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1. INTRODUCTION

Let us consider a general rheonomic Lagrangian system with nonintegrable constraints characterized by
a Lagrange function L(q, q̇, t) and ideal independent constraints that are linear at velocities,

fk(q, q̇, t) = 0 , k = 1, . . . ,m .

Here q = (q1, . . . , qn) are the independent Lagrangian coordinates, t is time, and q̇i = dqi/dt are the
generalized velocities. The well-known equations of motion

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
=

m∑
k=0

λk
∂fk
∂qi

, and fk = 0 , k = 1, . . . ,m , (1.1)

are equivalent to a variational equation expressing the form of the Lagrange-d’Alembert principle or the
Hamilton principle in the Hölder form; for details, see [3, 22, 29].

The greatest advantage of Lagrangian formulation is that it brings out the connection between conservation
laws and important symmetry properties of dynamical systems. The knowledge of conservation laws is of
great importance for the analysis of dynamical systems since they enable one to find exact solutions of
dynamical systems. Explicit solutions enable us to test analytical and numerical schemes applied to the
given mathematical model and to choose a reasonable approximation to solutions of the model.

If time t does not explicitly enter equations (1.1), then these systems are the so-called scleronomic systems.
In other cases, for example, when involving a dependence on time of the constraints fk, time t does explicitly
enter, and such systems are called rheonomic Lagrangian systems. Rheonomic nonholonomic systems are
divided into two families

1. systems with time-independent Lagrangian

∂L(q, q̇, t)

∂t
= 0;

2. systems with time-dependent original Lagrangian

∂L(q, q̇, t)

∂t
�= 0 .

In the first case, the infinitesimal work of the constraint forces vanishes for any admissible infinitesimal
virtual displacement according to Chetaev’s rule [12]. As a result, the Jacobi integral

H =

n∑
i=1

q̇i
∂L

∂qi
− L

remains the first integral of equations (1.1) which can be used for the explicit solution of equations of motion
(1.1).

In the other case, we have
dH

dt
= −∂L

∂t
,
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400 TSIGANOV

and, instead of the Jacobi integral, we can use the Ermakov–Lewis type invariants to solve the equations of
motion (1.1). For instance, consider a Lagrangian describing the time-dependent harmonic oscillator

L(q, q̇, t) =
1

2m(t)

(
q̇2 − ω2(t)q2

)
.

Introduce a new dynamical variable Q and a new time τ using the transformation

Q = qf(t) , dt = m(t) f2(t) dτ,

where the function f(t) satisfies the Ermakov equation [16]

d

dt
mḟ +mω2f =

Ω2

f3
, Ω ∈ R ,

depending on a real constant Ω. A simple calculation shows that the Lagrangian becomes

L(Q,Q′, τ) =
1

2

(
Q′2 +Ω2Q2

)
+

d

dτ

(
f ′

2f
Q2

)

where the prime denotes the derivative with respect to τ , and Ω is a new constant frequency. Since the total
time derivative in the Lagrangian does not affect the equations of motion, we can drop the second term and
obtain a standard equation for the oscillator,

Q′′ +Ω2Q = 0 .

For this scleronomic conservative system, the energy is constant,

H =
1

2

(
Q′2 +Ω2Q2

)
=

1

2

(
m2

(
q̇f − qḟ

)2
+Ω2q2f2

)

This is precisely the Ermakov–Lewis invariant extensively discussed in the literature [13, 24, 25, 26].
In the present note, we consider the time-dependent nonholonomic oscillator which is chosen as a sample

toy-model following [1, 9, 20, 28, 27, 30, 19]. Our calculations are quite elementary and do not involve
sophisticated algebro-geometric technique of [3, 17, 22, 23].

The paper is structured as follows: in Sec. 2, we discuss the first integrals for scleronomic nonholonomic
systems including the oscillator. In Sec. 3, we study the specific case of rheonomic nonholonomic systems
describing a rigid body sliding along the stationary blade on a plane. After this, we obtain the equations
of motion for the rheonomic nonholonomic oscillator which can be reduced to the well-studied equations
of motion for the time-dependent harmonic oscillator. The corresponding first integrals and solutions of
equations of motion are discussed.

2. SCLERONOMIC NONHOLONOMIC OSCILLATOR

Consider a scleronomic mechanical system in the configuration manifold Q = R
3 defined by the La-

grangian

L (q1, q2, q3, q̇1, q̇2, q̇3) =
1

2

(
q̇21 + q̇22 + q̇23

)
, (2.2)

and subjected to the ideal nonholonomic constraint

f = q̇3 − q2q̇1 = 0 . (2.3)

The equations of motion (1.1) are

⎧⎪⎪⎨
⎪⎪⎩

q̈1 = −λq2
q̈2 = 0
q̈3 = λ
q̇3 − q2q̇1 = 0

⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q̈1 = −λq2
q̇1 q̇2
1+q22

q̈2 = 0

q̈3 = q̇1 q̇2
1+q22

q̇3 − q2q̇1 = 0

, (2.4)

where the value of the Lagrange multiplier

λ =
q̇1q̇2
1 + q22
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is computed with the help of the following equation for the constraint:

d

dt
f =

∂f

∂t
+

3∑
i=1

(
∂f

∂qi
q̇i +

∂f

∂q̇i
q̈i

)
.

The equations of motion (2.4) with the initial condition

q1(t = 0) = q1,0 , q2(t = 0) = q2,0 , q3(t = 0) = q3,0

and
q̇1(t = 0) = v1 , q̇2(t = 0) = v2 �= 0 , q̇3(t = 0) = v3

have an explicit solution given by

q1(t) =
v1
v2

√
q22,0 + 1

(
arcsinh(v2 t+ q2,0)− arcsinh(q2,0)

)
+ q1,0 ,

q2(t) = v2 t+ q2,0 ,

q3(t) =
v1
v2

√
q22,0 + 1

(√
(v2 t+ q2,0)2 + 1−

√
q2,0 + 1

)
+ q3,0 .

Let us add a potential V (q1, q2, q3) to the kinetic energy (2.2); the Lagrangian now reads as

L (q1, q2, q3, q̇1, q̇2, q̇3) =
1

2

(
q̇21 + q̇22 + q̇23

)
− V (q1, q2, q3) . (2.5)

In this case, the equations of motion (1.1) are equal to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q̈1 = −∂V (q1, q2, q3)

∂q1
− λq2

q̈2 = −∂V (q1, q2, q3)

∂q2

q̈3 = −∂V (q1, q2, q3)

∂q3
+ λ

q̇3 − q2q̇1 = 0

(2.6)

where

λ =

q̇1q̇2 +
∂V

∂q3
− q2

∂V

∂q1
1 + q22

.

Substituting q̇3 = q2q̇1 (2.3) into this Lagrangian, one obtains the reduced Lagrangian

Lr =
1

2

(
(1 + q22)q̇

2
1 + q̇22

)
− V (q1, q2, q3)

and the Jacobi integral

H =

2∑
i=1

q̇i
∂Lr

∂q̇i
− Lr =

1

2

(
p21

1 + q22
+ p22

)
+ V (q1, q2, q3) , (2.7)

which is a first integral of the equations of motion (2.6)

q̇1 =
p1

1 + q22
, q̇2 = p2 , q̇3 =

q2p1
1 + q22

,

ṗ1 =
q2p1p2
1 + q22

− ∂V (q1, q2, q3)

∂q1
− q2

∂V (q1, q2, q3)

∂q3
, ṗ2 = −∂V (q1, q2, q3)

∂q2

(2.8)

on the five-dimensional reduced phase space with the coordinates (q1, q2, q3, p1, p2). Here p1,2 are the momenta
obtained via the Legendre transformation of the reduced Lagrangian

p1 =
∂Lr

∂q̇1
= (1 + q2)q̇1 , p2 =

∂Lr

∂q̇2
= q̇2 .
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The last Jacobi multiplier for these equations is equal to

μ =
1√

1 + q22

see [20, 27] for details. The corresponding vector field

X = (q̇1, q̇2, q̇3, ṗ1, ṗ2)

is an almost Hamiltonian vector field
X = P̃ dH

with respect to the bivector

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0
0 0 0 0 1
0 0 0 q2 0

−1 0 −q2 0
q2p1
1 + q22

0 −1 0 − q2p1
1 + q22

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We can divide this bivector into two parts and present the vector field X as a linear combination of two
Hamiltonian vector fields

X(q, p) = μP1dH + μP2dH , (2.9)

where P1,2 are two incompatible Poisson bivectors,

P1 = μ−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

−1 0 0 0
q2p1
1 + q22

0 −1 0 − q2p1
1 + q22

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, P2 = μ−1

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 q2 0
0 0 −q2 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ .

The Schouten brackets for these Poisson bivectors are equal to

[[P1, P1]] = [[P2, P2]] = 0 , and [[P1, P2]] �= 0 .

Equation (2.9) guarantees that H is the first integral of the vector field X [4]. Unfortunately, changing the
form of equations from (2.6) to (2.8–2.9) does not bring us closer to the explicit solution of these equations.

2.1. Polynomial Integrals of Motion

There is a fundamental theorem due to Noether which shows that, indeed, for every spatial continuous
symmetry of a system which can be described by a Lagrangian, some physical quantity is conserved, and
the theorem also enables us to find that quantity. The situation is different in the nonholonomic context,
but there have been several recent extensions of the Noether theorem to the nonholonomic setting [10, 21].

Nevertheless, for low dimensional systems, the brute force method remains the most productive way of
finding the constant of motion by using modern computer technologies [18, 19]. Indeed, substituting the
standard polynomial anzats

Z =

n∑
k=0

N−k∑
j=0

fjk(q1, q2, q3)p
j
1p

N−k−j
2 (2.10)

into the equation

dZ

dt
=

3∑
i=1

∂Z

∂qi
q̇i +

2∑
j=1

∂Z

∂pj
ṗi = 0 (2.11)

one obtains a system of equations for the functions fjk and the potential V , which are the coefficients of the
polynomial (2.11) for p1 and p2 [2, 14]. From the form of (2.8) we see that the even and odd terms in Z are
independent. The terms of the order N + 1 in the momenta in (2.11) form the so-called Killing equation,
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which is independent of the potential V , and therefore it can be solved without any knowledge concerning
the potential [15].

Below we set N = 2 in (2.10) and consider the following second-order polynomials in the momenta:

Z = K11(q1, q2, q3)p
2
1 + 2K12(q1, q2, q3)p1p2 +K2,2(q1, q2, q3)p

2
2 + U(q1, q2, q3) ,

where Kij are the entries of the symmetric Killing tensor of valency two. In this case, the Killing equation is

∂2K22 = 0 , 2
(
(1 + q22)∂2 + q2

)
K12 + (q2∂3 + ∂1)K22 = 0 ,

(∂1 + ∂3)K11 = 0 , ∂2(1 + q22)K11 + 2(q2∂3 + ∂1)K12 = 0 ,

where ∂i = ∂/∂qi. Since our metric in (2.7) is independent of q3, the generic solution K of these equations
with the entries

K11 = F11(q2, q3 − q1q2) , K22 = F22(q1, q3)

and

K12 =
F12(q1q3)√

1 + q22
− 1

2

(
arcsinh q2√

1 + q22
∂1 − ∂3

)
F22(q1, q3),

is labelled by the functions F11, F12, and F22 in such a way that

∂2(1 + q22)K11 + 2(q2∂3 + ∂1)K12 = 0 .

The remaining equations for the potentials have the following form:

φ1 = (∂1 + q2∂3)U(q1, q2q3)− 2(1 + q22)
(
K11(∂1 + q2∂3) +K12∂2

)
V (q1, q2q3) = 0

and
φ2 = ∂2U(q1, q2q3)− 2

(
K12(∂1 + q2∂3) +K22∂2

)
V (q1, q2q3) = 0 .

If U is independent of the variable q3, then we can readily obtain an equation for the potential V ,

∂2φ1 − ∂1φ1 = dK(dV ) = 0,

which is similar to that for the standard Bertrand–Darboux theory for Hamiltonian systems [2, 14, 18, 19].
In order to obtain integrals of motion, we must solve this system of equations with respect to V and U for
a given tensor K.

2.2. First Partial Solution

If the potential V (q1, q2, q3) does not depend on q3, then the equation

q̇3 =
q2p1
1 + q22

decouples from the rest of system (2.8),

q̇1 =
p1

1 + q22
, q̇2 = p2 , ṗ1 =

q2p1p2
1 + q22

− ∂V

∂q1
, ṗ2 = − ∂V

∂q2
, (2.12)

which determines a conformally Hamiltonian system with two degrees of freedom on the plane.
For the conformally Hamiltonian system (2.12), the first integral F is also independent of q3, and the

general solution of the corresponding Killing equation

K =

⎛
⎜⎜⎝

c1 arcsinh2 q2 + c2 arcsinh q2 + c3
1 + q22

− (2c1 q1 + c4) arcsinh q2 + c2 q1 − 2c6

2
√
1 + q22

− (2c1 q1 + c4) arcsinh q2 + c2 q1 − 2c6

2
√
1 + q22

c1q
2
1 + c4 q1 + c5

⎞
⎟⎟⎠ (2.13)

depends on six constants of integration c1, . . . , c6, similarly to other holonomic [18] and nonholonomic systems
[19]. Substituting this general solution into (2.11), one obtains a Bertrand–Darboux type equation dK(dV ) =
0 or (

A∂11 +B∂22 + C∂12 + a∂1 + b ∂2

)
V (q1, q2) = 0 , (2.14)
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where ∂i = ∂/∂qi, ∂ik = ∂2/∂qi∂qk and

A = 2c6 − (2c1q1 − c4) arcsinh q2 − c2q1 , B = −(1 + q22)A ,

C = −2
√
1 + q22(c1 arcsinh

2 q2 − c1q
2
1 + c2 arcsinh q2 − c4q1 + c3 − c5)

a = −3(2c1 arcsinh q2 + c2) , b = −q2A+ 3(2c1q1 + c4)
√
1 + q22 .

Solving (2.14) for V (q1, q2) amounts to finding admissible potentials of the conformally Hamiltonian system
(2.12) whose integrability is provided for the existence of the two first integrals and the invariant measure.

If c1 = c2 = c4 = 0, then the general solution of (2.14) is equal to

V (q1, q2) = F1(ζ+) + F2(ζ−) , ζ± = q1 ±
2c6 arcsinh q2√

c23 − 2c3c5 + c25 + 4c26 − c3 + c5
.

If c6 = 0 as well, then the general solution of (2.14) has the following form:

V (q1, q2) = F1(q1) + F2(q2) .

This solution can be associated with a Cartesian characteristic coordinate system. For other characteristic
coordinates, we have only an integral representation in contrast to the standard polar (c1 �= 0), parabolic
(c2 �= 0), and elliptic coordinates on the plane (c1 �= 0, c4 �= 0), which can be expressed in terms of elementary
functions of the original variables q1,2.

2.3. Second Partial Solution

According to [30], if
V (q1, q2, q3) = F (q2) +G(q1, q3),

then the two equations

q̇2 = p2, , ṗ2 = −dF (q2)

dq2

decouple from the rest of system (2.8):

q̇1 =
p1

1 + q22
, ṗ1 =

q2p1p2
1 + q22

− ∂G(q1, q3)

∂q1
, q̇3 =

q2p1
1 + q22

, (2.15)

Subsequently, the Jacobi integral

H =
1

2

(
p21

1 + q22
+ p22

)
+ V (q1, q2, q3) = E

is the sum of two integrals of motion

p22
2

+ F (q2) = E1 ,
p21

2(1 + q22)
+G(q1, q3) = E2 , E1 + E2 = E ,

which are second-order polynomials in momenta. Using the first integral, we obtain a standard Abel’s quadra-
ture for the variable q2: ∫ q2 dx√

2(E1 − F (x))
= t .

If we substitute the corresponding solutions q2 = φ(t) and p2 = ψ(t) into (2.15), we obtain a three-
dimensional rheonomic flow which explicitly depends on time

q̇1 =
p1

1 + φ2(t)
, ṗ1 =

φ(t)ψ(t)

1 + φ2(t)
p1 −

∂G(q1, q3)

∂q1
, q̇3 =

φ(t)

1 + φ2(t)
p1 ,

with the first integral

E2 =
p21

2(1 + φ2t)
+G(q1, q3) .

This dynamical system belongs to a first family of rheonomic nonholonomic Lagrangian systems with a
time-independent Lagrangian and an ideal rheonomic constraint

f = q̇3 − φ(t)q̇1 .

Similar rheonomic constraints have been considered in [7].
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2.4. Nonholonomic Oscillator

If we take

V (q1, q2, q3) = aq21 + bq22 + cq23 , a, b, c ∈ R , (2.16)

then the general solutions of the equations

q̇2 = p2, , ṗ2 = −2bq2

are

q2(t) = − 1√
2b

(
c1 cos(

√
2bt)− c2 sin(

√
2bt)

)

p2(t) = c1 sin(
√
2bt) + c2 cos(

√
2bt) , c1,2 ∈ R .

where c1,2 are constants of integration depending on the initial conditions.

For brevity, we set b = 1/2, c1 = 0, and c2 = 1, then E1 = 1/2 and

q2(t) = sin t , p2(t) = cos t .

Substituting this partial solution into the remaining three equations of (2.8), we obtain a rheonomic system
of equations

ṗ1 =
sin t cos t

1 + sin2 t
p1 − 2aq1 − 2cq3 sin t , q̇1 =

p1

1 + sin2 t
, q̇3 =

sin t

1 + sin2 t
p1 ,

associated with the time-dependent constraint

f = q̇3 − sin t q̇1 = 0 .

However, since the original Lagrangian is independent of time, and the nonholonomic constraint is ideal, it
follows that there is an integral of motion

E2 =
p21

2(1 + sin2 t)
+ aq21 + cq23 ,

which can be used to reducte this system of equations to one equation. If c �= 0, then we have

4cE2 sin
2 t = (1 + sin2 t)2

(
d2q1
dt2

)2

+ 2
(
(1 + sin2 t) cos(t)

dq1
dt

+ 2aq1

)d2q1
dt2

+(2c sin2 t+ cos2 t+ 2c) sin2 t

(
dq1
dt

)2

+ 4a cos t sin tq1
dq1
dt

+ 4a(c sin2 t+ a)q21 .

If c = 0, then we have

E2 =
(1 + sin2 t)

2

(
d2q1
dt2

)2

+ aq1 ,

or
dq1√

2(E2 − aq21)
= dτ where dτ =

dt√
1 + sin2 t

.

If a = 1/2 and E2 = 1, then the general solution of this equation is a linear combination

q1(t) = c1 sin(τ) + c2 cos(τ) ,

where

τ = − 1√
2
F

(
cos t, 1/

√
2
)

and F is an incomplete elliptic integral of the first kind.
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3. RHEONOMIC NONHOLONOMIC OSCILLATOR

Following [30], consider a rigid body sliding along a stationary blade on a plane. Since the velocity of the
body is to be directed along the blade, we have a nonholonomic constraint similar to (2.3),

q̇3 = q2q̇1

where q2 and q3 are the coordinates of the rigid body center of mass, and q1 is the angle of rotation of the
body in a suitable coordinate system. The kinetic energy of the rigid body is

T =
1

2

(
ρ2q̇21 + q̇22 + q̇22

)
.

Assume that the body has the unit mass m = 1, ρ is a central moment of inertia, and there is some potential
force acting on the body, i.e., the Lagrangian is

L =
1

2

(
ρ2q̇21 + q̇22 + q̇22

)
− V (q1, q2, q3)

If we also suppose that the central moment of inertia is a function of time ρ = ρ(t), then the equations of
motion (1.1) are ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̈1 = −
q̇1
dρ(t)2

dt
− ∂V

∂q1
− λq2

ρ(t)2

q̈2 = − ∂V

∂q2

q̈3 = − ∂V

∂q3
+ λ

q̇3 − q2q̇1 = 0

(3.17)

where

λ =

q̇1q̇2ρ
2(t)− q2q̇1

ρ(t)2

dt
+ ρ(t)2

∂V

∂q3
− q2

∂V

∂q1
ρ(t)2 + q22

.

Substituting q̇3 = q2q̇1 (2.3) into this Lagrangian, we determine the reduced Lagrangian

Lr =
1

2

(
(ρ2(t) + q22)q̇

2
1 + q̇22

)
− V (q1, q2, q3)

and the variables

p1 =
∂Lr

∂q̇1
=

(
ρ2(t) + q22

)
q̇1 , p2 =

∂Lr

∂q̇2
= q̇2 .

Equations of motion in these variables have the following form

q̇1 =
p1

ρ2(t) + q22
, q̇2 = p2 , q̇3 =

q2p1
ρ2(t) + q22

,

ṗ1 =
q2p1p2

ρ2(t) + q22
− ∂V (q1, q2, q3)

∂q1
− q2

∂V (q1, q2, q3)

∂q3
, ṗ2 = −∂V (q1, q2, q3)

∂q2

(3.18)

The corresponding time-dependent vector field is a linear combination of time-dependent Hamiltonian vector
fields similar to (2.9)

X(q, p, t) = μ(t)P1(t)dH(t) + μ(t)P2dH(t) ,

where

P1(t) = μ−1(t)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

−1 0 0 0
q2p1

ρ2(t) + q22
0 −1 0 − q2p1

ρ2(t) + q22
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
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and

P2 = μ−1(t)

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 q2 0
0 0 −q2 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ , μ(t) =

1√
ρ2(t) + q22 .

.

In this case, the Poisson bivectors P1,2(t) depend on time similarly to the Jacobi integral

H =

2∑
i=1

q̇i
∂Lr

∂q̇i
− Lr =

1

2

(
p21

ρ2(t) + q22
+ p22

)
+ V (q1, q2, q3) ,

and thus
d

dt
H = − ρ(t)ρ̇(t)

(ρ2(t) + q22)
2
p21 .

As above, changing the form of equations from (3.17) to (3.18) does not bring us closer to an explicit solution
of these equations.

The first integrals for this rheonomic system can be obtained by using the extended Noether’s theorem,
see [11, 31] and the references therein. The same invariants can be also obtained by using the polynomial
anzats

Z(t) =

n∑
k=0

N−k∑
j=0

fjk(q1, q2, q3, t)p
j
1p

N−k−j
2

with the coefficients fjk(q1, q2, q3, t) depending on time, and thus

dZ

dt
=

∂Z

∂t
+

3∑
i=1

∂Z

∂qi
q̇i +

2∑
j=1

∂Z

∂pj
ṗi = 0

instead of (2.11). Solutions of there time-dependent equations were discussed in [13].
In this note, we prefer to reduce the equations of motion (3.17) to well-studied equations of motion for

the time-dependent oscillator in order to discuss the form of their solutions.

3.1. Nonholonomic Time-Dependent Oscillator

Write
V (q1, q2, q3) = aq21 + bq22 + cq23 , a, b, c ∈ R ,

and substitute the partial solutions

q2(t) = sin t , p2(t) = cos t ,

of equations (3.17) for b = 1/2 into the Lagrangian

Lr =
ρ2(t) + sin2 t

2
q̇21 − aq21 − cq23 .

and the constraint

q̇3 =
sin t

ρ2(t) + sin2 t
p1 .

If c = 0, then the Lagrangian Lr coincides with the Lagrangian of the time-dependent oscillator

L(q1, q̇1, t) =
1

2m(t)

(
q̇21 − ω2(t)q21

)

with

m(t) =
1

ρ2(t) + sin2 t
and ω2(t) = 2am(t) .

This enables us to apply all the known machinery of [13, 24, 25, 26] to the solution of this system. For
instance, we can say that the general solution has the following “explicit” form

q1(t) = f−1(t)
(
c1 sinΩτ + c2 cosΩτ) , dt = m(t) f2(t) dτ ,
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where the function f(t) satisfies the Ermakov–Milne–Pinney-type equation

d

dt
mḟ +mω2f =

Ω2

f3
, Ω ∈ R ,

depending on a real constant Ω. The meaning of such a solution is discussed in detail in the theory of the
time-dependent holonomic oscillator.

4. CONCLUSION

In this note, we compare explicit solutions of equations of motion for holonomic, nonholonomic, and time-
dependent nonholonomic oscillators. In the holonomic case, the general solution is a well-known combination
of trigonometric functions

q(t) = c1 sinΩt+ c2 cosΩt .

For nonholonomic scleronomic oscillator, the solutions have the similar form,

q(t) = c1 sinΩτ + c2 cosΩτ ,

where τ is an elliptic function of the original time variable t.
For nonholonomic rheonomic oscillator, the solutions are

q(t) = c1(t) sinΩτ + c2(t) cosΩτ ,

where the functions c1(t) and τ(t) and the constant Ω are related via Ermakov’s equation.
There are some open problems which have popped up in this note. Firstly, it would be useful to study the

rheonomic or time-dependent nonholonomic systems with nonideal constraints similar to [8]. Secondly, we
have considered the rheonomic nonholonomic system with the Lewis–Ermakov invariant, and hence it would
be great to compare such nonholonomic systems with nonholonomic systems under time-dependent control
[5, 6].
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Mechanics,” Rep. Math. Phys. 31, 189–203 (1992).

[12] N. G. Chetaev, “On Gauss Principle,” Izv. Fiz.-Mat. Obshch. Kazan Univ. 6, 68–71 (1932-1933).

[13] R. K. Colegrave and M. S. Abdalla, “Invariants for the Time-Dependent Harmonic Oscillator. I,” J. Phys. A:
Math. Gen. 16, 3805–3815 (1983).
R. K. Colegrave, M. S. Abdalla and M. A. Mannan, “Invariants for the Time-Dependent Harmonic Oscillator.
II. Cubic and Quartic Invariants,” J. Phys. A: Math. Gen. 17, 1567–1571 (1984).

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 27 No. 3 2020



ON A TIME-DEPENDENT NONHOLONOMIC OSCILLATOR 409

[14] G. Darboux, “Sur un probléme de mécanique,” Arch. Néerlandaises Sci. 6, 371–376 (1901).

[15] L. P. Eisenhart, “Separable Systems of Stäckel,” Ann. Math. 35, 284–305 (1934).
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[21] F. Fassò and N. Sansonetto, “Conservation of Energy and Momenta in Nonholonomic Systems with Affine
Constraints,” Regul. Chaotic Dyn. 20, 449–462 (2015).

[22] M. de León and D. M. de Diego, “On the Geometry of Non-Holonomic Lagrangian Systems,” J. Math. Phys.
37, 3389–3414 (1996).

[23] M. de León, J. C. Marrero, and D. M. de Diego, “Linear Almost Poisson Structures and Hamilton-Jacobi
Equation. Applications to Nonholonomic Mechanics,” J. Geom. Mech. 2, 159–198 (2010).

[24] H. R. Lewis, “Classical and Quantum Systems with Time Dependent Harmonic Oscillator Type Hamiltonians,”
Phys. Rev. Lett. 18, 510–512 (1967).

[25] H. R. Lewis and W. B. Riesenfeld, “An Exact Quantum Theory of the Time-Dependent Harmonic Oscillator
and of a Charged Particle in a Time-Dependent Electromagnetic Field,” J. Math. Phys. 10, 1458–1473 (1969).

[26] J. R. Ray and J. L. Reid, “More Exact Invariants for the Time-Dependent Harmonic Oscillator,” Phys. Lett. A
71, 317–318 (1979).
J. L. Reid and J. R. Ray, “Ermakov Systems, Nonlinear Superposition, and Solutions of Nonlinear Equations
of Motion,” J. Math. Phys. 21, 1583–1587 (1980).
J. L. Reid and J. R. Ray, “Invariants for Forced Time-Dependent Oscillators and Generalizations,” Phys. Rev.
A. 26, 1042–1047 (1982).

[27] P. M. Rios and J. Koiller, Non-Holonomic Systems with Symmetry Allowing a Conformally Symplectic Reduction
(New Advances in Celestial Mechanics and Hamiltonian Systems, Springer US, 2004).

[28] R. M. Rosenberg, Analytical Dynamics of Discrete Systems (New York: Plenum Press, 1977).

[29] V. V. Rumyantsev, “The Dynamics of Rheonomic Lagrangian Systems with Constraints,” J. Applied Math.
Mech. 48, 380–387 (1984).

[30] Ya. V. Tatarinov , “Consequences of Nonintegrable Perturbation of the Integrable Constraints: Model Problems
of Low Dimensionality,” J. Appl. Math. Mech. 51, 579–586 (1987).

[31] B. Vujanovic and S. E. Jones, Variational Methods in Nonconservative Phenomena (Academic Press, Boston,
1989).

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 27 No. 3 2020


