformed,

L (ρ) = M2
2ρ

2I +M2
2 (1−K (M2ρ−M1))A

2 +M3UAθ −M2
1 I

= M2
2 ρ

2I +M2
2 (1−K (M2ρ−M1))A

2 +M2
2

(
M−2

2 M3U −M−2
2 M2

1A
−θ

)
Aθ.

Since the spectrum of an operator function is preserved under multiplication by a positive constant M2, we
can consider the following operator function:

L(ρ) = ρ2I + (1−K (M2ρ−M1))A
2 +

(
M−2

2 M3U −M−2
2 M2

1A
−θ

)
Aθ.

Define a bounded operator R = M−2
2 M3U −M−2

2 M2
1A

−θ and a function of the variable ρ,

K̃(ρ) = K (M2ρ−M1) =

∞∑
k=1

ck
M2ρ−M1 + γk

=

∞∑
k=1

ck/M2

ρ+ (γk −M1)/M2
. (28)

K̃(ρ) is a function of the form (14) with other coefficients.
Then L(ρ) can be represented in the form

L(ρ) = ρ2I + (1− K̃(ρ))A2 +RAθ. (29)

Denote by (μ+
n )1 the upper root of the equation ρ2 + (1− K̃(ρ))a2n = 0 and the domain (Dn,C)1 :

(Dn,C)1 = {ρ : |ρ− (μ+
n )1| < Caθ−1

n } = {z : |z − (M2(μ
+
n )1 −M1)| < CM2a

θ−1
n }.

Applying Theorem 1 to the function L(ρ) from equality (14) and making the inverse change of the spectral
variable, we obtain the following result.
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Theorem 4. Suppose that the eigenvalues of the operator A satisfy relation (12). Then there are positive
constants y0 and C such that the spectrum σ(L) of the operator function L(z) lying in the upper half-plane
{z : Im z > y0} can be represented as a family of points {μ̃+

n , n > n0} in such a way that μ̃+
n ∈ (Dn,C)1;

here n0 is the least positive integer such that, for every n > n0,

(Dn,C)1 ⊂ {z : Im z > y0}.

Remark. In view of the definition of Dn,C , we can describe the asymptotics of the spectrum L(z) as

μ̃+
n = M2(μ

+
n )1 −M1 +O(aθ−1

n ).

Corollary 2. If
∞∑
k=1

ck < ∞, then the asymptotics of the spectrum of L(z) can be written explicitly as

μ̃+
n = iM2an −

∞∑
k=1

ck

2
−M1 +O(aθ−1

n ). (30)

Proof. By [8], and also by definition (28) of the function K̃(ρ), we have

(μ+
n )1 = ian −

∞∑
k=1

ck/M2

2
+O(a−1

n ).

Thus, by Theorem 3,

μ̃+
n = iM2an −

∞∑
k=1

ck

2
−M1 +O(a−1

n ) +O(aθ−1
n ).

This, together with the condition θ ∈ [0, 1), implies (30) as was to be proved.

BIBLIOGRAPHIC COMMENTARY

The equation in question was mainly studied for stability and asymptotic stability (flutter phenomenon).
One can mention, e.g., [1] and [9], where a numerical study of the dependence of the critical speed vcr
(at which the solution (3) becomes unstable) on the parameters h,D0, ε0, γ, and so on, and also papers of
V.V. Vedeneeva [10] and [11], where a numerical investigation of the single-mode flutter is carried out for a
nonviscoelastic plate. In addition, the work of A.I. Miloslavsky [12] should be noted, in which the instability
of integro-differential equations of the Gurtin–Pipkin type occurring in the study of models of a viscoelastic
water supply system was studied by methods of functional analysis.

The Cauchy problem of the form (4), (5) arises in problems viscoelasticity and heat conductivity. If we

remove the terms 2M1
d

dt
u(t) and M3Tu(t), we obtain the Gurtin–Pipkin equation, originally obtained in

[13]. Many works, including foreign ones, are devoted to his study. We note here the works of V.V. Vlasov
and N.A. Rautian [6] and [8], Subsection 3.2, in which the correct solvability of the Gurtin–Pipkin equation
in weighted Sobolev spaces for M2 = 1 is established, the spectral analysis of the symbol of the equation
(4) is carried out, the asymptotics of nonreal points of the spectrum and the localization of real clusters is
obtained, which was used to write out a representation of the solution in the form of a series of exponentials.
In addition, results on the correct solvability of this problem were obtained. The natural continuation of
this research can be seen in [14], where the classical Gurtin–Pipkin equation with fractional-exponential
relaxation kernels is studied. In [15] and [16], problems of control of solutions of the Gurtin–Pipkin equation
by means of boundary effects were considered. In [17], the dependence of the energy decay rate on the decay
rate of the kernel in the Gurtin–Pipkin heat conductivity model is established.

In the monograph [18] and in [19] and [20], an approach to solving the problem (4), (5) from the standpoint

of semigroup theory is developed, where, for the case in which we remove the terms 2M1
d

dt
u(t) and M3Tu(t)

and for a more general form of the kernels Γ(t), the form of the generator of the semigroup is established
and it is proved that the semigroup is contracting and exponentially stable. The semigroup approach to
more general problems in which the integral kernel has compact support was developed in the works of
N.D. Kopachevskii and D.A. Zakora [21], [22]. In these papers, the exponential stability of the corresponding
contracting semigroups is established. The newest research on the semigroup approach for the investigation
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of equations of Gurtin=-Pipkin type with two noncommuting operators were published in [23]. There the
construction of a fundamentally new semigroup related to these equations is described and used to prove
the exponential stability of solutions of these equations, the classical solvability of these equations, and also
to construct the energy equality. In addition, in [24], a description of semigroups arising in the study of
equations of the Gurtin–Pipkin type with a Kelvin–Voight friction is given. It is also worth noticing the
paper [25], in which the generalized solvability of equations of Gurtin–Pipkin type with two noncommuting
operators is studied.

We should also mention the paper [5], where it was proved that the spectrum of the symbol of an integro-
differential equation of Gurtin–Pipkin type with a nonzero Kelvin–Voigt friction term contains only finitely
many nonreal points. In the paper [26], the question concerning the presence and localization of an infinite
nonreal spectrum of the symbol of this equation is studied in the case of a kernel representable by an
infinite sum of exponentials.
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