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Abstract. In this paper, we consider A-Fredholm and semi-A-Fredholm operators on Hilbert
C∗-modules over a W ∗-algebra A defined in [3] and [9]. Using the assumption that A is a
W ∗-algebra (rather than an arbitrary C∗-algebra), we obtain a generalization of Schechter–
Lebow characterization of semi-Fredholm operators and a generalization of the “punctured
neighborhood” theorem, as well as some other results generalizing their classical counterparts.
We consider both adjointable and nonadjointable semi-Fredholm operators over W ∗-algebras.
Moreover, we also work with general bounded adjointable operators with closed ranges over
C∗-algebras and prove a generalization of a Bouldin result for Hilbert spaces to Hilbert
C∗-modules.
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1. INTRODUCTION

Fredholm theory on Hilbert C∗-modules, as a generalization of Fredholm theory on Hilbert
spaces, was initiated by Mishchenko and Fomenko in [9]. They have elaborated the notion of
Fredholm operator on the standard module HA and proved a generalization of the Atkinson the-
orem. In [3], we went further in this direction and defined semi-Fredholm operators on Hilbert
C∗-modules. We then proved several properties of these generalized semi-Fredholm operators on
Hilbert C∗-modules as an analog or generalization of the well-known properties of classical semi-
Fredholm operators on Hilbert and Banach spaces. Several special properties of A-Fredholm opera-
tors in the case of W ∗-algebra were described in [10, Sec. 3.6]. The idea in the present paper is to go
further in this direction and establish more special properties of A-Fredholm operators defined in
[9] and of semi-A-Fredholm operators defined in [3] for the case in which A is a W ∗-algebra; these
properties are more closely related to those of the classical semi-Fredholm operators on Hilbert
spaces than those in the general case in which A is an arbitrary C∗-algebra. Moreover, we consider
here both adjointable and nonadjointable semi-Fredholm operators over W ∗-algebras.

Let us list our main results. Proposition 3.19 and Lemma 3.20 generalize a part of the in-
dex theorem which states that if F and D are Fredholm operators on a Hilbert space H, then
dimkerFD � dimkerF + dimkerD and dim ImFD⊥ � dim ImF⊥ + dim ImD⊥.

Corollary 3.3, Lemma 3.4, and Proposition 3.10 form a generalization of [16, Th. 1.5.7], origi-
nally given in [14]. Theorem 3.5, Corollary 3.6, Lemma 3.8, and Proposition 3.10 form an analog of
Schechter–Lebow’s characterization of semi-Fredholm operators [16, Th. 1.4.4] and [16, Th. 1.4.5],
originally given in [8] and [13]. Theorem 3.26 is a generalization of the classical “punctured neigh-
borhood theorem” [16, Th. 1.7.7], originally given in [6]. As compared with the classical version
for Hilbert spaces, our generalization (Th. 3.26) needs an additional assumption on the operator
F ∈ MΦ(M), denoted by (*). It turns out that, in the case of ordinary Hilbert spaces, (*) is
automatically satisfied for any Fredholm operator, and thus, in the case of ordinary Hilbert spaces,
Theorem 3.14 reduces to the classical “punctured neighborhood” theorem. However, in Example
3.25, we give an example of a Hilbert C∗-module over a W ∗-algebra A which is not a Hilbert space
and where the condition (*) is satisfied for all A-Fredholm operators as long as they have closed
image.

In several results in this paper, we consider semi-A-Fredholm operators with closed image. Or-
dinary semi-Fredholm operators on Hilbert spaces always have closed images; however, in our
generalizations to modules, we need sometimes to provide this additional assumption in order to
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obtain an analog of classical results. This leads us to study, in general, bounded adjointable op-
erators over C∗-algebras with closed image rather than semi-Fredholm operators over W ∗-algebra
only. We prove in Lemma 3.17 that, if F and D are two bounded adjointable operators on a
standard module with closed images, then ImDF is closed if the Dixmier angle between ImF
and kerD ∩ (kerD ∩ ImF )⊥ is positive, or, equivalently, if the Dixmier angle between kerD and
ImF ∩(kerD∩ ImF )⊥ is positive. This is a generalization, for Hilbert C∗-modules, of a well known
result in [1] on Hilbert spaces. Moreover, our Lemma 3.20, which generalizes the aforementioned
second part of the classical index theorem, works for arbitrary bounded adjointable operators F
and D on a standard C∗ module provided that ImF, ImD, ImDF are closed. Next, our Lemma
3.13 gives another (simplified) proof of the result in [12]. This result follows from Lemma 3.13 and
Corollary 3.14. Finally, in Lemma 3.21, we prove that, if F and G are two A-Fredholm operators
on HA, not necessarily adjointable and such that ImG, ImF are closed, then ImGF is closed if
and only if ImF + kerG is closed and complementable.

Important tools for proving most of the results in this paper are [10, Corollary 3.6.4], [10,
Corollary 3.6.7], and [10, Proposition 3.6.8] originally given in [2, 5, 7], and these results assume
that A is a W ∗-algebra. For this reason, we deal here mainly with Hilbert C∗-modules over W ∗-
algebras. However, our Lemma 3.11, Corollary 3.12, Lemma 3.13, Lemma 3.17, Corollary 3.14,
Corollary 3.18, and Lemma 3.20 hold also in the case when A is an arbitrary unital C∗-algebra
rather than a W ∗-algebra.

2. PRELIMINARIES

Throughout this paper, A stands for a W ∗-algebra, HA for the standard Hilbert C∗-module
over A, and Ba(HA) for the set of all bounded adjointable operators on HA. Similarly, if M is an
arbitrary Hilbert C∗-module, then Ba(M) stands for the set of all bounded adjojntable operators on
M . Let B(HA) denote the set of all A-linear bounded and not necessarily adjointable operators
on HA. According to [10, Definition 1.4.1], we say that a Hilbert C∗-module M over A is finitely
generated if there exists a finite set {xi} ⊆ M such that M is equal to the linear span (over C
and A) of this set.

The notation ⊕̃ means a direct sum of modules without orthogonality, as in [10].

Definition 2.1. [3, Definition 2.1] Let F ∈ Ba(HA).We say that F is an upper semi-A-Fredholm
operator if there exists a decomposition

HA = M1⊕̃N1
F−→ M2⊕̃N2 = HA

with respect to which F has the matrix

[
F1 0
0 F4

]
,

where F1 is an isomorphism of M1 and M2, N1 and N2 are closed submodules of HA, and N1 is
finitely generated. Similarly, we say that F is a lower semi-A-Fredholm operator if all the above
conditions hold except that, in this case, we assume that N2 (rather than N1) is finitely generated.

Set
MΦ+(HA) = {F ∈ Ba(HA) | F is upper semi-A-Fredholm},
MΦ−(HA) = {F ∈ Ba(HA) | F is lower semi-A-Fredholm},
MΦ(HA) = {F ∈ Ba(HA) | F is A-Fredholm operator on HA}.
Next, let K∗(HA) be the set of all adjointable compact operators in the sense of [10, Sec. 2.2],

and let K(HA) be the set of all compact operators (not necessarily adjointable) in the sense of [4].

Denote by M̂Φl(HA) the class of operators in B(HA) that have the above MΦ+-decomposition

and are not necessarily adjointable. Hence, MΦ+(HA) = M̂Φl(HA) ∩ Ba(HA). Similarly, denote

by M̂Φr(HA) the set of all operators in B(HA) that have the MΦ−-decomposition and are not

necessarily adjointable. Thus, MΦ−(HA) = M̂Φr(HA)∩Ba(HA). Finally, let M̂Φ(HA) be the set
of all A-Fredholm operators on HA in the sense of [4] that are not necessarily adjointable.
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Remark 2.2. [3] Note that, if M and N are two arbitrary Hilbert C∗-modules, then the above
definition can be generalized to the classes MΦ+(M,N) and MΦ−(M,N).

Recall that, by [10, Definition 2.7.8] (originally given in [9]), if F ∈ MΦ(HA) and

HA = M1⊕̃N1
F−→ M2⊕̃N2 = HA

is an MΦ decomposition for F, then the index of F takes values in K(A) and is defined by the
index F = [N1] − [N2] ∈ K(A), where [N1] and [N2] stand for the isomorphism classes of N1 and
N2, respectively. By [10, Definition 2.7.9], the index is well defined.

Clearly, any operator F ∈ M̂Φl(HA) is also left invertible in B(HA)/K(HA), whereas any

operator G ∈ M̂Φr(HA) is right invertible B(HA)/K(HA). The converse also holds.

Proposition 2.3. If F is left invertible in B(HA)/K(HA), then F ∈ M̂Φl(HA) . If F is right

invertible in B(HA)/K(HA), then F ∈ M̂Φr(HA).

Proof. If GF = id +K ′′ for some G ∈ B(HA), K
′′ ∈ K(HA), then, following the proof of [4,

Th. 5], we obtain (45) and (46) of [4]. By (46), it follows readily that F ∈ M̂Φl(HA). Moreover,

by the first half of the proof of [4, Th. 5], we also see that G has the matrix

(
G1 G2
0 G4

)
with

respect to the decomposition HA = M3 ⊕ N3
G−→ M2 ⊕ N2 = HA, where G1 is an isomorphism.

Indeed, by (45) of [4], M3 = ImP = ImFK−1
1 p2G. It follows that M3 = F (M1). Since GF|M1

is an
isomorphism onto M2, it follows that G|F (M1)

is an isomorphism onto M2. Then, considering the

operator G and applying the above arguments, one derives the second statement in the proposition.

Corollary 2.4. The sets M̂Φl(HA) and M̂Φr(HA) are closed under multiplication.

Lemma 2.5. Let F,D ∈ Ba(HA). Suppose that ImF, ImD, and ImDF are closed. Then there
exist closed submodules X,W,M ′ such that ImF = W ⊕ (kerD ∩ ImF ), ImD = ImDF ⊕ X,

and kerD = M ′ ⊕ (kerD ∩ ImF ). Moreover, HA = W ⊕̃S(X)⊕ kerD, where S = D|kerD⊥
−1

.

Proof. Since ImF, ImD, and ImDF are closed, these images are orthogonally complementable
by [10, Th. 2.3.3]. Moreover, kerD is also orthogonally complementable. The operator D|ImF

can,
therefore, be viewed as an adjointable operator from ImF to ImD. Since ImD|Im F

= ImDF is
closed, ImD = ImDF ⊕ X for some closed submodule X by [10, Th. 2.3.3]. Moreover, ImF =
W ⊕ kerD|Im F

= W ⊕ (kerD ∩ ImF ) for some closed submodule W. Hence,

HA = W ⊕ (kerD ∩ ImF )⊕ ImF⊥.

Therefore,

kerD = (kerD ∩ ImF )⊕M ′, where M ′ = kerD ∩ (W ⊕ ImF⊥).

Now, D|W is an isomorphism onto ImDF. However, D|W = DP|W , where P stands for the or-

thogonal projection onto kerD⊥. Then it follows that P|W must be bounded below, and hence,

P (W ) is closed in kerD⊥. In addition, P (W ) = S(ImDF ), where S = D|kerD⊥
−1 is the op-

erator from ImD onto kerD⊥. Since ImD = ImDF ⊕ X and S is an isomorphism, we have
kerD⊥ = S(ImDF )⊕̃S(X). Hence, HA = S(ImDF )⊕̃S(X) ⊕ kerD. However, P|W is an isomor-

phism from W onto S(ImDF ). Therefore, HA = W ⊕̃S(X) ⊕ kerD.

Lemma 2.6. Let M and N be closed submodules of HA such that M ⊆ N and HA = M ⊕M⊥.
Then N = M ⊕ (N ∩M⊥).

Proof. Since HA = M ⊕ M⊥, every z ∈ N can be represented as the sum z = x + y, where
x ∈ M,y ∈ M⊥. Hence, z − x ∈ N since z ∈ N and x ∈ M ⊆ N. Thus, y ∈ N ∩M⊥.
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3. SEMI-FREDHOLM OPERATORS AND CLOSED
RANGE OPERATORS OVER W ∗-ALGEBRAS

We begin with the following proposition.

Proposition 3.1. Let F ∈ M̂Φl(l2(A)) or F ∈ MΦ+(HA). Then there exists a decomposition

HA = M0⊕̃M ′
1⊕̃kerF

F−→ N0⊕̃N ′
1⊕̃N ′

1
′
= HA

with respect to which F has the matrix

[
F0 0 0
0 F1 0
0 0 0

]
, where F0 is an isomorphism and M ′

1 and

kerF are finitely generated. Moreover, M ′
1
∼= N ′

1. If F ∈ M̂Φl(HA) and ImF is closed, then ImF
is complementable in HA.

Proof. The first statement follows from the same arguments as in the proof of [10, Proposition
3.6.8]. The other statement follows from the decomposition of F in the first statement.

Proposition 3.2. If F ∈ M̂Φr(HA) and ImF is closed and complementable in HA, then the
decomposition given above exists for the operator F.

Proof. Suppose that F ∈ M̂Φr(HA). Let HA = M1⊕̃N1
F−→ M2⊕̃N2 = HA be an M̂Φr-

decomposition for F such that N2 is finitely generated. Since ImF is closed by assumption and
F (M1) = M2, F (N1) ⊆ N2, it follows readily that F (N1) is closed. Since ImF is complementable by
assumption, it follows that F (N1) is complementable in N2. Therefore, F (N1) is finitely generated
and projective as a direct summand of a finitely generated projective module N2. Since the map
F|N1

: N1 → F (N1) is an epimorphism, there exists a decomposition N1 = N ′
1⊕̃kerF , where

N ′
1
∼= F (N1).

Corollary 3.3. 1. If F ∈ MΦ+(HA) \ MΦ(HA), then there exists an ε > 0 such that, for
D ∈ Ba(HA) and ‖D‖ < ε, the sum (F + D) is in MΦ+(HA) \ MΦ(HA) and Im(F + D)⊥ is

not finitely generated. If F ∈ M̂Φl(HA) \ M̂Φ(HA), then the complement of ImF is not finitely
generated.

2. If F ∈ MΦ−(HA) \ MΦ(HA), then there exists an ε > 0 such that, for D ∈ Ba(HA) and
‖D‖ < ε, we have (F +D) ∈ MΦ−(HA) \MΦ(HA) and ker(F +D) is not finitely generated.

Proof. 1. It was shown in [3, Th. 4.1] that there exists an ε > 0 such that

(F +D) ∈ MΦ+(HA) \MΦ(HA),

whenever ‖D‖ < ε.
Now, since

(F +D) ∈ MΦ+(HA) \MΦ(HA),

by Proposition 3.1, there exists a decomposition

HA = M1⊕̃N ′
1 ⊕ ker(F +D)

↓ F +D

HA = M2 ⊕ (F +D)(N ′
1)⊕ Im(F +D)⊥

with respect to which (F +D) has the matrix

[
(F +D)1 0 0

0 (F +D)4 0
0 0 0

]
,
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where (F +D)1 is an isomorphism and N ′
1 ⊕ ker(F +D) is finitely generated; however,

(F +D)(N ′
1)⊕ Im(F +D)⊥

is not finitely generated, since (F + D) /∈ MΦ(HA). Now, since (F +D)(N ′
1)

∼= N ′
1 by Propo-

sition 3.1 and N ′
1 is finitely generated as a direct summand of the finitely generated submodule

N ′
1 ⊕ ker(F +D), it follows that Im(F +D)⊥ cannot be finitely generated, since

(F +D)(N ′
1)⊕ Im(F +D)⊥

is not finitely generated. The proof is similar to the case in which

F ∈ M̂Φl(HA) \ M̂Φ(HA).

We simply observe that the proof of [3, Th. 4.1] does not require the adjointability of F and,

moreover, Proposition 3.1 also applies to the case when F ∈ M̂Φl(HA).

2. This can be proved by passing to adjoints and using [3, Corollary 2.11].

Lemma 3.4. If F ∈ M̂Φr(HA) \ M̂Φ(HA), ImF is closed and complementable, then the com-
plement of ImF is not finitely generated.

Theorem 3.5. Let F ∈ Ba(HA). Then F ∈ MΦ+(HA) if and only if ker(F − K) is finitely
generated for all K ∈ K∗(HA).

Proof. If F /∈ MΦ+(HA), choose a sequence {xk} ⊆ HA and an increasing sequence {nk} ⊆ N

such that
xk ∈ Lnk

\ Lnk−1
for all k ∈ N, ‖xk‖ � 1 for all k ∈ N

and
‖Fxk‖ � 21−2k for all k ∈ N.

By [3, Lemma 3.2], such a sequence exists. Set

Knx =
n∑

k=1

〈xk, x〉Fxk for x ∈ HA.

Then Kn ∈ K∗(HA) for all n. For n > m, we have

‖(Kn −Km)x‖ �
n∑

k=m+1

‖xk‖‖x‖‖Fxk‖ � ‖x‖
n∑

k=m+1

21−2(k+1),

and thus, Kn −Km vanishes as n,m −→ ∞.
Let K ∈ K∗(HA) be the limit of {Kn} in the operator norm. Clearly, then

Kx =

∞∑
k=1

〈xk, x〉Fxk ∀x ∈ HA.

Observe next that, by the construction of the sequence {xk},

〈xj , xk〉 = δj,k ∀j, k as xk = Lnk
\ Lnk−1

∀k

and the sequence {nn}k ⊆ N is increasing. Thus, {xk} ⊆ ker(F−K). Now, if ker(F−K) were finitely
generated, then, by [10, Lemma 2.3.7], ker(F −K) would be an orthogonal direct summand in HA.
Hence, by the proof of [10, Th. 2.7.5], there exists an n ∈ N such that pn|ker(F−K)

is an isomorphism
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from ker(F −K) onto some direct summand of Ln (where pn is the orthogonal projection onto Ln

along L⊥
n ). In particular, pn|ker(F−K)

is injective. However, since the sequence {nk}k is increasing,

we can find an nk0
such that nk � n for all k � k0. Now, by construction, xk ∈ Lnk

\ Lnk−1
for

all k, and hence, xk ∈ L⊥
n for all k � k0, since nk > n for all k > k0. Consequently, pn(xk) = 0 for

all k � k0. Since {xk}k�k0
⊆ ker(F − K), we see that pn is not injective, a contradiction. Thus,

ker(F −K) is not finitely generated. On the other hand, if F ∈ MΦ+(HA), then

(F +K) ∈ MΦ+(HA) ∀K ∈ K∗(HA).

Now, since A is a W ∗-algebra by assumption, it follows that ker(F −K) must be finitely generated
for all K ∈ K∗(HA), because

(F −K) ∈ MΦ+(HA) for all K ∈ K∗(HA),

which holds by the same arguments as in the proof of [10, Lemma 2.7.13] and follows from Propo-
sition 3.1.

Corollary 3.6. Let A be a W ∗-algebra and F ∈ Ba(HA). Then F ∈ MΦ−(HA) if and only if
Im(F −K∗)⊥ is finitely generated for all K∗ ∈ K∗(HA).

Proof. Suppose that F /∈ MΦ−(HA). By [3, Corollary 2.11], then F ∗ /∈ MΦ+(HA). Hence,
there exists some K∗ ∈ K∗(HA) such that ker(F ∗−K∗) is not finitely generated. However, ker(F ∗−
K∗) = Im(F −K∗)⊥. On the other hand, if F ∈ MΦ−(HA), then F ∗ ∈ MΦ+(HA) by [3, Corolary
2.11]. Hence, by Theorem 3.5, ker(F ∗ −K∗) is finitely generated for all K∗ ∈ K∗(HA), and thus
Im(F −K∗)⊥ is finitely generated for all K∗ ∈ K∗(HA).

Let us introduce another class of operators on HA.

Definition 3.7. Let F ∈ B(HA). We say that F ∈ M̂Φ+(HA) if there exist a closed submodule
M and a finitely generated submodule N such that HA = M⊕̃N and F |M is bounded below.

Note that we do not assume that F (M) is complementable inHA. Thus, M̂Φl(HA) ⊆ M̂Φ+(HA),
and the equality need not hold.

Lemma 3.8. Let F ∈ B(HA). Then F ∈ M̂Φ+(HA) if and only if ker(F − K) is finitely
generated for all K ∈ K∗(HA).

Proof. Let HA = M⊕̃N be an M̂Φ+ decomposition for F defined above. Since N is finitely
generated, we may choose an n ∈ N such that HA = L⊥

n ⊕̃P ⊕̃N for some finitely generated closed
submodule P. Then F is bounded below on L⊥

n ⊕̃P , and thus, there exists a C > 0 such that
‖Fx‖ � C‖x‖ for all x ∈ L⊥

n ⊕ P. Further, if K ∈ K∗(HA), then there exists some m � n such
that ‖K|

L⊥
m

‖ < C by Proposition 2.1.1 of [10]. Then F −K is bounded below on L⊥
m. Conversely, if

F /∈ M̂Φ+(HA), then, in particular, F is not bounded below on L⊥
n for all n. We may, hence, repeat

the construction of [3, Lemma 3.2] to obtain a sequence {xk}k such that the proof of Theorem 3.5
applies. The operator K in this proof is adjointable and compact as the limit in operator norm
of operators in K∗(HA). Indeed, the operators of the form < xk, · > Fxk, where xk’s are fixed
vectors, are adjointable, although the operator F need not be adjointable. This is because Fxk’s
are then also fixed vectors, and hence, the nonadjointability of the operator F does not reflect on
the adjointability of the operators < xk, · > Fxk. Moreover, ker(F −K) is not finitely generated.

Set M̂Φ−(HA) = {G ∈ B(HA) | there exist closed submodules M,N,M ′ of HA such that
HA = M⊕̃N, N is finitely generated and G|M′ , is an isomorphism onto M}.

Remark 3.9. We do not require that M ′ be complementable in HA. Hence, we have only the

inclusion M̂Φr(HA) ⊆ M̂Φ−(HA), and the equality is not necessary.

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 27 No. 1 2020



54 IVKOVIĆ

Proposition 3.10. Let G ∈ M̂Φ−(HA). Then, for every K ∈ K(HA), there exists an inner

product equivalent to the initial one and such that the orthogonal complement of Im(G+K) with
respect to this new inner product is finitely generated.

Proof. Let HA = M⊕̃N be an M̂Φ− decomposition for G defined above, and let M ′ ⊆ HA
be such that G|M′ is an isomorphism onto M . Since N is finitely generated, there exists an n ∈ N

such that HA = L⊥
n ⊕P ⊕N for some finitely generated submodule P. Denote by � the projection

onto L⊥
n ⊕ P along N ; it follows that �|M is an isomorphism onto L⊥

n ⊕ P. Hence, �G|M ′ is an

isomorphism of M ′ onto L⊥
n ⊕ P. If K ∈ K(HA), then there exists an m � n such that ‖qmK‖ <

‖(�G|M ′)−1‖−1. LetM ′′ = (�G|M ′)−1(L⊥
m). Then �G|M ′′ = qmG|M ′′ and, moreover, qm(G−K)|M ′′

is an isomorphism onto L⊥
m. Now M ′ = M ′′⊕̃N ′′, where N ′′ = (�G|M ′)−1(P ⊕ (Lm \ Ln)). With

respect to the decomposition

M ′ = M ′′⊕̃N ′′ G−K−→ L⊥
m ⊕ Lm = HA,

G − K has the matrix

[
(G−K)1 (G−K)2
(G−K)3 (G−K)4

]
, where (G − K)1 = qm(G − K)|M′′ is an iso-

morphism. Hence, by the same arguments as in the proof of [10, Lemma 2.7.10], there exists an
isomorphism U : M ′ −→ M ′ and an isomorphism V : HA −→ HA such that G−K has the matrix⎡
⎣
︷ ︸︸ ︷
(G−K)1 0

0
︷ ︸︸ ︷
(G−K)4

⎤
⎦ with respect to the decomposition

M ′ = U(M ′′)⊕̃U(N ′′)
G−K−→ V (L⊥

m)⊕̃V (Lm) = HA,

where
︷ ︸︸ ︷
(G−K)1 is an isomorphism. Moreover, V is such that V (Lm) = Lm by the construction in

the proof of [10, Lemma 2.7.10]. Since V (L⊥
m) ⊆ Im(G−K) ⊆ Im(G−K) and HA = V (L⊥

m)⊕̃Lm,

we obtain Im(G−K) = V (L⊥
m)⊕̃(Lm ∩ Im(G−K)). On HA, we may replace the inner product by

an equivalent one in such a way that V (L⊥
m) and Lm form an orthogonal direct sum with respect to

this new inner product. Since Lm is finitely generated and Lm ∩ Im(G−K) is a closed submodule
of Lm, we see by [10, Lemma 3.6.1] that

Lm = (Lm ∩ Im(G−K))⊥
⊥ ⊕ (Lm ∩ Im(G−K))⊥.

Then it follows that (Lm ∩ Im(G−K))⊥ is finitely generated. Since Im(G−K) = V (L⊥
m)⊕ (Lm ∩

Im(G−K)), we see that Im(G−K)
⊥
is finitely generated. Here, certainly, the orthogonal comple-

ment is taken with respect to the new inner product.

It follows from the proof of Proposition 3.10 that, if Im(F −K) is complementable in HA (for

F ∈ M̂Φ−(HA) and K ∈ K(HA)), then the complement must be finitely generated.

Lemma 3.11. Let D ∈ Ba(HA). Then D ∈ MΦ−(HA) if and only if there exist closed sub-
modules M,N such that HA = M⊕̃N,N is finitely generated and M ⊆ ImD.

Proof. If D ∈ Ba(HA), then such modules clearly exist by the MΦ− decomposition of D.
Conversely, if such modules exist for D ∈ Ba(HA), then N is orthogonally complementable in HA
by [10, Lemma 2.3.7]. If P stands for the orthogonal projection ontoN⊥, then P|M is an isomorphism

onto N⊥ since M⊕̃N = HA. Hence, the operator PD is adjointable and ImPD = N⊥. By [10,
Th. 2.3.3], kerPD is orthogonally complementable in HA. With respect to the decomposition

HA = kerPD⊥ ⊕ kerPD
D−→ N⊥ ⊕N = HA,

D has the matrix

[
D1 D2
D3 D4

]
, where D1 = PD|

ker PD⊥ is an isomorphism. Using the technique of

diagonalization as in the proof of [10, Lemma 2.7.10] and the fact that N is finitely generated, we
see that D ∈ MΦ−(HA).
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Corollary 3.12. M̂Φ−(HA) ∩Ba(HA) = MΦ−(HA).

Lemma 3.13. Let F,D ∈ Ba(HA). Suppose that ImF and ImD are closed. If ImF + kerD is
closed, then ImF + kerD is orthogonally complementable.

Proof. Suppose that ImF+kerD is closed. Since ImF⊕ImF⊥ = HA by [10, Th. 2.3.3], we have
ImF +kerD = ImF ⊕M ′′, where M ′′ = (ImF +kerD)∩ ImF⊥, since ImF ⊆ ImF +kerD. This
follows from Lemma 2.6. Let P be the orthogonal projection onto ImF⊥. Then M ′′ = P (ImF +
kerD) = P (ImF ) + P (kerD) = P (kerD). Thus, Im(P|ker D

) = M ′′. Now, since ImD is closed,
kerD is orthogonally complementable in HA by [10, Th. 2.3.3] again. Hence, P|kerD

is an adjointable

operator from kerD to ImF⊥, and its image is closed. Applying [10, Th. 2.3.3] once again to the
operator P|kerD

, we see that ImF⊥ = M ′′ ⊕N ′′, kerD = ker(P|ker D
)⊕M ′ = (kerD ∩ ImF )⊕M ′

for some closed submodules N ′′,M ′. Then P|M′ is an isomorphism onto M ′′. Then it follows that

HA = (ImF ⊕ N ′′)⊕̃M ′. Moreover, since HA = (kerD ∩ ImF ) ⊕ M ′ ⊕ kerD⊥, we see that
kerD∩ImF is orthogonally complementable in HA. Hence, ImF = (kerD∩ImF )⊕M, where M =
ImF ∩ (kerD∩ ImF )⊥. Here we apply Lemma 2.6 again. Then we obtain HA = ((kerD ∩ ImF )⊕
M ⊕N ′′)⊕̃M ′ = ((kerD∩ ImF )⊕̃M ′⊕̃M)⊕̃N ′′ = (kerD+ImF )⊕̃N ′′. Let Q = (P|M′ )

−1. Then Q
is a bounded adjointable operator from M ′′ onto M ′. Consider now the operator �ImF +JM ′Q�M ′′

where �ImF and �M ′′ stand for the orthogonal projections onto ImF andM ′′, respectively, and JM ′

is the inclusion. Since M ′ is orthogonally complementable, it follows that JM ′ is adjointable. Hence,
�ImF + JM ′Q�M ′′ ∈ Ba(HA). Moreover, Im(�ImF + JM ′Q�M ′′) = ImF ⊕̃M ′ = ImF + kerD,
which is closed by assumption. It follows from [10, Th. 2.3.3] that ImF + kerD is orthogonally
complementable.

Corollary 3.14. Let F,D ∈ Ba(HA) and suppose that ImF and ImD are closed. Then ImDF
is closed if and only if ImF + kerD is orthogonally complementable.

Proof. By [11, Corollary 1], ImDF is closed if and only if ImF + kerD is closed. Now use
Lemma 3.13.

Remark 3.15. The statement of Corollary 3.14 was already proved in [12]; however, we give
here another (shorter) proof.

Recall the definition of the Dixmier angle between two Hilbert C∗-modules given in [12].

Definition 3.16. For two given closed submodules M,N of HA, write

c0(M,N) = sup{‖ < x, y > ‖ | x ∈ M,y ∈ N, ‖x‖, ‖y‖ � 1}.

We say then that the Dixmier angle between M and N is positive if c0(M,N) < 1.

Lemma 3.17. Let M and N be two closed orthogonally complementable submodules of HA
and suppose that M ∩N = {0}. Then M +N is closed if the Dixmier angle between M and N is
positive.

Proof. Suppose that the Dixmier angle between M and N is positive. We wish to show first
that, in this case, there exists a constant C > 0 such that, if x ∈ M and y ∈ N satisfy ‖x+ y‖ � 1,
then ‖x‖ � C. To this end, note first that, since M is orthogonally complementable in HA, there
exist some y′ ∈ M,y′′ ∈ M⊥ such that y = y′ + y′′ for y ∈ N. Now let c0(M,N) = δ < 1. Then

sup{‖ < y, z > ‖ | z ∈ M, ‖z‖ = 1} = ‖y′‖ � ‖y‖δ.

It follows that

‖y′′‖ = ‖y − y′‖ � ‖y‖ − ‖y′‖ � (1− δ)‖y‖ =
1− δ

δ
δ‖y‖ � 1− δ

δ
‖y′‖.

Note now that < x+ y, x+ y >=< x+ y′, x+ y′ > + < y′′, y′′ > . By taking the supremum over all
states on A, we obtain ‖x+y‖ � max{‖x+y′‖, ‖y′′‖}. Thus, if ‖x+y‖ � 1, then ‖x+y′‖, ‖y′′‖ � 1.
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However, if ‖y′′‖ � 1, then, by the above calculation, we see that ‖y′‖ � δ/(1 − δ). If, in addition,
‖x + y′‖ � 1, then 1 � ‖x‖ − ‖y′‖ � ‖x‖ − δ/(1 − δ). Hence, ‖x‖ � 1 + δ/(1 − δ), and thus, we
may set C = 1 + δ/(1 − δ). Assume now that {xn + yn}n is a Cauchy sequence in M + N (here
xn ∈ M,yn ∈ N for all n). By the above arguments, then {xn}n must be a Cauchy sequence in M.
Indeed, if {xn + yn} is a Cauchy sequence, then, for a given ε > 0, there exists some N0 ∈ N such
that ‖(xn −xm)+ (yn− ym)‖ < ε

C for all n,m � N0. By the above arguments, then ‖xn−xm‖ < ε
for all n,m � N0. Since M is closed, xn → x for some x ∈ M. However, then {yn}n must be
also convergent, and thus, yn → y for some y ∈ N since N is closed. Hence, xn + yn converges to
x+ y ∈ M +N as n → ∞. Thus, M +N is closed.

Corollary 3.18. Suppose that F,D ∈ Ba(HA) and the sets ImF, ImD are closed and kerD∩ ∈
F is orthogonally cpmplementable. Put M = ImF ∩ (kerD ∩ ImF )⊥ and M ′ = kerD ∩ (kerD ∩
ImF )⊥. Then ImDF is closed if the Dixmier angle between M ′ and ImF (or, equivalently, the
Dixmier angle between M and kerD) is positive.

We now introduce the following notation: for two closed submodules N1, N2 of M , we write
N1 � N2 when N1 is isomorphic to a closed submodule of N2.

Proposition 3.19. Let F,G ∈ M̂Φl(HA) with closed images. Suppose that ImGF is closed.
Then ImF and ImG, ImGF are complementable in HA. Moreover, if ImF 0, ImG0, and ImGF 0

denote the complements of ImF, ImG, and ImGF, respectively, then

ImGF 0 � ImF 0 ⊕ ImG0, kerGF � kerG⊕ kerF.

If F,G ∈ M̂Φr(HA) and ImF, ImG, and ImGF are closed, then the statement above holds under
the additional assumption that ImF, ImG, and ImGF are complementable in HA.

Proof. Since F ∈ M̂Φl(HA), it follows that F has the decomposition given in Proposition 3.1.

Then N ′
1 = F (M ′

1), where we use the notation of Proposition 3.1. Since ImF is closed by as-
sumption, we have now N ′

1 = F (M ′
1). Hence, ImF = N0⊕̃N ′

1, and thus N ′′
1 = ImF 0. Since

ImG, ImGF are closed, it follows that ImG0 and ImGF 0 exist by the same arguments, be-

cause G,GF ∈ M̂Φr(HA). Here we use the fact that GF ∈ M̂Φl(HA) by Corollary 2.4, since

F,G ∈ M̂Φl(HA). Now, since kerG is self-dual (it is finitely generated) and since kerG ∩ ImF
is the kernel of the projection onto ImF 0 along ImF restricted to kerG, we may derive by
[10, Corollary 3.6.4] that kerG = (kerG ∩ ImF ) ⊕ M ′ for some closed submodule M ′. Hence
HA = (kerG∩ ImF )⊕̃M ′⊕̃ kerG0, and thus kerG∩ ImF is complementable in HA. By arguments
similar to those used in Lemma 2.6, kerG ∩ ImF is complementable in ImF as a submodule of
ImF. Thus, ImF = (kerG ∩ ImF )⊕̃M, where M is the intersection of ImF with the complement
of kerG ∩ ImF in HA. Note also that kerG and kerF are complementable in HA by Proposi-
tion 3.1. Since ImG, ImGF are both complementable in HA and ImGF ⊆ ImG, it follows that
we have ImG = ImGF ⊕̃X, where X = ImG ∩ ImGF 0 by arguments similar to those used in
Lemma 2.6. Thus, we have HA = (kerG ∩ ImF )⊕̃M ′⊕̃ kerG0 = (kerG ∩ ImF ) ⊕ M⊕̃ ImF 0 =
ImGF ⊕̃X⊕̃ ImG0 = HA (where kerG0 is a complemented closed submodule of kerG). Let � ∈
B(HA) be the projection onto kerG0 along kerG. We see that G|M is an isomorphism onto ImGF
and, moreover, G|M = G �|M . Since G|kerG0

and G�|M are isomorphisms, it follows that �|M is an

isomorphism. Let S = (G|kerG0
)−1. Then �(M) = S(ImGF ). Since kerG0 = S(ImGF )⊕̃S(X),

it follows that HA = M⊕̃S(X)⊕̃ kerG = M⊕̃S(X)⊕̃M ′⊕̃(kerG ∩ ImF ). But, we also have
ImF = (kerG ∩ ImF ) ⊕ M. It follows that ImF 0 ∼= S(X)⊕̃M ′ ∼= X ⊕ M ′. However, it fol-
lows from the above expression that ImGF 0 ∼= X ⊕ ImG0 � X ⊕M ′ ⊕ ImG0 ∼= ImF 0 ⊕ ImG0. If

F,G ∈ M̂Φr(HA) and ImF, ImG, and ImGF are closed and complementable in HA, we can apply
the same proof as above, and we only need to explain first why kerG ∩ ImF is complementable.

This can be done in the following way. Since F ∈ M̂Φr(HA), and ImF is closed and comple-
mentable, kerF is complementable in HA by Proposition 3.2. Hence, kerF = kerF ⊕̃W, where W
is the intersection of kerGF and the complement of kerF, which follows again by arguments similar
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to those used in Lemma 2.6. Thus, F|W is an isomorphism onto kerG ∩ ImF. Further, again since

GF ∈ M̂Φr(HA) and ImGF is closed and complementable, we see that HA = kerGF ⊕̃M for some
closed submodule M. Hence, HA = kerF ⊕̃W ⊕̃M. On W ⊕̃M , we have an isomorphism onto ImF,
and thus

ImF = F (W )⊕̃F (M) = (kerG ∩ ImF )⊕̃F (M).

Therefore,
HA = (kerG ∩ ImF )⊕̃F (M)⊕̃ ImF 0,

where ImF 0 stands for the complement of ImF. It follows that kerG∩ ImF is complementable. In
order to derive that kerDF � (kerD ⊕ kerF ), one can proceed in exactly the same way as in the
proof of [16, Th. 1.2.4] to obtain kerDF = kerF ⊕̃W , where W ∼= (kerD∩ ImF ). The rest follows.

Lemma 3.20. Let F,D ∈ Ba(HA). Suppose that ImF, ImD, and ImDF are closed. Then

ImDF⊥ � ImF⊥ ⊕ ImD⊥, kerDF � kerD ⊕ kerF.

Proof. The statement can be proved in exactly the same way as in Proposition 3.19, since
ImF, ImD, and ImDF are then orthogonally complementable in HA by [10, Th. 2.3.3]. Again,
we only need to argue that kerD ∩ ImF is orthogonally complementable in HA. Now D|Im F

is an
adjointable operator from ImF to HA since D ∈ Ba(HA) and ImF is orthogonally complementable
in HA. Moreover, ImD|ImF

= ImDF, which is closed by assumption. It follows from [10, Th.
2.3.3] that kerD|Im F

= kerD ∩ ImF is orthogonally complementable in ImF . Thus, we have

ImF = (kerD∩ImF )⊕M for some closed submoduleM. Hence, HA = (kerD∩ImF )⊕M⊕ImF⊥.

Lemma 3.21. Let F,G ∈ M̂Φ(HA) and suppose that ImG and ImF are closed. Then ImGF
is closed if and only if ImF + kerG is closed and complementable.

Proof. If ImF +kerG is closed, then ImGF is closed by [11, Corollary 1]. Conversely, assume

that ImGF is closed. Now, by Corollary 2.4, GF is in M̂Φ(HA), since so are G and F . Then, by
Proposition 3.1, ImGF is complementable. Moreover, kerG ∩ ImF is complementable in ImF by

the same arguments as above, because F,G ∈ M̂Φ(HA). Thus, we may write ImF in the form

ImF = (kerG∩ImF )⊕̃M̃. Then G|M̃ is an isomorphism onto ImGF. Let ImGF 0 and ImG0 be the

complements of ImGF and ImG, respectively. Then, since ImGF ⊆ ImG, ImG = ImGF ⊕̃(ImGF 0∩
ImG) by the proof of Lemma 2.6. Hence, HA = ImGF ⊕̃(ImGF 0 ∩ ImG)⊕̃ ImG0. Moreover, since

G ∈ M̂Φ(HA) and ImG is closed by assumption, kerG is complementable in HA by Proposition
3.1. Let kerG0 be the complement of kerG; then G|kerG0

is an isomorphism onto ImG. Combining
all these facts together, we are then in the position to apply the same arguments as in the proof
of Lemma 2.5 to show that HA = M̃⊕̃S′(ImGF 0 ∩ ImG)⊕̃ kerG, where S′ = (G|ker G0

)−1. Hence,

M̃⊕̃ kerG is closed and complementable in HA. However, M̃⊕̃ kerG = M̃⊕̃(kerG ∩ ImF )⊕̃M̃ ′ =
kerG+ ImF.

Lemma 3.22. Let F ∈ MΦ(M) be such that ImF is closed, where M is a Hilbert W ∗-module.
Then there exists an ε > 0 such that, for every D ∈ Ba(M) with ‖D‖ < ε, we have

ker(F +D) � kerF Im(F +D)⊥ � ImF⊥.

Proof. Since F ∈ MΦ(M) has closed image, it has the matrix

[
F1 0
0 0

]
with respect to the

decomposition M = kerF⊥⊕̃kerF
F−→ ImF ⊕̃ ImF⊥ = M, where F1 is an isomorphism by [10, Th.

2.3.3]. By the proof of [10, Lemma 2.7.10], there exists an ε > 0 such that, if ‖F − D̃‖ < ε for some

D̃ ∈ Ba(M), then D̃ has the matrix

[
D̃1 0
0 D̃4

]
with respect to the decomposition

M = U1(kerF
⊥)⊕̃U1(kerF )

D̃−→ U−1
2 (ImF )⊕̃U−1

2 (ImF⊥) = M,
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where U1, U2 and D̃1 are isomorphisms. Then it follows that ker D̃ ⊆ U1(kerF ) ∼= kerF. Set

D = D̃ − F ; then D̃ = F + D. Hence, ker(F + D) � kerF. Note now that U−1
2 (ImF ) ⊆ Im D̃.

Hence, Im D̃⊥ ∩U−1
2 (ImF ) = {0}, and therefore, PU−1

2 (ImF⊥)|
Im D̃⊥

is injective, where PU−1
2 (ImF⊥)

stands for the projection onto U−1
2 (ImF⊥) along U−1

2 (ImF ). Since D̃ ∈ MΦ(M), it follows

that Im D̃⊥ is finitely generated, and hence, self-dual. By [10, Corollary 3.6.7], it follows that

Im D̃⊥ is isomorphic to a direct summand of U−1
2 (ImF⊥). Since U−1

2 (ImF⊥) ∼= ImF⊥, it follows

that Im D̃⊥ � ImF⊥.

Remark 3.23. Lemma 3.22 is also valid for the case in which F ∈ M̂Φ(M) with closed image
because, in this case, by Proposition 3.1, there exists a decomposition

M = kerF 0⊕̃ kerF
F−→ ImF ⊕̃ ImF 0 = M,

and F|kerF0
is an isomorphism onto ImF. Proceeding as the proof of Lemma 3.22, we see that

ker(F +G) � kerF and Im(F +G)⊥ � ImF 0 if G ∈ B(HA) is such that ‖G‖ is sufficiently small.

If Im(F +G) is complementable, then Im(F + G)0 � ImF 0 (where Im(F + G)0 stands for the

complement of Im(F +G)).

Definition 3.24. Let M be a countably generated Hilbert W ∗- module. For F ∈ MΦ(M), we
say that F satisfies condition (∗) if

(1) ImFn is closed for all n,

(2) F (
⋂∞

n=1 Im(Fn)) =
⋂∞

n=1 Im(Fn).

If we have a decreasing sequence of complementable submodules N ′
ks, then their intersection

(for C∗-algebras) is not complementable in general; however, it is complementable for W ∗-algebras.
This is true because one can define a w∗-(or weak) direct sum of submodules, in contrast to
the standard l2 construction. Let Nk−1 = Nk ⊕ Lk. Then we can define w∗ − ⊕kLk as the set
of sequences (xk), xk ∈ Lk, such that the sum

∑∞
k=1〈xk, xk〉 is convergent in A with respect

to the *-strong topology, rather than to the norm topology. Then it can readily be seen that
N0 =

⋂∞
k=1Nk ⊕ (w∗ −⊕kLk).

Note that, if M is an ordinary Hilbert space, then (*) is always satisfied for any F ∈ MΦ(M)
by [16, Th. 1.1.9]. There are also other examples of Hilbert W ∗-modules or which condition (*) is
automatically satisfied for an A-Fredholm operator F as long as F has closed image.

Example 3.25. Let A be a commutative von Neumann algebra with a cyclic vector, i.e.,
A ∼= L∞(X,μ), where X is a compact topological space and u is a Borel probability measure.
Consider A as a Hilbert module over itself. If F is an A-linear operator on A, we can readily
see that Im(F k) = SpanA{(F (1))k} for all k. Let S = (F (1)−1({0}))c. Then one can show that
ImF = ImF k = SpanA{χS} for all k if we assume that F (1) is bounded away from 0 on S, and
hence, invertible on S. However, if F is A-Fredholm with closed image, then this is the case. Indeed,

kerF = {f ∈ A | f|S = 0μ a.e. on S = SpanA{χSc}, and thus, kerF⊥ = SpanA{χS}.

Since F is then bounded below on kerF⊥, we have ‖F (f)‖∞ = ‖fF (1)‖∞ � C‖f‖∞ for all f
vanishing μ-almost everywhere on Sc and for some constant C > 0. However, if

μ

((
F (1)−1

(
B(0,

1

n

)))
∩ S) > 0 ∀n,

then, letting fn = χ((F (1)−1(B(0, 1
n )))∩S), we see that ‖fn‖∞ = 1, for all n and

F (fn) = fnF (1) = χ((F (1)−1(B(0, 1
n )))∩S)F (1).
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It follows that F is not hounded below on (kerF )⊥, a contradiction. Note now that

Im(F ) = Im(F k) = SpanA{χs} = (kerF )⊥ ∀k,

and thus, F (Im∞(F )) = Im∞(F ), where Im∞(F ) stands for
⋂∞

k=1 Im(F k).

Recall that, for a W ∗-algebra A, G(A) stands for the set of all invertible elements in A and
Z(A) = {β ∈ A | βα = αβ for all α ∈ A}. Then the following theorem holds.

Theorem 3.26. Let F ∈ MΦ(M̃), where M̃ is a countably generated Hilbert A-module. Suppose
that F satisfies (*). Then there exists an ε > 0 such that, if α ∈ Z(A) ∩ G(A) and ‖α‖ < ε, then
[ker(F − αI)] + [N1] = [kerF ] and [Im(F − αI)⊥] + [N1] = [Im(F )⊥] for some chosen finitely
generated closed submodule N1.

Proof. Since F ∈ MΦ(M̃ ) has closed image, it follows from Lemma 3.22 that there exists an
ε1 > 0 for which, if ‖α‖ < ε1, α ∈ Z(A) ∩G(A), then

ker(F − αI) � kerF, Im(F − αI)⊥ � ImF⊥

and index(F − αI) = indexF by the proof of [10, Lemma 2.7.10]. Now, by the same arguments as
in the proof of [16, Th. 1.7.7], since α ∈ G(A) ∩ Z(A), we have

ker(F − αI) ⊆ Im∞(F ) :=

∞⋂
n=1

Im(Fn).

Since Im∞(F ) is orthogonally complementable in M̃, the orthogonal projection PIm∞(F )⊥ onto

Im∞(F )⊥ along Im∞(F ) exists, and

(kerF ∩ Im∞(F )) = kerPIm∞(F )⊥|kerF
.

Since kerF is self-dual (it is finitely generated), it follows, from [10, Corollary 3.6.4] that, kerF ∩
Im∞(F ) is an orthogonal direct summand in kerF, and thus, kerF = (kerF ∩ Im∞(F )) ⊕ N1 for
some closed submoduleN1. Therefore, kerF0 = kerF ∩M is finitely generated as a direct summand
in kerF (which is finitely generated itself). Since kerF ∩ M is finitely generated, kerF ∩ M is
orthogonally complementable in M by [10, Lemma 2.3.7], and thus, M = (kerF ∩ M) ⊕ M ′ for
some closed submodule M ′. On M ′, the mapping F0 is an isomorphism from M ′ onto M, and thus,
F0 ∈ MΦ(M) (recall that M = (kerF ∩ M) ⊕ M ′), and kerF0 = kerF ∩ M, where the latter is
finitely generated). By Lemma 3.22, there exists in ε2 > 0 such that, if ‖α‖ < ε2,α ∈ G(A)∩Z(A),
then ker(F0−αI|M ) � kerF0 and Im(F0−αI|M )⊥ � ImF⊥

0 in M while index(F0−αI) = indexF0 =

[kerF0] since F0 is surjective. Since ImF⊥
0 = {0} (in M), because F0 is surjective, we have

Im(F0 − αI)⊥ = 0 for all ‖α‖ < ε2, α ∈ G(A) ∩ Z(A),

since Im(F0 − αI|M )⊥ � ImF⊥
0 for all ‖α‖ < ε2, α ∈ G(A) ∩ Z(A). Recall that ker(F − αI) ⊆

Im∞(F ) = M. Therefore,

[ker(F − αI)] = [ker(F0 − αI|M )] = index(F0 − αI|M ) = indexF0 = [kerF0].

This holds whenever ‖α‖ < ε2, α ∈ G(A) ∩ Z(A). Now, kerF0 = kerF ∩M and kerF = (kerF ∩
M) ⊕ N1. Therefore, if α ∈ G(A) ∩ Z(A) and ‖α‖ < ε2, then [kerF ] = [kerF ∩ M ] + [N1] =
[kerF0] + [N1] = [ker(F − αI)] + [N1] whenever ‖α‖ < ε2,α ∈ G(A) ∩ Z(A). If, in addition,
‖α‖ < ε1, then, as we have seen at the beginning of this proof, by the choice of ε1, we have
index(F − αI) = indexF. Thus, if ‖α‖ < min{ε1, ε2} for α ∈ G(A) ∩ Z(A), then index(F − αI) =
indexF, and [kerF ] = [ker(F − αI)] + [N1]. It follows that [ImF⊥] = [Im(F − αI)⊥] + [N1].

Remark 3.27. If A is a factor, then Theorem 3.26 is of interest in the case of finite factors,
since K(A) is trivial otherwise.
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RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 27 No. 1 2020


