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Abstract. Linear evolution equations of mathematical physics admitting an invariant in the form of
a positive quadratic form are considered. In particular, this includes the string vibration equation, the
Liouville kinetic equation, the Maxwell system of equations and the Schrödinger equation. Conditions
for the existence of an invariant Gaussian measure are indicated, which makes it possible to apply
well-known results of ergodic theory (Poincaré’s recurrence theorem, Birkhoff–Khinchin ergodic the-
orem, etc.). We discuss the Hamiltonian property of such systems and conditions for their complete
integrability. The ergodic properties of Kronecker flows on infinite-dimensional tori are studied. A
general theorem on the averaging of quadratic forms is established.
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1. FINITE-DIMENSIONAL LINEAR SYSTEMS

We consider the linear differential equation

ẋ = Ax, x ∈ V, (1.1)

in a finite-dimensional Euclidean space V (with the inner product ( , )), which admits a first integral (an
invariant)

f =
1

2
(Bx, x) (1.2)

in the form of a nondegenerate quadratic form. It turns out that, in this case, the phase flow of the linear
system preserves the standard Lebesgue measure μ in V : dμ = dnx (n = dimV ). In other words,

divAx = trA = 0. (1.3)

Indeed, the condition for the invariance of f has the form

BA+A∗B = 0. (1.4)

The symbol ∗ stands for the conjugation of an operator with respect to the above inner product. However,
then A∗ = −B−1AB, and hence,

trA = trA∗ = − tr(B−1AB) = − tr(ABB−1) = − trA.

This implies (1.3).
However, one cannot immediately use the Poincaré recurrence theorem for system (1.1) because μ(V ) = ∞.

Suppose now that the quadratic form (1.2) is positive definite. Then one can define a finite measure in V
which is invariant with respect to the phase flow of system (1.1):

dγ = e−(Bx,x) dnx. (1.5)

Measures of this kind are said to be Gaussian. In statistical mechanics, they are customarily called Gibbs
measures.

Since γ(V ) < ∞, it follows that (by the Poincaré recurrence theorem) almost all points in every γ-
measurable domain D ⊂ V return to D infinitely many times. Even more information is provided by the
Birkhoff–Khinchin ergodic theorem, which contains Poincaré’s theorem as a special case.
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Another way to apply ergodic theory is to consider the restriction of the linear system (1.1) to the level
manifold of the quadratic integral

{x ∈ V : f(x) = c > 0}.

The dynamical system arising on this invariant (n− 1)-dimensional manifold has a finite invariant measure.
For the typical case in which not only the self-adjoint operator B, but also the operator A, are nondegen-

erate, dimV is even, and system (1.1) admits (dimV )/2 independent quadratic integrals. In general, under
these assumptions, the linear system (1.1) is a linear Hamiltonian system with respect to the symplectic
structure

ω(x′, x′′) = (BA−1x′, x′′),

and the quadratic integral (1.2) serves as the Hamiltonian (see [1, 2], and the discussions therein). An
involutive family of first integrals is given by the quadratic forms

f1 =
1

2
(Bx, x), f2 =

1

2
(A∗BAx, x), . . . ,

fk =
1

2

(
(A∗)k−1BAk−1x, x

)
; k = n/2. (1.6)

These forms are independent if the spectrum of the operator A contains no multiple eigenvalues [3]. In the
case of multiple spectrum, a complete set of involutive integrals has a different form (see [?]).

For almost all c1, . . . , ck, the joint levels of quadratic integrals

{x : f1(x) = c1, . . . , fk(x) = ck} (1.7)

are k-dimensional tori, which carry trajectories of quasiperiodic motions. In appropriate angular variables
ϕ1, . . . , ϕk mod 2π, equations (1.1) acquire the following form on the invariant tori (1.7):

ϕ̇1 = ω1, . . . , ϕ̇k = ωk.

The numbers ω1, . . . , ωk do not depend on the torus. The pairs of purely imaginary numbers ±iω1, . . . ,±iωk

form the spectrum of the operator A. The ergodic theory of the linear system (1.1) on the integral invariant
manifolds (1.4) is reduced to the classical Weyl’s averaging theorem.

All these simple observations can be carried over (with certain precautions) to the infinite-dimensional
case. The Hamiltonian property of a linear system with a quadratic invariant in a Hilbert space was discussed
in [8] and [2]. This note should be regarded as a complement to the paper [2].

In the conclusion of this section, we make several remarks on invariant measures of general nonlinear
systems

ẋ = v(x), x ∈ V,

admitting a quadratic invariant. Under the assumption of positive definiteness, this invariant is reduced to
the sum of squares,

f =
1

2
(x2

1 + · · ·+ x2
n).

Since f is invariant, it follows that

ḟ =
∑

xjvj = 0.

This implies the equalities

v1 + x1
∂v1
∂x1

+ · · ·+ xn
∂vn
∂x1

= 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vn + x1
∂v1
∂xn

+ · · ·+ xn
∂vn
∂xn

= 0.

Hence,

div v =
∑ ∂vj

∂xj
= −1

2
(x1Δv1 + · · ·+ xnΔvn),

where Δ is the Laplace operator. In particular, for a linear system with a quadratic invariant, we obtain the
presence of a standard invariant measure. In the general case, this can be asserted only under the condition
that the components of the vector field v generating the dynamical system are harmonic functions.
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In particular, for a system with quadratic right-hand sides

vj = (Ajx, x),

the condition for the invariance of the Lebesgue measure is reduced to the equalities

trA1 = · · · = trAn = 0.

Certainly, here we must add the condition for the existence of a quadratic invariant. Here there is a simple
example of equations with quadratic right-hand sides that have a positive-definite quadratic invariant, but
admit no invariant measure with continuous positive density at all:

ẋ1 = x2
2, ẋ2 = −x1x2.

On the other hand, as was established by Volterra [9], if a system with quadratic right-hand sides admits
two quadratic integrals

f1 =
1

2
(Bx, x) and f2 =

1

2
(Cx, x),

where B > 0 and the characteristic equation |C −λB| = 0 has no multiple roots, then the phase flow of this
system preserves the standard Lebesgue measure in V . Conditions for the Hamiltonian property of these
systems of differential equations and for their complete integrability were obtained in [10].

2. LINEAR SYSTEMS IN A HILBERT SPACE

Let H be a real separable Hilbert space with inner product ( , ) and let A be a bounded linear operator
on H with dense domain D(A). As is well known, the operator A has a unique extension A : H → H with
domain D(A) = H such that ‖A‖ = ‖A‖. Therefore, we assume from the very beginning that the domain
of A coincides with H. In this case, there is a unique linear operator A∗ (adjoint to A) such that

• D(A∗) = H,

• (A∗x, y) = (x,Ay) for all x, y ∈ H,

• ‖A∗‖ = ‖A‖.

To the operator A, we can assign the linear differential equation

ẋ = Ax, x ∈ H. (2.1)

Since A is bounded, it follows that, for every x0 ∈ H, this system has a unique solution t �→ x(t) defined on
the entire axis R = {t} with the initial value x(0) = x0 (see, e.g., [11]). In other words, the phase flow of
system (2.1) is well defined on the entire Hilbert space.

In Sections 3 and 5, we shall also consider linear differential equations in a Hilbert space with an unbounded
operator A. For equations of mathematical physics, this case is more natural. However, equation (2.1) will
no longer have a solution for arbitrary initial data.

In accordance with the general definition, to the linear system (2.1) we can assign the adjoint system of
differential equations

ẏ = −A∗y, y ∈ H. (2.2)

Since ‖A∗‖ = ‖A‖ < ∞, it follows that the adjoint linear system (2.2) is also uniformly solvable. According
to Lagrange, (

x(t), y(t)
)
= const

for any solutions of the linear systems (2.1) and (2.2). Note a simple assertion concerning the properties of
adjoint systems that is related to the Lagrange general theorem.

Theorem 1. Let B : H → H be a bounded self-adjoint operator. In this case,
(1) if f = (Bx, x)/2 is an invariant of the linear system (2.1), then, for every solution t �→ x(t) of the

system, the function t �→ Bx(t) is a solution of the adjoint system (2.2);
(2) if, moreover, the operator B has bounded inverse, then the quadratic form g = (B−1y, y)/2 is an

invariant of the adjoint system.
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Indeed, the invariance condition of a quadratic form f with respect to the flow of the linear system (2.1)
means precisely that the operator BA is skew-symmetric:

(BA)∗ = A∗B = −BA. (2.3)

Hence, if x( · ) is a solution to (2.1), then

(Bx)· = BAx = −A∗(Bx).

Further, condition (2.3) is equivalent to the following one:

(B−1A∗)∗ = −B−1A∗.

This proves Theorem 1.
The correspondence

A,B �→ −A∗, B−1

is involutive. It defines a remarkable duality between a linear system with a quadratic invariant and its
adjoint system.

As is known, in an infinite-dimensional Hilbert space, there is no analog of the Lebesgue measure (a count-
ably additive measure invariant under translations). For a discussion of this circle of questions, see, e.g., [12].
A more natural way is the study of invariance conditions of an infinite-dimensional analog of the Gaussian
measure (1.5). For a detailed account of the theory of Gaussian measures, see [13].

Let γ be a finite measure on H and let

γ̃(y) =

∫

H

ei(y,x) γ(dx) (2.4)

be its characteristic functional. This is a complex-valued function on H.

Theorem 2. If γ̃ is a first integral of the adjoint system (2.2), then γ is an invariant measure for the
linear system (2.1).

Indeed, by the assumption of the theorem, the substitution

y �→ e−A∗ty, y ∈ H, (2.5)

does not change the value of the integral (2.4). Further, the linear system (2.1) defined a family of transfor-
mations of the Hilbert space

x �→ gt(x) = etAx. (2.6)

By the Lagrange theorem, the substitutions (2.5) and (2.6) do not change the value of the inner product
(y, x). This also follows immediately from the equation

(eAt)∗ = eA
∗t.

Consider the transformed measure
γt = γ ◦ gt.

By the well-known theorem on the image of the measure under a mapping, the integral (2.4) becomes finally
equal to ∫

H

ei(y,x) γt(dx). (2.7)

Since γ̃ is an invariant of the adjoint linear system, it follows that the integral (2.7) does not depend on
time. Taking into account the fact that every measure is uniquely defined by its characteristic functional,
we come to the conclusion that the measure γ is invariant with respect to the phase flow (2.6) of the linear
system (2.1).

From Theorem 2, we can derive a condition for the existence of a Gaussian countably additive invariant
measure for the original linear equation.

Theorem 3. Let K be a symmetric nonnegative trace-class operator such that the quadratic form
(Ky, y)/2, y ∈ H, is the first integral of the adjoint system (2.2). Then the linear system (2.1) has an
invariant centered Gaussian measure with covariance operator K.
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Proof. Since the operator K is symmetric, nonnegative, and trace class, it follows that there is a centered
Gaussian measure with the covariance operator K. Further, as is known, the characteristic functional of this
measure is equal to

exp

[
−1

2
(Ky, y)

]
.

By assumption, this function is an invariant of the adjoint system (2.2). Hence, by Theorem 2, this Gaussian
countably additive measure is invariant with respect to the phase flow of the linear system (2.1).

Corollary 1. Let the conditions of Theorem 3 hold and let D be a γ-measurable subdomain of H of
positive Gaussian measure γ. Then, for almost all x0 ∈ D, the trajectory of the solution

t �→ eAtx0

of the linear system (2.1) meets D infinitely many times as |t| → ∞.

This is a strong version of the Poincaré recurrence theorem. The weak version is related to the return of
domains of positive measure. This does not require the countable additivity of the invariant measure.

The existence condition for a finitely additive invariant Gaussian measure with a symmetric nonnegative
covariance operator K also reduces to the invariance of the quadratic form (Ky, y)/2, y ∈ H, with respect to
the phase flow of the adjoint system (2.2). A classical example of finitely additive but not countably additive
Gaussian measure is given by the case in which K = I is the identity operator [13].

Let the original linear system (2.1) admit a first integral in the form of a nonnegative quadratic form
(Bx, x)/2. If the operator B has the inverse B−1, then (in accordance with Theorem 1) the quadratic form
(B−1y, y)/2 must be an invariant of the adjoint linear system. If, moreover, the inverse operator is of trace
class, then the Poincaré recurrence theorem can be applied.

Let {λk} be the eigenvalues of the operator B. As a rule, λk → ∞ as k → ∞ for equations of mathematical
physics. Hence, the eigenvalues {λ−1

k } of the inverse operator B−1 tend to zero. If, in addition, the series∑
λ−1
k converges, then B−1 is a trace-class operator.

As an illustration, consider the Schrödinger equation on the one-dimensional torus

i
∂ψ

∂t
= −∂2ψ

∂x2
, x mod 2π, (2.8)

which describes the dynamics of a quantum rotator. The wave functions ψ(x, t) are 2π-periodic with respect
to x and satisfy the normalization condition

∫ 2π

0

ψψ dx = 1. (2.9)

Actually, the integral on the left-hand side defines a Hermitian inner product in the complex Hilbert space
of square-summable functions. It can readily be seen that, after a realification, equation (2.8) is self-adjoint
(in the sense of the definition (2.2)).

Setting

ψ =
∑

ψn(t)e
inx,

we obtain from (2.8) a chain of equations for the coefficients:

iψ̇n = n2ψn.

Hence, equation (2.8) has an entire family of invariants

fn = ψnψn.

In general, the quadratic forms

f =
∑

μnfn (2.10)

with bounded positive coefficients μn are continuous invariants of equation (2.8). If
∑

μn < ∞, then (2.10)
can be taken for the covariance operator of an invariant countably additive Gaussian measure.

In particular, to the energy integral

−
∫ 2π

0

∂2ψ

∂x2
ψ dx

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 28 No. 1 2021



78 KOZLOV

there corresponds the case in which μn = 2πn2. The quadratic form (2.10) with the coefficients μ−1
n (n 
= 0),

where μ0 > 0 is arbitrary, is also a first integral of equation (2.8), and the self-adjoint operator B generating
this form is of trace class.

To the integral (2.9), there corresponds a quadratic form for which B = 2πI. This form generates an
invariant Gaussian measure, which is only finitely additive.

Thus, equation (2.8) admits a whole family of different invariant Gaussian measures. The application
of the ergodic theory rests on a meaningful problem of domains in a Hilbert space with positive Gaussian
measure. In the next section, these observations are clarified.

3. COMPLETE INTEGRABILITY, PRODUCT MEASURES AND RETURNABILITY

Linear equations with a quadratic invariant in a Hilbert space also admit a series of quadratic invariants
of the form (1.6):

fk =
1

2

(
(A∗)k−1BAk−1x, x

)
, k � 1. (3.1)

These invariants can be used to construct Gaussian invariant measures for system (2.1), as well as the original
invariant f = f0.

Moreover, as in the finite-dimensional case, the linear equation (2.1) with a quadratic invariant f0 can
be represented in Hamiltonian form, and the quadratic invariants (3.1) will be pairwise in involution [2].
The Poisson bracket itself is defined naturally on the space of all continuous quadratic forms given in a real
Hilbert space. However, it is still impossible to conclude from this that the infinite-dimensional Hamiltonian
system is completely integrable. To prove the complete integrability, another set of independent quadratic
invariants was used in [2].

Assume that a bounded symmetric operator B : H → H is positive definite:

(Bx, x) � c‖x‖2

for all x ∈ H with some constant c. Regarding a densely defined operator A, we do not assume its bound-
edness. However, we assume that its eigenvectors enter the domain of the operator A in the complexified
Hilbert space. The theory of such linear systems of differential equations was developed in [2] (Sec. 4).

It turns out that, under these assumptions, all eigenvalues of the operator A are purely imaginary:

±iω1, ±iω2, . . . , ±iωk, . . . (3.2)

Assume that all of them are distinct (and, in particular, nonzero). Let

A(ξk ± iηk) = ±iωk(ξk ± iηk),

where ξk and ηk are vectors in H (they belong to D(A)). Then

Aξk = −ωkηk, Aηk = ωkξk.

It can be proved that here we have

(Bξk, ξk) = (Bηk, ηk) and (Bξk, ηk) = 0. (3.3)

Let πk be an invariant plane of A spanned by the linearly independent vectors ξk and ηk, and let Pk be
the orthogonal projection to the two-dimensional subspace πk. All projections P1, P2, . . . are bounded self-
adjoint operators on H. Since ωk 
= ±ωl for k 
= l, it follows that the two-dimensional planes πk and πl are
orthogonal with respect to the inner product (x, y)′ = (Bx, y).

Write

fk =
1

2
(BPkx, Pkx), k = 1, 2, . . . (3.4)

These quadratic forms are first integrals of the linear system (2.1); they are independent and are pairwise in
involution. In [2], a natural condition is indicated under which the integrals (3.3) form a complete involutive
family: the vector system

ξ1, η1, . . . , ξk, ηk, . . .

orthonormal with respect to the scalar product ( , )′ is closed.
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Under these assumptions, the invariant algebraic manifold

Jc = {x ∈ H : f1(x) = c1, f2(x) = c2, . . . },

under the positive values of c1, c2, . . . such that
∑

ck < ∞, is an infinite-dimensional torus

T
∞ =

∞
X
k=1

T
1
k;

on each of these tori, one can choose angular coordinates ϕ1 mod 2π, ϕ2 mod 2π, . . . , which are uniformly
changes in the course of time:

ϕ̇1 = ω1, ϕ̇2 = ω2, . . . (3.5)

The frequencies ω1, ω2, . . . are numbers in the spectrum (3.2) of the linear operator A. Our task is to discuss
ergodic properties of system (3.5) on the infinite-dimensional torus T

∞. Its phase flow is often called the
Kronecker flow (actually related to studied by Kronecker quasiperiodic motions on finite-dimensional tori).

Every one-dimensional torus T1
k is a topological group (the group of complex numbers with unit modulus

with respect to multiplication) on which there is a probabilistic measure μk invariant under the action of this
group. Since all tori T1

k are compact, it follows that (by Tikhonov’s theorem) the product T∞ is also compact.
Therefore, T∞, as the direct product of countably many one-dimensional tori and can also be equipped with
the structure of an infinite-dimensional commutative compact group with invariant measure μ, which is
defined as the product measure

μ =
∞
X
k=1

μk.

If X1, X2, . . . are measurable subsets of T1
1,T

1
2, . . . , it follows that

μ(X1 ×X2 × · · · ) = μ1(X1)μ2(X2) · · · .

It is clear that μ(T∞) = 1. For a measure of a set X1×X2×· · · to be positive, it is necessary that μk(Xk) → 1
as k → ∞. These problems are discussed in detail in [14].

The product measure can be identified with a unique probability measure on a compact topological group
that is invariant simultaneously with respect to all left and right shifts on the group. As is known, this
measure is called the Haar measure.

The flow of system (3.5) on T
∞ preserves the product measure μ. This assertion is obvious: a transforma-

tion in the flow of system (3.5) performs the rotation of all points of every torus T1
k by the same angle. The

measure μk does not change under these rotations, which ultimately leads to the invariance of the measure μ.
This readily implies the following theorem.

Theorem 4. Let Xk be measurable subsets of T1
k and let

∞∏

k=1

μk(Xk) > 0.

Then for almost all (with respect to the measure μ) points ϕ0 = (ϕ0
1, ϕ

0
2, . . . ), ϕ

0
k ∈ Xk, the trajectory of the

motion

t �→ ϕ(t) = ωt+ ϕ0

meets the set

X1 ×X2 × · · · ⊂ T
∞

infinitely many times.

This is an immediate consequence of the Poincaré recurrence theorem; it does not depend on the arithmetic
properties of the set of frequencies ω1, ω2, . . . Since μk(Xk) → 1 as k → ∞, it follows that, for large k, the
setXk “almost coincides” with the entire torus T1

k. However, if we setXk = T
1
k for all k � k0, then Theorem 4

becomes the classical Kronecker–Weyl theorem about quasiperiodic motions on finite-dimensional tori.
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4. KRONECKER FLOWS

Let us continue the consideration of system (3.5) on T
∞. A family of frequencies ω1, ω2, . . . is said to be

nonresonance if, for every n � 1, it follows from the relation

k1ω1 + k2ω2 + · · ·+ knωn = 0

with integer kj that k1 = k2 = · · · = kn = 0. Here is a constructive example of a nonresonance set, going
back to H. Bohr:

ω1 = ln 2, ω2 = ln 3, ω3 = ln 5, . . . , ωn = ln pn, . . . .

Here pn stands for the n-th prime.
As is known, if the set of frequencies ω is nonresonance, then the Kronecker flow on T

∞ is ergodic with
respect to the product measure μ of Section 3 (see the discussion in [15, 16] and the references therein). In fact,
this result was first formulated by von Neumann in [17], mentioning the classical works of Kronecker andWeyl
in the finite-dimensional case. Technical means (like Tikhonov’s theorem on infinite products of compacta)
needed in the proof arose later. Recently, ergodic properties of the so-called quantum Kronecker flows are
discussed (see, e.g., [18]). However, under broad assumptions, the Schrödinger equations are completely
integrable infinite-dimensional Hamiltonian systems, and their phase spaces are foliated into invariant ergodic
sets, i.e., the tori T∞ with ordinary (nonquantum) Kronecker flows [2].

Let us indicate some new properties of temporal and spatial averages for Kronecker flows.

Theorem 5. If a family of frequencies ω is nonresonance, then, for any continuous function f : T∞ → R,

f(ωt+ ϕ0) ⇒
∫

T∞
f dμ (C). (4.1)

The symbol⇒ stands for uniform convergence (with respect to ϕ0 ∈ T
∞) and C stands for the convergence

as t → ∞ in the Cesàro sense (the convergence of mean values).
As well as the classical finite-dimensional Weyl theorem on the uniform distribution, Theorem 5 is proved

in two stages. The first stage considers the case when f is a trigonometric polynomial in the angular variables
ϕ1, ϕ2, . . . :

f =

N∑

k=−N

fke
i(mk,ϕ), f−k = fk, m−k = −mk. (4.2)

Here mk ∈ Z
n and ϕ = (ϕ1, . . . , ϕn); the positive integer N does not depend on n. Taking into account the

condition of nonresonance for ω of such functions, the property (4.1) is quite elementary. Here mk ∈ Z
n

and ϕ = (ϕ1, . . . , ϕn); a positive integer N does not depend on n. Taking into account the nonresonance
property ω, we see that, for these functions, the property (4.1) is quite elementary.

At the second step, an approximation of continuous functions on the compact set T∞ by suitable trigono-
metric polynomials (4.2) is used. This possibility is provided by the well-known Stone–Weierstrass theorem.

According to the old Oxtoby theorem [19], relation (4.1) implies the strict ergodicity of the dynamical
system (3.4) on T

∞. This means that, in the nonresonance case, the Kronecker flow admits only one invariant
probability Borel measure. In particular, this flow is ergodic (with respect to the Borel product measure μ):
for almost all ϕ0 ∈ T

∞, the temporal mean of any μ-integrable function coincides with its spatial mean.

Relation (4.1) can be extended to a wider class of functions, which can be called “Riemann integrable”
(below we call them R-integrable functions). We say that a function f : T∞ → R is R-integrable if, for for
any ε > 0, there are two continuous functions f1 and f2 such that

f1(ϕ) � f(ϕ) � f2(ϕ) for all ϕ ∈ T
∞, (4.3)

and ∫

T∞
(f2 − f1) dμ < ε. (4.4)

Since T
∞ is a compact set, it follows that all R-functions are bounded and all continuous functions are

R-integrable.
The integral of an R-integrable function is defined in the following natural way. Let εn → 0. Consider the

corresponding sequences of continuous functions f
(n)
1 and f

(n)
2 satisfying the conditions (4.3) and (4.4). It
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can readily be shown that the limits of the sequences of integrals of f
(n)
1 and f

(n)
2 over T∞ as n → ∞ exist

and coincide. We call this number the R-integral of f with respect to the Borel measure μ and denote it by
∫

T∞
f dμ.

The R-integral is well defined: it does not depend on the choice of the sequences εn, f
(n)
1 , and f

(n)
2 .

If we replace T
∞ in this definition by a finite-dimensional torus Tm with the standard measure, then the

class of R-integrable functions on T
m coincides with the class of Riemann integrable functions.

Theorem 5 admits a generalization.

Theorem 6. The Kronecker flow on T
∞ is strictly ergodic if and only if equality (4.1) holds for every

R-integrable function f : T∞ → R.

A similar statement for strictly ergodic cascades is noted in [20].
A domain D ⊂ T

∞ is said to be R-measurable if its characteristic function 1D is R-integrable. Write

mesD =

∫

T∞
1D dμ.

It is clear that every R-measurable function is μ-measurable and mesD = μ(D).

Example 1. Let Ik be an interval in T
1
k. Then the domain D = I1× I2×· · · ⊂ T

∞ is R-measurable. Recall
that mesD > 0 if the product of the lengths of the intervals is positive.

Corollary 2. Let D be a measurable domain in T
∞ and let τD(ϕ0) be the total time in the interval [0, τ ]

during which the point ϕ(ωt+ ϕ0) belongs to the domain D. If the family of frequencies ω is nonresonance,
then

τD(ϕ0)

τ
⇒ mesD (4.5)

as τ → ∞.

The difference between this statement and the general ergodic theorem for Kronecker flows is that the
limit relation (4.5) is valid for all ϕ0 ∈ T

∞.

5. ERGODIC THEOREM FOR QUADRATIC FORMS

Let us begin with a simple remark concerning the Kronecker flow on T
n. Suppose that the family of

frequencies ω1, . . . , ωn is such that
n∑

j=1

kjωj 
= 0

for |k| = |k1|+ · · ·+ |kn| � m. Consider the trigonometric polynomial (4.2)

f(ϕ) =
∑

fke
i(k,ϕ), f−k = fk,

for which |k| � m. Then, for this polynomial, the ergodic theorem (4.1) holds (the temporal mean of f is
equal to its spatial mean), although the Kronecker flow need not be ergodic.

Indeed, ∫ t

0

f(ωt+ ϕ0) dt = f0t+ F (ωt+ ϕ0)− F (ϕ0), (5.1)

where f0 in the mean of f over the torus Tn, and

F (ϕ) =
∑′

|k|�m

fk
i(k, ω)

ei(k,ϕ)

is a well defined continuous function on T
n. After dividing both the sides of (5.1) by t and passing to the

limit as t → ∞, we obtain the desired formula (4.1).
For linear systems of differential equations with a quadratic invariant in a Hilbert space H, quadratic

forms, rather than arbitrary functions on H, play the key role. There are several reasons for this. First, these
systems are represented in a Hamiltonian form on the space of quadratic forms. Further, a complete set
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of independent involutive first integrals is also formed by continuous quadratic forms. Finally, for quantum
systems whose evolution is governed by the Schrödinger equation, the observables are Hermitian operators,
and the quadratic forms generated by them express the expectations (mean values) of these observables at
the current state of the quantum system.

In general, a linear system with a quadratic invariant cannot be ergodic, even if it is restricted to the level
manifold of this invariant. The reason for the nonergodicity is in the presence of other quadratic invariants
(e.g., of the form (3.1)). Nevertheless, one can prove the following version of the ergodic theorem for quadratic
forms: if we restrict this quadratic form to an invariant torus T∞, then its temporary mean is equal to the
spatial one provided that there are no multiple eigenvalues of the operator A. Here, as above, the Kronecker
flow on T

∞ need not be ergodic at all.
The condition

ωk 
= ±ωl, k 
= l, (5.2)

plays a crucial role in quantum statistical mechanics. Von Neumann called these systems ergodic. Their
characteristic property is that any Hermitian operator commuting with the Hamiltonian operator is a function
of the latter. It is curious that, in the paper [17] and the book [21], where von Neumann discusses the “ergodic
theorem,” the theorem itself (as the equality of time and spatial averages) is in fact not formulated. The
ergodic theorem was treated by von Neumann himself as a meaningful correspondences between temporal
and spatial averages for macroscopic values (taking into account an additional combinatorial analysis of
the ensemble of microscopic subsystems of the quantum system). This tradition continues also in modern
manuals on quantum statistical mechanics (see, e.g., [22]).

We assume the validity of the condition on the operators A and B of Section 3 under which the Hilbert
space H is foliated into invariant infinite-dimensional tori

T
∞
c = {x ∈ H : f1(x) = c1, f2(x) = c2, . . . }, where fn(x) =

1

2
(PnBPnx, x).

In particular, it is assumed that condition (5.2) holds. Let

f =
1

2
(Cx, x) (5.3)

be a continuous quadratic form in a real Hilbert space H generated by a bounded self-adjoint operator C.

Theorem 7. The temporal mean of the quadratic form (5.3)

lim
τ→∞

1

τ

∫ τ

0

(eAtx) dt

at the points x ∈ T
∞
c is equal to

1

2

∞∑

n=1

tr(PnCPn)cn (5.4)

and coincides with the mean over the torus T
∞
c with respect to the product measure μ of the restriction of f

to T
∞
c .

This assertion can readily be derived from Theorem 5, taking into account the continuity of the restriction
of f to T

∞
c and the considerations outlined at the beginning of this section: the expansion of the restriction

of f on T
∞
c into a trigonometric series with respect to ϕ1, ϕ2, . . . contains harmonics no higher than of the

second order. The derivation of the formula (5.4) uses the parameterization of T∞
c by the formula

x =

∞∑

n=1

(pnξn + qnηn),

where the coefficients pn and qn, as functions of time, satisfy the following linear system:

ṗn = ωnqn, q̇n = −ωnpn (n � 1).

Three remarks.
1. Theorem 7 holds also for an unbounded self-adjoint operator C; however, one only needs to assume

that the vectors ξn and ηn (n � 1) belong to the domain of C and that the restriction of f to T
∞
c is a

continuous function.
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2. Formula (5.4) holds also for temporal means of expectations for a Hermitian operator in quantum
mechanics after the realification of complex Schrödinger equations.

3. For the quantum rotator (see Section 2) and the quantum harmonic oscillator, all ratios ωk/ωl are
rational numbers which differ from ±1 for k 
= l. In these cases, the corresponding Kronecker flows are
certainly not ergodic; however, the conclusion of Theorem 7 holds.
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