ISSN 1061-9208, Russian Journal of Mathematical Physics, Vol. 26, No. 4, 2019, pp. 428-453. @ Pleiades Publishing, Ltd., 2019.

Convergence to Stationary States and Energy
Current for Infinite Harmonic Crystals

T. V. Dudnikova

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences
Miusskaya sq. 4, Moscow 125047, Russia,
FE-mail: tdudnikov@mail.ru

Received June 16, 2019, Revised June 25, 2019, Accepted July 10, 2019

Abstract. We consider a d-dimensional harmonic crystal, d > 1, and study the Cauchy
problem with random initial data. The distribution u; of the solution at time ¢ € R is
studied. We prove the convergence of correlation functions of the measures p¢ to a limit for
large times. The explicit formulas for the limiting correlation functions and for the energy
current density (in the mean) are obtained in terms of the initial covariance. Furthermore,
we prove the weak convergence of p; to a limit measure as ¢ — co. We apply these results
to the case when initially some infinite “parts” of the crystal have Gibbs distributions with
different temperatures. In particular, we find stationary states in which there is a constant
nonzero energy current flowing through the crystal. We also study the initial boundary value
problem for the harmonic crystal in the half-space with zero boundary condition and obtain
similar results.
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1. INTRODUCTION

We study the Cauchy problem for a harmonic crystal in dimension d with n components, d,n > 1.
We assume that the initial data Yy(z), 2 = (x1,...,24) € Z%, of the problem is a random element
of the Hilbert space H, consisting of real sequences, see Definition 2.1 below. The distribution of
Yo(z) is a probability measure po with zero mean value. We assume that the covariance Qq(x,y) of
po decreases like |z—y|~ as |z —y| — oo for some N > d. Furthermore, we impose the condition S3
(see formulas (2.10)—(2.12) below) which means roughly that Yj(x) is close to different translation-
invariant processes Yy () with distributions pn as (=1)™x; — +o0 for all j =1,..., k, with some
k e {1,...,d}. Here n stands for the vector n = (ny,...,ny), where all n; € {1,2}. Given t € R,
denote by pu; the probability measure that gives the distribution of the solution Y (x,t) to the
dynamical equations with random initial data Y. We study the asymptotics of u; as ¢ — oo. The
first objective is to prove the convergence of the correlation functions of u; to a limit,

Qu(x,y) :/ (Yo(2) @ Yo(y) ju(dYe) — Quo(w,y), t— o0, ayc Ze (1.1)

The explicit formulas for the limit covariance Q. are given in (2.14)—(2.19). They allow us to
derive the expression for the limiting mean energy current density J., in the terms of the initial
covariance Qo(z,y).

We apply our results to a particular case when puy,, are Gibbs measures with different temperatures
Tn > 0. Therefore, our model can be considered as a “system + 2F reservoirs”, where “reservoirs”
consist of crystal particles lying in 2% regions of the form {x € Z?: (=1)"z; > a forall j =
1,...,k, where n; = lor 2} with some a > 0, and the “system” is the remaining part of the
crystal. At ¢ = 0, the reservoirs have Gibbs distributions with corresponding temperatures Ty,
n = (ny,...,nk). In the case of d = 1, a similar model was studied by Spohn and Lebowitz [24]. We
show that the energy current density J., is a constant vector satisfying formulas (4.4) and (4.5).
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CONVERGENCE TO STATIONARY STATES AND ENERGY CURRENT 429

Furthermore, under additional symmetry conditions on the harmonic crystal, the coordinates of
the energy current Jo, = (JL,...,JL) are of the form

[ —aY (Tal,, —y —Tal, —,) for 1=1,...,k,
JOO_{ 0 T for I=k+1,....d (1.2)

with some constants ¢; > 0. Here the summation " is taken over all n; with j # L.

Our second result gives the (weak) convergence of the measures j; on the Hilbert space H,, with
a < —d/2 to a limit measure fio,
Wt — oo, T — 00. (1.3)

This means the convergence of the integrals

/f(Y),Ut(dY)%/f(Y),uoo(dY) as t— oo

for any bounded continuous functional f on H,,. Furthermore, the limit measure pi is a translation-
invariant Gaussian measure on H, and has the mixing property.

For infinite one-dimensional (1D) chains of harmonic oscillators, the results (1.1) and (1.3) were
established by Boldrighini, Pellegrinotti and Triolo [1] and by Spohn and Lebowitz [24]. In earlier
works, Lebowitz et al. [23, 4] and Nakazawa [21] analyzed the stationary energy current through
the finite 1D chain of harmonic oscillators in contact with external heat reservoirs at different
temperatures. For d > 1, the convergence (1.3) has been obtained for the first time by Lanford and
Lebowitz [18] for initial measures which are absolutely continuous with respect to the canonical
Gaussian measure. We consider a more general class of initial measures with the mixing condition
and do not assume absolute continuity. The mixing condition was first introduced by Dobrushin
and Sukhov for ideal gas [6]. Using the mixing condition, we have proved the convergence for the
wave and Klein—Gordon equations (see [9] and the references therein) for non translation invariant
initial measures po. For multi-dimensional crystals, the results (1.1) and (1.3) were obtained in [7]
for translation invariant measures p. The present paper develops our previous work [8], where the
assertions (1.1)—(1.3) were proved in the case k = 1.

In this paper, we also study the initial-boundary value problem for harmonic crystals in the
half-space Z4 = {z € Z? : x; > 0} with zero boundary condition (as z; = 0) and obtain the results
similar to (1.1) and (1.3). This generalizes the results of [10] to the more general class of initial
measures. Furthermore, we calculate the limiting energy current density Jy o(x1), see formulas
(6.12)—(6.15) below. In particular, if d = 1, then J; . (x1) = 0. For any d > 2, J; »(0) = 0. For
d > 2 and z; > 0, the coordinates of J4 o (x1) are of a form similar to (1.2), but with positive
functions ¢; = ¢(x1) if I =2,...,k, and vanish if | = 1,k +1,...,d. Moreover, J . (x1) tends to
a limit as 1 — 400 (see formula (6.16)). For the 1D infinite chain of harmonic oscillators on the
half-line with nonzero boundary condition, we prove the results (1.1) and (1.3) in [11] and show
that there is a negative limiting energy current at origin (see [11, Remark 2.11]).

There is a large literature devoted to the study of the return to equilibrium, convergence to
nonequilibrium states and heat conduction for nonlinear systems, see [2, 19, 25] and the survey
book [20] for an extensive list of references. For instance, ergodic properties and long time behavior
were studied for weak perturbation of the infinite chain of harmonic oscillators as a model of 1D
harmonic crystals with defects by Fidaleo and Liverani [14] and for the finite chain of anharmonic
oscillators coupled to a single heat bath by Jaksi¢ and Pillet [15]. A finite chain of nonlinear
oscillators coupled to two heat reservoirs was studied by Eckmann, Rey-Bellet and others [12, 13,
22]. For such systems, the existence of nonequilibrium states and the convergence to them were
investigated in [12, 22]. In [13], Eckmann, Pillet, and Rey-Bellet showed that heat (in the mean)
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430 DUDNIKOVA

flows from the hot reservoir to the cold one. Fourier’s law for a harmonic crystal with stochastic
reservoirs was proved by Bonetto, Lebowitz, and Lukkarinen [3]. In the present paper, we find
stationary nonequilibrium states in which there is a nonzero energy current flowing through the
infinite d-dimensional harmonic crystal.

The paper is organized as follows. In Section 2, we impose the needed conditions on the model
and on the initial measures g and state the main results. In Section 3, we construct examples of
random initial data satisfying all assumptions imposed. The application to Gibbs initial measures
and the derivation of the formula (1.2) are given in Section 4. In Section 5.1, uniform bounds for
covariance of p; are obtained, and the proof of (1.3) is discussed. The asymptotics (1.1) is proved
in Section 5.2. In Section 6, we study the initial-boundary value problem for harmonic crystals in
the half-space and prove results similar to (1.1)—(1.3).

2. MAIN RESULTS

2.1. The Model

We consider a Bravais lattice in R¢ with a unit cell which contains a finite number of atoms.
For notational simplicity, the lattice is assumed to be simple hypercubic. Let u(x) be the field of
displacements of the crystal atoms in cell z (x € Z4) from the equilibrium position. In the harmonic
approximation, the field u(z) is governed by equations of the following type (see, e.g., [18]):

{ iz, t) = — ZyEZd Ve —y)u(y,t), zeZ teR,

u|t:0 = ’LL(](ZL‘), iL|t:0 — Uo(ac). (2.1)

Here u(x,t) = (ui(z,t),...,up(x,t)),up(x) = (upr(x),...,uon(z)) € R™ and correspondingly
for vo(x), V(x) is the real interaction (or force) matrix, (Vii(z)), k,l = 1,...,n. Physically
n = d X (number of atoms in the unit cell). Here we take n to be an arbitrary positive inte-
ger. The dynamics (2.1) is invariant under lattice translations.

Let us denote Y (t) = (YO(t),Y1(t)) = (u(-,t),0(-, 1)), Yo = (Y, Y3) = (up(+),v(+)). Then (2.1)
takes the form of an evolution equation

Y(t) =AY (), teR; Y(0) =Y. (2.2)
0 I -1 0

Here V is a convolution operator with matrix kernel V, I is the unit matrix, and H is the Hamil-
tonian functional

This is a linear Hamiltonian system, since A(Y) = J <V O> Y =JVH(Y) and J = < ¥ I) .
1 1
H(Y):= 9 (v,v) + 9 (u,Vu), Y = (u,v), (2.3)

where the kinetic energy is given by

(1/2)(v,0) = (1/2) Y |o(x)[?
x€Z4
and the potential energy by

(1/2)(u, V) = (1/2) D (u(2), V(2 —y)u(y)),

z,yeZ4

(-,-) stands for the real scalar product in Euclidean space R™ (or in R9).
We assume that the initial data Y; belongs to the phase space H,, a € R.
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CONVERGENCE TO STATIONARY STATES AND ENERGY CURRENT 431

Definition 2.1. #, is the Hilbert space of pairs Y = (u(x),v(z)) of R™valued functions of
r € Z% endowed with the norm

Y112 = D (@) (Jul@)]? + [o(@)?) < 0o, (&) = v/1+[af2.

zeZd

We impose the following conditions E1-E6 on the matrix V.

E1. There exist positive constants C' and 7 such that ||V (z)[| < Ce 7l for x € Z?, where
IV (x)| denotes the matrix norm. Let V' (#) be the Fourier transform of V(z), with the convention

V(0) = Foso[V(x) = > "DV (z), 6eT?,
zeZd

where T¢ denotes the d-torus R¢/(277Z)%.

E2. V is real and symmetric, i.e., Vig(—z) = Viu(z) €R, k,I=1,...,n, z € Z%

The conditions E1 and E2 imply that V(6) is a real-analytic Hermitian matrix-valued function
in 6 € T?

E3. The matrix V(6) is nonnegative definite for every € T

Let us define the Hermitian nonnegative definite matrix,

Q) = (V(©O)?* > 0. (2.4)

2(0) has the eigenvalues (“dispersion relations”) 0 < wy(0) < wa(f) < --- < ws(#), s < n, and the
corresponding spectral projections I1,(0) with multiplicity r, = trIL,(0).

Lemma 2.2. (see [7, Lemma 2.2|) Let conditions E1 and E2 be fulfilled. Then there ex-
ists a closed subset C, C T of zero Lebesque measure such that the following assertions hold.
(i) For any point © € T4\ C,, there exists a neighborhood O(©) such that each band function w, ()
can be chosen as real-analytic function in O(0©). (i) The eigenvalue w,(0) has constant multiplicity
in T¢\ Cy. (iii) The following spectral decomposition holds,

Q) = iwg(e)ng(e), 0 € T\ C., (2.5)
o=1

where 11,(8) is the orthogonal projection in R™. Il is a real-analytic function on T\ C,.

Below we denoted by w,(#) the local real-analytic functions from Lemma 2.2 (i). The next
condition on V is the following.

E4. For each I =1,...,dand 0 = 1,...,s, Op,w,(0) does not vanish identically on T\ C,.

To prove the convergence (1.3), we need a stronger condition E4’.

E4’. For each 0 = 1,...,s, the determinant of the matrix of second partial derivatives of w, (6)
does not vanish identically on Td \ C..
Write
d

Co={0 €T :detV(0) =0}, Co=|J{#E€T\Cu: Bpws(0) =0}, o =1,...,s. (2.6)
=1
Then the Lebesgue measure of C, vanishes, 0 = 0,1,...,s (see [7, Lemma 2.3]).

E5. For each o # o, the identities w,(#) & w,/(#) = consty, € T\ C,, do not hold with
consty # 0.

The condition E5 can be weakened to the condition E5’, see Remark 2.7 below.
E6. |[V-1(0)|| € L' (T%).
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432 DUDNIKOVA

Example 2.3. For any d,n > 1, we consider the nearest neighbor crystal for which

n d
(u, Vu) = Z Z <Z riluy(w + e;) — w(x)]? +ml2|ul(a:)|2) , k>0, m; =0,

=1 ze7d \i=1

where e; = (§;1,...,0;q4). Then

— Ky for |z| =1,
Vi(z) =0 for k#1, Vy(z)=< 2ds;+m? for =0, [=1,...,n. (2.7)
0 for |z| > 2,
Hence, the eigenvalues of V (0) are
w(0) = \/2/@(1 —cosfy)+ -+ 2k (1 —cosby) +m?, 1=1,...,n. (2.8)

These eigenvalues still have to be labelled according to magnitude and degeneracy as in Lemma 2.2.
Clearly conditions E1-E5 hold and C, = (). If all m; > 0, then the set Cy is empty and condition
E6 is fulfilled. Otherwise, if m; = 0 for some [, then Cy = {0}. In this case, E6 is equivalent to
the condition @; ?(#) € L'(T?) that holds if d > 3. Therefore, conditions E1-E6 hold for (2.7)
provided either (i) d > 3, or (ii) d = 1,2 and all m; > 0.

The following proposition is proved in [18, p. 150; 1, p. 128].

Proposition 2.4. Let conditions E1 and E2 hold, and choose some o € R. Then for any
Yy € Ha, there exists a unique solution Y (t) € C(R,H,) to the Cauchy problem (2.2); the operator
U(t) : Yo — Y (t) is continuous in He.

We assume that Y{ in (2.2) is a measurable random function and denote by g a Borel probability
measure on H,, that gives the distribution of Yj. The expectation with respect to pg is denoted by
E. We impose the following conditions S1-S3 on the initial measure pg.

S1. o has zero expectation value, E(Yy(2)) = [(Yo(z)) po(dYo) = 0, z € Z<.
S2. The initial correlation functions Qéj (z,y):=E (YO’(:E) ® YOj (y)), x,y € Z%, satisfy the bound

|Qéj(m,y)\ < h(lx —y|), where rd’lh(r) € Ll(O, +00). (2.9)

Here for a,b,c € C", we denote by a ® b the linear operator (a ® b)c = a Z?Zl bic;.

S3. Choose some k € {1,...,d}. The initial covariance Qo(z,y) = (QF (,%))i j=0.1 depends on
the difference x; —y; forall Il =k +1,...,d, i.e.,

Qo(ﬂf,y) ZQO(_aﬂ,f—ﬂ), (210)
where x = (z1,...,2q4) = (Z,2), T = (1,...,2%), T = (Tgt1,...,2q). Write
N*:={n=(ny,...,nx), whereall n; € {1,2}}. (2.11)

Suppose that for any € > 0, there exists an N(¢) € N such that for any § € Z* such that
(=1)™y; > N(e) for each j =1,...,k, the following bound holds

190(T + Z,7,%) — qu(2)| <& for any fixed z = (%,2) € Z? and n € N*. (2.12)
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 26 No. 4 2019



CONVERGENCE TO STATIONARY STATES AND ENERGY CURRENT 433

Here qn(z), n € N*, are the correlation matrices of some translation-invariant measures p, with
zero mean value in H,,.

In particular, if £ = 1, then condition S3 means that
QO(x7y) ZQO(xlvylvi‘_g)v where 33:(33171‘)7 = ($27"'7$d)7

and
q1(z) as y; — —o0,

_ d
¢(2)  as g1 — +oo, z=(z,2) € Z°. (2.13)

oy + 21,41, %) — {

A measure p is called translation invariant if u(T,B) = p(B) for B € B(H,) and h € Z?, where
T,Y(x) = Y(x — h), * € Z% B(H,) stands for the Borel o-algebra in H,. Note that the initial
measure o is not translation-invariant if ¢, # ¢n for some n # n’. Examples of g satisfying
conditions S1-S3 are given in Section 3.

2.2. Convergence of Correlations Functions

Definition 2.5. Let u; be a Borel probability measure in H, which gives the distribution of
Y(t), ue(B) = po(U(—t)B), VB € B(H,), t € R. The correlation functions of the measure i, are
defined by N

V(z,y)=E (Yi(m,t) ® Yj(y,t)) , i,7=0,1, z,yeZ%

here Y(x,t) are the components of the random solution Y (t) = (Y°(-,t),Y1(-,1)).
Denote by Q; the quadratic form with matrix kernel (Q/ (z,v))i j=0.1,

Qw.v) = [IVwf w@) = 3 Y (@) Ve ve), er

1,j=0,1 z yezd

U= 0)eS =508 5:=9Z R, where S(Z%) denotes the space of real quickly

decreasing sequences,
=> ) Vi), V().
1=0,1z€Z2

Let us introduce the limiting correlation matrix Quo(%,y) = (Q%(2,9)); j—o as follows

Qoo(z,y) = qoo(z —y), z,y€ 78, (2.14)

Here goo(z) has the form (in its Fourier transform)
ZH YM L (0) + i M, (0)I1,(0), 6 € T\C., (2.15)

where I1,(0) is the spectral projection from Lemma 2.2 (iii),

1 ~ even O
=1 2 LT (@) [1+ S5 (we(9))] Z Ly (da(0)) Sp5s (wo (6)),
neNE nem (2.16)
8&)0- 0 Owa 0 n km,
S =Y 3 Sgn< ool >>.....sgn< 89< >><_1) p—
evenme{l,....k} (p1,-.-,pm )EPm (k) b1 Pm
8&)0- 0 8&)0- 0 n km
Slgflril(wa): Z Z Sgn< 89( )>-...-sgn< 59( )>(—1) p1t ‘*‘pm’
oddme{l,...k} (P1,...spm) EPm (k) p1 Pm (2.17)
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The symbol P,, (k) denotes the collection of all m-combinations of the set {1,...,k} (for instance,

P2(3) ={(1,2),(2,3), (1,3)}),

Lt (da(9)) = |, (@u(0) £ C(0)dn(0)C™(0), Ly (4n(9)) = ., (C(6)dn(0) £ 4a(0)C*(6)),

(2.18)
(0 Q0 g (O —0)
c0=(_aw "0 ) “O=(og 5"): 219

the matrices gy, are introduced in condition S3. In particular, if £ = 1, then formulas (2.16) become

1
2

ML) = 5 LE (@0) +00). Mi,(0) = I; (@(0) - a@)sen (") @20

with the matrices ¢; and go defined in (2.13). For d = n = 1, formulas (2.20) were obtained in [1, p.
139]. For any d,n > 1 and k = 1, these formulas were derived in [8].

Note that oo € L*(T?) by Lemma 5.1 and condition E6. Moreover, by (2.15)-(2.19), the matrix
G0 (0) satisfies the “equilibrium condition,” i.e., g1} () = V(Q)dgg(@) GLo(0) = —q%%(0). We also
have

(G2(0))" = G (0)=0, i=0,1, (4.2(0))" = —ds2(6).

The first result of the paper is the following theorem.

Theorem 2.6. Let d,n > 1, a < —d/2, and assume that conditions E1-E6 and S1-S3 hold.
Then the convergence (1.1) is true, where Qo is defined in (2.14)—(2.19).

In Sec. 6, we study the initial boundary value problem for harmonic crystals with zero boundary
condition and obtain results similar to Theorem 2.6, see Theorem 6.4 below.

Remark 2.7. Condition E5 on the matrix V can be weakened. Namely, it suffices to impose
the following restriction.

E5’. If for some o # ¢/, w,(0) + wy (0) = consty with consty # 0, then
Prigor (0) = wo(0)wer (0)Pnlse () =0 and  wo(0)phoe (0) + wor (0) P eor () = 0.
If for some o # 0/, w,(0) — w, () = const_ with const_ # 0, then
Prigor (0) + wo(0)wer (0)pnlse () =0 and  wo(0)phoe (0) = wor (0)ppsor () = 0.
Here
Py oo (0) :=T1,(0)G5 ()1 (0), O €T 0,0’ =1,....5, 4,j=0,1, neN*. (2.21)
This condition holds, for instance, for the canonical Gibbs measures pu, considered in Section 4.2.

Examples 2.8. We rewrite the formulas for ¢, in some particular cases.

(i) In the case when the initial covariance is translation invariant, i.e., Qo(x,y) = qo(x — y), the
matrix g is of the form

= Z I, (0) L] (Go(0))[1,(0), 6 € T¢\C,. (2.22)

(ii) Let the initial covariance Qg satisfy a stronger condition than (2.12). Namely, assume that
Qo has the form (2.10) and for any 2z = (2,2) € Z4, lim|g| o0 qo(¥ + Z,7,2) = q«(2). Then the
condition (2.12) is fulfilled with gn(z) = ¢.(2) for any n € A'*. In this case, Theorem 2.6 holds,
and (o is of the form (2.22) with ¢, instead of go. Therefore, Theorem 2.6 generalizes the result of
[7, Prop. 3.2], where the convergence (1.1) was proved in the case when Qo(x,y) = qo(x — ¥).
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2.8. Weak Convergence of Measures

To prove the convergence (1.3) of the measures j;, we impose the stronger condition S4 on pyg
than the bound (2.9). To formulate this condition, let us denote by o(A), A C Z%, the o-algebra
in H, generated by Yy(z) with x € A. Define the Ibragimov mixing coefficient of a probability
measure fi9 on H, by the rule (cf [16, Definition 17.2.2])

o(r) = sup sup l10(AN B) — pio(A) po(B)]

ABCZ': Aeco(A),Beo(B) fio(B)
dist(A,B) > r po(B) >0

Definition 2.9. We say that the measure g satisfies a strong uniform Ibragimov mizing con-
dition if p(r) — 0 as r — oc.

S4. The initial mean “energy” density is uniformly bounded:
E[|uo () + vo(z)|*] = tr QY% (z, z) + tr Q3! (z,x) < eg < 00, x € Z%. (2.23)

Moreover, g satisfies the strong uniform Ibragimov mixing condition and
o0
/ rd_lgol/z(r) dr < oo.
0

Remark 2.10. By [16, Lemma 17.2.3], conditions S1 and S4 imply the bound (2.9) with
h(r) = Cegp'/?(r), where e is a constant from the bound (2.23).

For a probability measure pu on H,, we denote by i the characteristic functional (Fourier trans-
form),

e / exp(i{Y, U)) u(dY), W€ S.

A measure p is called Gaussian (of zero mean) if its characteristic functional has the form (V) =
exp{—Q(¥,¥)/2}, where Q is a real nonnegative quadratic form in S.

Theorem 2.11. Let d,n > 1, a < —d/2, and assume that conditions E1-E3, E4’, E5’, EG6,
S1, S3, and S4 are fulfilled. Then the following assertions hold.

(i) The measures u; weakly converge in the Hilbert space H,
Ut = foo  aS Tt — 00. (2.24)

The limit measure oo 1S a Gaussian translation-invariant measure on H.. The characteristic
functional of jeo is of the form [iso (V) = exp{—Qu (¥, ¥)/2}, ¥ € S, where Qo is the quadratic
form with the matriz kernel Qoo (z,y) defined in (2.14).

(ii) The measure pioo is time stationary, i.e., [U(t)]* oo = oo, t € R.

(iii) The flow U(t) is mizing with respect to the measure oo, i.e., for any f,g € L*(Ha, floo ),

lim / FUOY)G(Y) oo (dY) = / FOY) oo (dY) / 9(V) oo (dY).

t—o00

In particular, the flow U(t) is ergodic with respect to the measure fioo .

For harmonic crystals in the half-space, the convergence (2.24) also holds. For details, see Sec-
tion 6. Assertion (i) of Theorem 2.11 follows from Propositions 2.12 and 2.13.
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Proposition 2.12. Let the conditions E1-E3, E6, S1 and S2 hold. Then the family of measures
{ut, t € R} is weakly compact in H,, with any o < —d/2, and the following bound holds

sup E||U (1) Yyl < oo. (2.25)
teR

Proposition 2.13. Let conditions E1-E3, E4’, E5’, E6, S1, S3, and S4 hold. Then for every
W € S, the characteristic functionals of u; converge to a Gaussian functional,

fir (B) = /e“y"l’)ut(dY) —>exp{—;Qoo(\I/,‘Il)}, t — 0.

Proposition 2.12 (Proposition 2.13) provides the existence (respectively, the uniqueness) of the
limit measure p.. Proposition 2.12 is proved in Section 5.1. Proposition 2.13 can be proved using
the technique from [8]. Assertion (ii) of Theorem 2.11 follows from (2.24) since the group U(¢) is
continuous in H, by Proposition 2.4. The ergodicity and mixing of the limit measures p., follow
by the same arguments as in [7].

Lemma 2.14. Let conditions E1-E4, E5’, and E6 hold. Assume that the initial measure g is
Gaussian and satisfies conditions S1-S3. Then all assertions of Theorem 2.11 remain valid.

This lemma follows from Theorem 2.6 and Proposition 2.12.

3. EXAMPLES OF INITIAL MEASURES

Now we construct Gaussian initial measures p satisfying conditions S1-S3. For k£ = 1 (see the
condition S3), an example of pg is given in [8]. For any k > 1, the measure py can be constructed
in the following way. At first, for simplicity, we assume that ug, v € R' and define the correlation
functions ¢¥ (x — y), n € N*, which are zero for i # j, while for i = 0, 1,

G (0) := Faosplan (2)] € LY(T), 4(6) > 0. 3.1)

Then, by the Minlos theorem [5], there exist Borel Gaussian measures p, on H,, o < —d/2, with
correlation functions ¢ (x — y), because

/ IV (@) = 37 (@)% tr (¢2(0) + ¢21(0)) = C(a d) / tr (420(0) + 411(8)) d9 < .

T €L T
Further, we take functions ¢,, € C(ZF) such that

Cn(@) =Cny (1) oo Gy (), T=(21,...,25), n=(ny,...,nx), n;€{l,2},

where the sequences (;(z) and (2(x), x € Z, are defined by the rule

Ci(z) = Go(z) =

{ 1 for =z < —a, with some a > 0. (3.2)

1 for = > a,
0 for = > a,

0 for z< —a,

Finally, define a Borel probability measure pg as a distribution of the random function

Yo(z) = Y (u@Yale), v=(2,8)€Z' z=(z1,....2), &= (Trs1,-..,2a), (3.3)
neNE
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where Y, (x) are Gaussian independent functions in H,, with distributions pi,,. Then, the correlation
matrix of ug is of the form

Z Cn j Cn QII(x - )7 (34)

neNk
where r = (2,%), y = (9,9) € Z%, and gu(x — y) are the correlation matrices of the measures juy,.
Hence, Qo(z,y) = qo(Z, 9, % — §), and for every z = (2,2) € Z4,

WY +2,9,2) =qu(z) if (=1)"y; >a+|z], Vi=1....k n=(ny,...,ng).
Therefore, the measure p satisfies conditions S1 and S3. If
|4 (2)| < h(|z]), where 797 h(r) € L*(0, +00), (3.5)

then pq satisfies S2 by (3.4). Now we give examples of ¢¥ satisfying (3.1) and (3.5).

Example 3.1. Put ¢%(2) = f(21)f(22) - ... f(24) and construct sequences f(z), z € Z, such
that conditions (3.1) and (3.5) hold.

(i) Let f(z) = No—|z] for |z| < No and f(z) = 0 for |z| > No with some No > 0. Then qi(z) =0
for |z| > ro = Nov/d, and f(0) = (1 — cos No6)/(1 — cos6), & € T'. Hence, (3.1) and (3.5) are
fulfilled. Furthermore, the condition S4 also follows with ¢(r) = 0 for r > r¢. This example of the
sequence f can be generalized as follows.

Let f be an even nonnegative sequence such that f € ¢! and Apf(z) > 0 for any z > 1. Then
f(8) = 0 by [17, Th. 4.1 and 2.7], and (3.1) follows. If, in addition, |f(z)| < C(1 + |z|)~Y with
N > d, then (3.5) holds.

(i) Let f(2) = (a +blz])y*!, 2 € Z, with v € (0,1), a > 0 and b > 0. Hence, (3.5) is fulfilled
with h(r) = C(1 +7)"N (N > d). If a > 2by/(1 — ), then Apf(z) > 0 for any z > 1 and f(#) >0
(see case (i)). If 2by/(1 —~?) < a < 2by/(1 —7), then A f(1) < 0. However, in this case, (3.1) also
holds because

f(0) = a(l—+2) 2by (14 72) cos 6 — 27)
1 —2ycosf +~2 (1 —2ycosf +~2)°
_a(1 = ~2) +2bycos0)](1 — ) + [a(l —4?) — 2by](1 — cos )2y
(1 — 2ycosf +~2)>

\
<

Example 3.2. Let ug, vy € R"™ with any n > 1, and

) = TuFy L V0)), qll() = Tul, €70,
with some constants T,, > 0. Assume, in addition, that Co = 0 (see (2.6)), i.e
det V(0) #0, V6 e T (3.6)
Hence,
42 = Ta |FL V0| ~ A+ )Y, N eN, (3.7)

and conditions (3.1) and (3.5) are fulfilled with A(r) = (1 4+ r)~", where N > d.

Remark 3.3. Suppose that the initial covariance has the following particular form:

Qo(z,y) =T(@+y)r(z —y) or Qo(z,y) = VT(z) — ), (3.8)
where T'(Z) is a bounded nonnegative sequence on Z*, r(x) = (r¥ (ZL‘)) is a correlation matrix of
some translation-invariant measure in H,, with zero mean value, |r* (z)| < h(|z|), where we assume
that 74~ 1h(r) € L'(0,4+00). Then, condition S2 is fulfilled. For every n € N'*, we assume that
for any € > 0 there exists an N(¢) € N such that for any # € Z¥: (=1)"x; > N(g) with any
j=1,...,k, |T(z) — Tn| < €. Hence, condition S3 is fulfilled with ¢, (2) := Ty r(2).
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4. ENERGY CURRENT

4.1. nonequilibrium States

First we derive an expression for the energy current density. Let u(x,t) be a solution of Eq. (2.1)
with finite energy (see (2.3)). For the half-space ; := {x € Z¢ : x; > 0}, we define the energy in
the region ; as

a) =2 S Qfalw D+ 3 (@ t), Ve —yul,t) g, L=1,....d
2

e yeZl

Introduce new variables: * = 2’ + me;, y = y' + pe;, where /.y’ € Z¢ with z) = y] = 0, ¢; =
(8115 +,01a), L =1,...,d. Using Eq. (2.1), we obtain &(t) = >, J'(z',t). Here J'(2’,t) stands for
the energy current density in the direction ¢;:

1 .
JH ' t) =, %Y (@ +me,t), V(@' +me —y' — per)uly’ + per,t))

y \m<—1,p=20

- Z (w(z" +mep,t), V(z' +me —y' — pe)u(y’ +pei,t)) o,

where z',y’ € Z% with 2} = y] = 0. Now let u(x,t) be a random solution of (2.1) with the initial
measure fo satisfying conditions S1-S3. The convergence (1.1) yields

E (J'(2',1)) = JL ;:; S DY g -y + (m-pe)VT (@' —y + (m—p)e)))

y’ m<—1,p=0

- Y g2~y + (m—pe)VT (@ —y + (m—p)e)]
m>0, p<—1

1
=—, Z 2tr[¢2(2)VT(2)] as t— oo.
z€Z4

Applying the Fourier transform and the equality V*(6) = V/(8), we obtain
1 .
JL = —(2m)~¢ / i tr [qgg(e)aglvw)] o, 1=1,...,d.
2 Jra

Since II, (@) are orthogonal projections, I, (0) (99,11, (0)) II,(0) = 0 for any o,0’ = 1,...,s and
l=1,...,d. Hence, applying the formula (2.15) and the following decomposition of V' (#),

7(0) = 3T (0)w2(0),
o=1

we obtain tr [g10(0) >°0 _; wZ(0)9,11,(#)] = 0 and

JL :—i(2w)*d§: / tr [HU(B) (M;U(e)juim,;ﬁ(e))lo HU(H)] wo (0) 99,0, (0) dO
o=17T¢

=) S0 T ] [ e RO 0) 4 5 6)] SE O ()

o=1lneN*k
+/ Tm (¢ p0,, (6)) (1+5;37:;n(w(,))wg(e)aglwg(e)do}, 1=1,....d, (4.1)
’]I‘d

where the p¥ _ _ are introduced in (2.21). Here we use the equality trpl 5o (0) = trpit__(6).

n,oo n,oco
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Example 4.1. Let, for simplicity, all the functions tr[p¥ ,,(0)] and w,(f) be even for every
variable 01, ...,04. Then, J., =0 for | >k, and J\, = C! — C} for [ = 1,... k, where

a1yt .
C]l = (27T) ¢ ok ZZ 2 /’]I"i tr [wg(e)pg?aa(e) +p%11,aa(9)] |nl:j |891w0'(9)‘ do, J=12

o=1 n
Here the summation Z; is taken over ny,...,n;_1,n141,...,nx € {1,2}. Assume, in addition,
that the initial correlation matrix Qo has the form (3.8). Then, py () = Tuapy,(0), where, by

definition, p% () := I, (0)7¥ ()11, (0). In this case, Jo is of the form (1.2) with

S

a=320m " [ wLROR0) +pib©)] 100wr(0)] do.

o=1 T4

We see that one can choose positive numbers T}, such that J., # 0.

Below we simplify formula (4.1) in the case when u, are Gibbs measures corresponding to
positive temperatures T,,. Furthermore, under additional symmetry conditions on the eigenvalues
wy(0), we derive formula (1.2) for Jo. Thus, there exist stationary nonequilibrium states (in fact,
Gaussian measures [i,) in which there is a nonzero constant energy current passing through the
points of the crystal.

4.2. Energy Current for Gibbs Measures

Formally, Gibbs measures gg are gg(dY) = ée*BH(Y) [I,cz0 dY (x), where H(Y) is defined
in (2.3), Z is normalization factor, 3 = T~!, T > 0 is a corresponding absolute temperature. We
introduce the Gibbs measures gg(dY’) as the Gaussian measures in H,, a < —d/2, with zero mean
and with the correlation matrices defined by their Fourier transform,

@R O)=TV10), ¢4 0) =TI, 4¢3(0) =35 0) =0, (4.2)

where I denotes unit matrix in R” x R™. By the Minlos theorem [5], the Borel probability measures
gp exist in the spaces H,. Indeed,

/ IVI2 gs(dY) = 3~ (@) tr[g%(0) + gi-(0)] < oo,

zeZd

since a < —d/2 and

trgQ(0) + g5(0)] = (2m) ¢ / (g% (6) + G (6)] d6 = T(2m)~° / 6 V-L(6) df + T < oo.
Td Td

The last bound is obvious if Cy = () and follows from the condition E6 if Cy # ().
Let po be a Borel probability measure in H,, giving the distribution of the random function Yj

constructed in Section 3 (see formula (3.3)) with Gibbs measures pin = g5, (fn = 1/Th, Tn > 0)
which have correlation matrices gn(z) = ¢, (), where the matrix ¢z = (qgj)id‘:g’l is defined by
(4.2). We impose, in addition, condition (3.6). Then, conditions S1-S3 hold (see Example 3.2). We
check that in the case of the Gibbs measures i, = gg,,, condition E5’ is fulfilled (see Remark 2.7).
Indeed, by (4.2), we have

P (0) = L (OGO (0) = T OV (0 |, (4.3)
Pl (8) = L, (B)GLL(O)TL, (8) = T 11, (6)6,0r : N ,
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and pn oo (0) =0 for i # j. Hence, assertions (1.1) and (2.24) hold, see Lemma 2.14.

Now we rewrite the limit covariance §..(#) and the limit mean energy current J., in the case
when i, = gg, are Gibbs measures. Applying (2.15), (2.16), and (2.18), we obtain

i (0) =V (0)g%( ZH ZT [1+ S (w,(0))]

ne./\/’C
0 = ~20) = =5 Y000 5, 3 Tt 0)
neNk

where the functions Sp5" (w,) and S,‘;i‘f(wo.) are defined in (2.17). Substituting p¥/ ,,(6) from (4.3)
in the r.h.s. of (4.1), we obtain

Too =" (2m)d 2k Z > / ro Tn Siim (e (0)) o, wo (6) df

o=1lneN*k

(4.4)
1 ! Ny, +4n
=— ok Z Ta Z Z o (_1) p1 o | 1=1,....d,
neNk oddme{1,...k} (p1,-.-;pm ) EPm (k)
where r, = tr[Il,(0)] is the multiplicity of the eigenvalue w, (see Lemma 2.2), the numbers cél___pm

are defined as follows
. R~ / ) Ow,(0) ) 0wy (0)\ Ow,(0)
= - S de. 4.
Cpl---pm (27.[.)(1 OZ:I Td T'o SIgN 89p1 s1gn aepm 691 ( 5)

Under the additional symmetry conditions (SC) on the interaction matrix V', the formulas (4.4)
and (4.5) can be simplified.

SC. Suppose that one of the following conditions on w,, o0 =1,...,s, holds.

(a) Each w,(0) is even for every variable 01, ...,0;, and, in addition, if k£ > 2, then each w,(0)
is even for some k — 1 variables from the set {61,...,0;}.

(b) Each w,(0) is even for every variable 61, ..., 0.

(c) For every p = 1,...,k, sgn(9p,w,(¢)) depends only on the variable 6,, and, in addition, if
k > 3, then each w, () is even for some k — 1 variables from {61,...,0;}.

For instance, conditions (a), (b), and (c) hold for the nearest neighbor crystal, see (2.8). Under
these restrictions on w,, all numbers cé \..pn, in (4.5) are equal to zero except for the case when
m=1andl=p; €{1,...,k}. Write

Ow, (6

= do l=1,...,k. 4.
Cy Cl 27‘r d Z/]I‘d 00, ' >0, ) > ( 6)
Therefore,

JL={ 7@ 21k > onent (1) T = —¢ 21k Z/ (Tn|nz:2 - Tn‘mzl) ) b=1....k, (4.7)

e 0, l=k+1,...,d,
where the summation >’ is taken over ny,...,ni_1,n41,...,n% € {1,2}. In particular, if k = 1,
then the limiting energy current density is
1
JOO:—z(cl(Tg—Tl),O,...,O), c1 > 0. (4.8)
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In this case, the harmonic crystal can be considered as a “system + two reservoirs,” where by
“reservoirs” we mean the two parts of the crystal consisting of the particles with z; < —a and with
x1 2 a (a > 0), and by a “system” the remaining (“middle”) part (cf [24, Section 3]). Initially, the
reservoirs are in thermal equilibrium with temperatures 77 and T5,. Therefore, the formula (4.8)
corresponds to the Second Law (see, for instance, [2, 24]), i.e., the heat flows (on average) from the
“hot reservoir” to the “cold” one.

If £ = 2, then our model can be represented as a “system + four reservoirs,” where the reservoirs
consist of particles lying in the four regions {z1, 22 < —a}, {z; < —a,29 > a}, {x1 > a,22 < —a},
and {z1,x2 > a}. The initial states of the reservoirs are distributed according to Gibbs measures
with corresponding temperatures 111, T2, T1, and Te. Formula (4.7) becomes

1
Joo = —4 (Cl (Tgl —Ti1 + T —Tlg),CQ (T12 — T +Th _T21)707--'70)7 1,02 > 0.

Hence, Jo, # 0 for any positive values of T;; except in the case when T7; = T and Ty = T5;.

For any k, our model is a “system + 2* reservoirs”, where the “reservoirs” are the crystal particles
with position in the regions {z € Z% : (—1)™ x; >a Vj=1,...,k}. At t =0, these reservoirs are
assumed to be in thermal equilibrium with temperatures T}, n € N'*. By virtue of formula (4.7),
we can choose the temperatures 7}, so that the limiting energy current density J., is not zero.

5. CONVERGENCE OF COVARIANCE

5.1. Bounds of Correlation Matrices
By I? = I?(Z%) ® R", p,d,n > 1, we denote the space of sequences f(z) = (fi(z),..., fo(x))
endowed with the norm X
£l = (D £ @)
zeZd

Lemma 5.1. (i) Let conditions S1 and S2 hold. Then for any ®,¥ € [?,

[(Qo(z,y), ®(z) © W(y))| < O[] |W]]s2- (5.1)
(ii) Let conditions S1-S3 hold. Then ¢¥ € ¢*. Hence, ¢¥ € C(T4), i,j =0, 1.
Proof. (i) It follows from the bound (2.9) that

SR (z,y) < Y h(l2]) < oo

yezd z€Z4

Similarly,
Z Q¥ (x,y)| < C < oo forall yeZd
zeZd
This implies the bound (5.1) by the Shur lemma.
(ii) The bound (2.9) and condition (2.12) imply the same bound for qi¥(2), ie., |¢% ()| < h(|z]),
where r?1h(r) € L1(0, +00). Hence, ¢ € I*.

Lemma 5.2. Let conditions E1-E3, E6, S1, S2 hold, and o < —d/2. Then the bound (2.25)
holds.

This lemma can be proved by a same way as in [8]. We repeat the proof, since some notation
and some technical bounds obtained in the proof will be applied in Section 5.2 below.
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Proof. Note first that

E[IY ()12 = D (@)**(tr @z, ) + tr Q' (x,2)), where a < —d/2.

zeZd

Hence, to prove (2.25), it suffices to check that sup;cg sup, , ¢z [|Qi(7,y)|| < C' < co. Applying the
Fourier transform to (2.2), we obtain

V()= AO)V(1), teR, ¥(0)="To. (5.2)
Here we denote A(0 < ( 0> 6 € T?. Therefore, the solution Y (4,t) of (5.2) admits the
representation Y (0,t) = G,(9)Yy(#) with G(#) := exp (A(6)t). In the coordinate space, we have
)= > Gz —a"Yo(a), xez’ (5.3)
z' €z

The Green function G;(z) has the form (in its Fourier transform)

0= (e Mo ) 54)
where Q = Q(6) is the Hermitian matrix defined by (2.4). Then
Gi(0) = cos Qt I + sin Qt C(6), (5.5)
where C(0) is defined by (2.19). The representation (5.3) gives
Q) (w,y) =E(Y'(x,t) @ Y (y, Z > G a—2")Qt @, y)G (y—y)
y €74 k,1=0,1 (5.6)

= (Qo(a,y), (2", 1) @ <1>{,(y’,t)>,

where ®¢ (/,t) := (GI%(x —2'), Gt (x — ")), ' € Z4, i = 0, 1. Note that the Parseval formula, (5.4),
and condition E6 imply

|01 = @0~ [ (8L00P0 = n)~ [ (G0OF +1G1 0P 0 < Cy < .
Then the bound (5.1) gives
Q¥ (z,9)| = (Qo(a".y), @4 (2", £) © 2y, 1)) < CIRL(, 1)z 125, )2 < €1 < o0,
where the constant C; does not depend on z,y € Z¢, t € R.

Proposition 2.12 follows from the bound (2.25) by the Prokhorov Theorem [26, Lemma I1.3.1]
using the method of [26, Th. XII.5.2], since the embedding H, C Hg is compact if a > £.
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5.2. Proof of Theorem 2.6

To prove Theorem 2.6, it suffices to check that for all ¥ € S,
(T, V) = Qo (T,T), t— oc. (5.7)

In the cases when k£ = 0 and k = 1, the convergence (5.7) was proved in [7] and [8], respectively.
We derive (5.7) for any k£ > 1.

Definition 5.3. (i) The critical set is C := C, U Cy U, C, with C, as in Lemma 2.2 and sets Cy
and C, defined by (2.6).
(i) S := {¥ € S: ¥(#) = 0 in a neighborhood of C}.

Obviously mes C = 0. Write the inner product (Y'(-,¢), ¥) in the form (Y'(-, ), ¥) = (Yy, ®(-, 1)),
where ®(z,t) := F; | _[GF(0)¥(0)]. Therefore,

Qt(qlﬂ ‘Il) = E|<Y('7t)7 ‘Il>‘2 = (Qﬂ(xay)7 CIJ(x,t) ® CI)(y,t)>, (58)

where the Parseval identity and (5.4) yield
l2( )7 = (2m)~¢ /Td IG; ()17 (6)[2d6 < C/Td(l +VHO) [E(0)[2d8 = Cll e} (5.9)
By (5.1), (5.8), and (5.9), the uniform bounds hold, sup,cp |Q:(¥, ¥)| < C||¥[|}, ¥ € S. Therefore,

it suffices to prove the convergence (5.7) for ¥ € S° only.

We define a matrix Q,(x,y), x,y € Z4, as follows

1 n n
Qu(z,y) = o > tal@—y) 1+ (D)™ sgnyy) ... (14 (=1)™ sgnyy)
neNk
1 k
= o D Gnlr—y) [1+ > > (e sgny,, L sgny,,
neN* M=1 (p1,...,pm) € P (k) (p-10)

with the matrices ¢, () introduced in condition S3. For instance, for k = 1,

Q«(w,y) = ; (1(x —y) + q2(z —y)) + ; (@2(z —y) — qu(r —y))sgnyz.

Note that Q.(z,y) = qu(z — y) in every region {(z,y) € Z2? : (=1)™y; >0, ..., (=1)"yx > 0},
n = (ng,...,n;) € N*. Denote Q,(x,y) = Qo(x,y) — Q.(x,y). Therefore, the convergence (5.7)
follows from (5.8) and the following proposition.

Proposition 5.4. For any ¥ € S°, the following assertions hold.

(a) limy oo (Qu(z,y), ®(x,1) @ P(y,1)) = (goo(z — y), ¥(x) ® ¥(y)),
(b) limy o <Qr($7 y)v é(x’ t) & @(y, t)> = 0.

At first, we prove the auxiliary lemma.
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Lemma 5.5. Let q(z) = (¢" (:E))id:o’1 , € Z%, be 2n x 2n matriz with n x n entries ¢ () sat-

isfying the bound |q (z)| < h(|z|), where r®~th(r) € L'(0,+00). Assume that either condition E5
holds or condition E5’ is fulfilled with the matrices G (0) instead of G (). Then for any ¥ € S°,

Jim (g(z —y), (2, 1) @ By, 1)) = (g (x —y), ¥(x) ® L(y)), (5.11)
where )
0%(0) =D T, (O)LT (4(6) (), 6 € T\C..
Moreover, for any k € {1,... ,d},a_
Jim (g(z —y)sgnys - ... - sgnyy, @(x,1) @ By, 1)) = (45 (v — y), ¥(z) @ U(y)), (5.12)

where the matriz q%_ (x) has the form (in its Fourier transform)
75.(0) = S 1, (0) Ly (4(6)) 11, (6) 50 (Do, s (6)) - .. - 50 (D0 (6), 6 € T\ C
o=1

Here
. [ LT (4(0)) if k is even,
Ly (2(9)) = {z’L2 f@(e)) if k is odd,

where the expressions L and Ly are introduced in (2.18).

(5.13)

Proof. Using the Parseval identity, we have

I == (q(x —y)sgnyi - ... -sgnyg, ®(z,t) @ ®(y,t))
= (27r)_2d/ (F g lalw—y)sgnys-... sgny], ®(0,t) @ &(0',t))do o’
2d
' y— —0'

Note that Fy,_g(sgny) = iPV(1/tg(0/2)), 6 € T', y € Z', where PV stands for the Cauchy
principal part. Hence,

Foo [q(x —y)sgnyy - ... sgnyl
y——0’
= (2m)*5(0 — 0) G(0) i* PV < ! > PV ( ! > ,
tg((61 — 61)/2) tg((0x — 0})/2)
where 8 = (0x41, . ..,04). We choose a finite partition of unity
M

Z gm(0) =1, 6 € supp 0, (5.14)
m=1

where ¢, are nonnegative functions from C’go(’]l‘d),Awhich vanish in a neighborhood of the set C
introduced in Definition 5.3 (i). Using the equality ®(6,t) = G;(0)¥(6), formula (5.5), the decom-
position (2.5), and the partition (5.14), we obtain

1 1
pare tg((01— 09)/2) T tg((6k — 604)/2)
< (G006 @), 1(0) © F(@)) |, _ g 5, dOT'dd
_ () ik - (0 1 o 1
= (2m) mZﬂ;,MZIPV Td+kgm(9)gm (e)tg((el—eg)/z)  ((Oet)/2)
< (1, (0)50 0 (O)0)G7 (011 (6, 4(0) © 4(6)) |,_ 5 5, ABE
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Here we denote

Gr.o (6) = cos oy (8)¢ T + sinw, (6)¢ C, (6), 00(9):<_w2(9) 1/“5(9)>. (5.16)

By Lemma 2.2, we can choose the supports of g,, so small that the eigenvalues w,(f) and the
matrices II,, (f) are real-analytic functions inside supp g,, for every m. (We do not label the functions
by the index m so as not to overburden the notation.) Changing variables 0 — §; = 0 — 0;,
j=1,...,k, in the inner integrals in the r.h.s. of (5.5), we obtain

L=em i Y Y [, (5090106, 0)i0)

m,m’ o,0'=1 (517)

1 1 N\ A* 1 Ny (0! ra
xPV /D) tee2) G (0)G; o (011, (0T (0 )\Q,Z(H’e)dg) do.

It follows from Definition 5.3 that 89;@)0, (0") # 0 for " € supp g,y C supp 0. The next lemma
follows from [1, Prop. A.4 (i), (ii)].

Lemma 5.6. Let x(0) € CY(T?) and 9p,w,(0) # 0 for 6 € supp x. Then for § € supp ¥,

ezl:iwg(el—&—ﬁ,é)t

P,(6,t) :=PV L te(€)2)

X (01 4 €,0) de =et e Ot son (9, w,(0)) + 0(1)  as t — +oo0,
where 0 = (03, ..,04). Moreover, SUp;eg, gerd | P (0,1)] < 0o. Furthermore, yields (5.16), we have

PV/ Gr o (01 + €, 0)x(01 + €,0) dé = 27 x(0) C;(0)G; , (0) sgn(, wo (6)) + o(1)
T tg(§/2)
as t — +00.

Applying Lemma 5.6 to the inner integrals w.r.t. £;,...,& in (5.17), we obtain

I = DY Y / I (O)(IL, (O)RE(6) o TL, (6), 0(0) @ (6)) d6 + 0(1),  (5.18)

m o,0'=1
where we denote R¥(8)y0r := G0 (8)G(0) (C% 0)F QA;U, (0). Note that
(C50)" = (1) if k=2, and (C5(0) =(=1)'C:(0) ifk=20+1 (withany [ > 0).
Using (5.16), we can write

RE(0) ,:{ (1)! 22, (cos (wo,(0)9) LT (@) +sin (w3, (0)9) L3(@), k=2,
t\Voo (—1)! S (:I: coS (wo_io, (0)t ) ( 7) F sin (waia,(Q) ) TG )) k=20+1,

where w ,(0) = w,(0) £ w,s(0). The oscillatory integrals in (5.18) with w® () # const vanish
as t — oo by the Lebesgue—Riemann theorem, since all integrands in (5.18) are summable. Fur-
thermore, the identities wffa, () = consty with the consty # 0 are impossible by E5. If we impose
condition E5’ (with ¢¥(0) instead of G/ (6)), then the case w™ ,(f) = const (with consty # 0) is
possible. However, in this case,

(5.19)

IL ()L (GO, (0) =0 and T,(0)LE(G(0)),(0) =0,
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which implies that II,, (9)R (0)so 11,/ (0) = 0. Thus, only the integrals with w_ _,(€) = 0 contribute
to the limit, since wl ,(#) = 0 would imply wU(H) = w,/(#) = 0 which is impossible by E4.
Therefore, using (5. 18) and (5.19), we obtain

(2m)- ZZ/ 9 (0)(IL, (6) Lo (d(0))TL, (8), W (8) ® T(8)) df + o(1), ¢t — oo,

m o=1

where Ly is defined in (5.13). The convergence (5.12) is proved. The convergence (5.11) can be
derived in a similar way.

Now Proposition 5.4 (a) follows from the decomposition (5.10), formulas (2.15)-(2.18) and
Lemma 5.5 with the matrices q(x) = ¢n (). The assertion (b) was proved in [1, p. 140] ford =n =1
and in [8] for any d,n > 1 and k = 1. For any k, this assertion can be proved using the methods of
[8, Lemma 8.4].

6. HARMONIC CRYSTALS IN THE HALF-SPACE

In this section, we consider the dynamics of the harmonic crystals in the integer half-space
24 ={ze€Z: x>0}, d>1,

iw,t) ==Y (V@-y)-Vie-y))ulyt), z€Zf, tecR, (6.1)
yeLs
y— = (—y1,Y2,...,Y4), with zero boundary condition (as z; = 0)
u(z,t)|z,=0 = 0, (6.2)
and with the initial data (as t = 0)
u(z,0) =ug(z), u(r,0)=uvo(x), x€Zf. (6.3)
The matrix V(z) satisfies conditions E1-E4. In addition, we assume that
V(zo) =V(x). (6.4)

This condition is fulfilled, for instance, for the nearest neighbor crystal (2.7). Condition E6 imposed
on V(x) in Section 2.1 can be weakened as follows.

EG’./ sin?(0,)||[V=1(8)] df < oo.
Td

Assume that the initial datum Yy = (ug,vo) of the problem (6.1)-(6.3) belongs to the phase
space Hq 4, @ € R.

Definition 6.1. Denote by H, ; the Hilbert space of R" x R"-valued functions of z € Z%
endowed with the norm [|Y||2 | = erZi (z)2Y (z)]? < oo.

To coordinate the boundary and initial conditions, we assume that ug(z) = vo(x) = 0 for x; = 0.
Write Y (t) = (u(-,t), u(-,1)).

Lemma 6.2. (see [10, Corollary 2.4]) Let conditions (6.4), E1, and E2 hold, and choose some
a € R. Then for any Yy € Ha,+, there exists a unique solution Y (t) € C(R,Hq,+) to problem
(6.1)(6.3). The operator UL(t) : Yo — Y (t) is continuous in He 4.

Below, we assume that o < —d/2 if condition E6 holds, and o < —d/2 — 1 if condition E6’
holds.

We assume that Y| is a measurable random function with values in (Hq, 4, B(Ha,+)) and denote
by ,uar a Borel probability measure on H, 4 giving the distribution of Y. Let E; stand for the
integral w.r.t. g . Denote by Q{f (z,y) the correlation matrix of ug,

Qi (2,y) = By (Yo(x) © Yo(y) = / (Yole) ® Yo(y)) i (dY0), € Z2.
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In particular, Qf (v,y) = 0 for z; = 0 or y; = 0. Assume that ug satisfies conditions S1 and
S2 stated in Section 2.1 (but with Z% and E, instead of Z? and E). Condition S3 needs some
modification.

S3. Choose some k € {1,...,d}. The initial covariance Q7 (z,y) is Q¢ (z,vy) = q¢d (z,7,& — 7),

z,y € Z%, where = (Z,%), T = (x1,...,%k), T = (Tt1,...,2q). Write (cf. (2.11))
Nf ={n=(ny,ng,...,n), n1 =2, nj €{1,2} forall j=2,... Kk}
Suppose that for any ¢ > 0 there exists an N(¢) € N such that for any 5 = (y1,...,y) € Z*:
y1 > N(e) and (—=1)™y; > N(e), Vj = 2,...,k, the following bound holds (cf (2.12))
lag (U + 2,9,%) — qu(2)| <& for any fixed z = (z,%) € 7.

Here gn(2), n € - fﬁ, are the correlation matrices of some translation-invariant measures p, with
zero mean value in H,,.

In particular, if k = 1, then Qf (z,v) = qf (z1,91,% — 9), ¥ = (22,...,74), and (cf. (2.13))
af (g1 + 21,91, 2) = q2(2) as y1 — 400, z=(z,%) € Z% (6.5)
Example 6.3. The examples of initial measures g satisfying conditions S1-S3 can be con-

structed by a similar way as for g in Section 3. Indeed, let us define a Borel probability measure
pgd as a distribution of the random function (cf. (3.3))

Yb(l‘) = Z Cn(i‘)Yn(l‘)’ T = (E7j) € Zi) T = (3317 oo 7xk)7 T = (mk-i-lv oo 7$d)7
neNy

where (,,(Z) = (a(x1)Cny (22) « - .. - Cny (z1), n € NF, the sequences ¢; and (, are defined in (3.2),
Yn(x) are Gaussian independent vectors in H, 4+ with distributions py,. The Gaussian measures

[n satisfying conditions S1 and S2 are constructed in Section 3. Then, the measure ug satisfies
S1-S3.

We define p;", t € R, as a Borel probability measure in H,,  which gives the distribution of the
random solution Y (t), u;" (B) = ug (Uy(—t)B), B € B(H,+), t € R. Denote by

Qf (z.y) = / (¥ (@) © Y(y) uF(dY), yezl,

the covariance of p;”. The mixing condition S4 (see Section 2.3) for yg is formulated as for the
measure i, but with sets A and B from Zi instead of Z<.

Introduce the limiting correlation matrix Q% (x,y). It has the form
QL(wy) =alz—y) —ak(e—y-) —ak(e- —y) +ak(e- —y-), wyeZf. (6.6)

Here ¢ (z) is defined as goo(z) (see formulas (2.15)—(2.19)), but with N¥ instead of N*. For
example, if k = 1, then ¢ (f) has the form (2.15) with matrices (cf. (2.20))

1 . _ .
MY, (6) = ) LF (@(6)), My, (6) = ) Lz (6a(6)) sem (9h,0(9)).
where ¢2(f) is the Fourier transform of the matrix ¢2(z) introduced in (6.5).

Theorem 6.4. (i) Let conditions (6.4), E1-E4, E5’, E6°, and S1-S3 be fulfilled. Then for any
T,y € Zi, Qf (z,y) = QL (z,y) ast — oo. (ii) Let conditions (6.4), E1-E3, E4’, E5’, E6’, S1,
S3, and S4 be fulfilled. Then the measures u;” weakly converge in the Hilbert space Ho 4 ast — oc.

The limiting measure pt, is a Gaussian measure on H,. 4 with the covariance QX (z,y) defined in
(6.6).

Theorem 6.4 can be proved using the technique of Theorems 2.6, 2.11 and [10, Th. A]. Below
we note only some features in the proof of Theorem 6.4.
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6.1. The Proof

Lemma 6.5. Let conditions (6.4), E1-E3, E6’, S1, and S2 be fulfilled. Then the following
uniform bound holds, sup,cg B4 (|[Y ()] 4) < oo.

Proof. By l%r = ZQ(Zi) ® R"™, d,n > 1, we shall denote the Hilbert space of sequences f(z) =
(f1(x),..., fn(z)) endowed with the norm

1l = [ 1)

xeZi

Let (- ,-)+ stand for the inner product in 3 x ¢3. At first, by conditions S1 and S2, we have (cf.

(5.1))
(@5 (z.9), 2(2) @ U(y)+| < Ol @2 ]z for any @, ¥ € £5 x £3. (6.7)

Second, the solutions of problem (6.1)—(6.3) has the form

Y (z,t) = Z Giy(z,2")Yo(2"), where G4 (z,2") =Gi(x —2') — Gi(x — "), (6.8)

x' €L
with G;(z) defined in (5.4). As for (5.6), we have
(@ (z,9))" =(QF (2, ¢), ®L(x', ) @ YY), , @,y € ZE, (6.9)

where ®%(a/,t) := (Gi% (z,4'),Gj! (x,2")), i = 0,1. By the Parseval identity, formula (5.4), and
condition E6’, we have

) a 2 X .
%0l =m) [ [@56.0)] o= @r) - [ sin(o,m) (1G0O)F + 167 O)F) do
Td Td
(6.10)
</ sin?(6121) (Cy + CallV4(6)1]) d0 < O + Ol 2
Td

where the constants C3 and Cy4 do not depend on t € R and z € Z%, and Cy = 0 if condition E6
holds. Hence, (6.7), (6.9), and (6.10) imply

(@ (2,9))7 | < CIL ()l 125, Ol < CV/Cs + Calaa|*V/Cs + Calin?, - 2,y € Z§.

Therefore, the choice of a implies the following bound

Ev(IY (0120 = Y @ o ((QF (,2)™ + (QF (@) ")

€LY

<C Y (@) (Cs + Cyla [?) < oo

€S

By the Prokhorov Theorem, Lemma 6.5 implies that the family of measures {uf,t € R} is
weakly compact on the space H, 4.

Remark 6.6. Suppose that V (z) is of the particular form (2.7). If (i) d > 3 or (ii) d = 1,2 and
all m; are positive, then V' (z) satisfies condition E6 and the results of Theorem 6.4 are valid with
any o < —d/2. If d = 1,2 and m; = 0 for some [, then the condition E6’ holds. In this case, we can
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apply Feiér’s theorem (see, e.g., [17]) and obtain ||®%(-,t)[|% < Cs + Ca|z1| (cf. the bound (6.10)).
Then the assertions of Theorem 6.4 remain valid with any o < —(d +1)/2.

Proof of Theorem 6.4 (i). At first, using (6.8), we decompose the covariance Q; (z,y) into a
sum of four terms:

Qf (@, y) = > Gir(x2)Qf (=, y)G] 4 (v,y) = Ri(w,y) — Ry(x,y-) — Ri(x_,y) + Ri(z_,y-),

a vy €zt
where ()7 denotes matrix transposition,
Ri(z,y):= Y. Gilz—2)Qf (= ¢y (y—y).
a!y €2
Therefore, Theorem 6.4 (i) follows from the following convergence
Ri(z,y) = qi(z—y) as t— oo, z,y¢cZ (6.11)

To prove (6.11), let us define QF (x,y) to be equal to Qg (x,y) for x,y € Z<, and to 0, otherwise.
Denote by Q7 (z,y) the matrix defined as Q.(z,y) (see (5.10)), but with the summation over
N¥ instead of N*. Put Q; (z,y) = Qf (z,y) — QF (x,y). Then (6.11) follows from the two next
assertions. For any z,y € Z<,

> Gie -2, Y6 (y—y) = al(z—y), t— o0,

I',yIEZd

> Gl -2 )G (y—y) =0, t— o0

I’,y’EZd

The proof of these assertions similar to the proof of Proposition 5.4.

6.2. Energy Current in the Half-Space
Here we calculate the limiting energy current density J4 oo = (J}ﬁoo, e inoo).

Lemma 6.7. If d = 1, then J4 o = 0. If d > 2, then the coordinates on the energy current
density J4 oo = J4 0o(21), 1 =0, are

2

Ji’m(xl) =0, Ji,oo(wl) =— (2m)

/ sin?(0,) tr [(a£.(0)) " 9,V (0)] 0, 1=2.....d, (6.12)
Td

with g%, from (6.6). In particular, J4+ - (0) = 0.

To prove (6.12), we first formally derive the expression of the energy current for the finite energy
solutions u(z,t). We define the energy in the region Q; := {z € Z% : z; > 0} as

EL(t) == ; Z i (x, )] + Z (u(z,t), V(x—y) = V(e —y_))u(y,t)) p, 1=1,...,d.
xeQ yezs

Then, using Eq. (6.1) and conditions (6.12) and E2, we obtain

ELt)=0, &)= > Ji@.1), 1=2....d

z' €L
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Here Ji (2',t) stands for the energy current density in the direction e; = (0, dj2, ..., d14),

1
Ji(a/,t);zzz oA - Y ALY,

y'ezt \m<—1,p=20 m20,p<—1

where Afnp(x’,y’,t) = (u(x,t), V(x—y) = V(e —y_))u(y,t)) for x = 2’ + me;, y = v + pey,
o'y €24 withaz) =y, =0,1=2,...,d.

Let u(x,t) be a random solution to problem (6.1)—(6.3) with initial measure g satisfying S1-S3.
Using Theorem 6.4 (i), we can write

, 1
E; (Ji(a; 1) = thoo =, Z Z Bmp(a: y') — Z Bmp(m y') as t — oo,

ylezi m<—1,p>0 m2=0, p<—1

where Bfnp(a:’,y’) = tr[(QL (x,y))1° (VT(m —y) — VT(a:—y,))], x =2 +me, y =y + pe,
',y e Zi with 2] = y; = 0. Applying (6.6), (6.4) and the Parseval identity, we obtain

Fv=— 0 3w (026 +)" — (g +9)') (V7@ +9) VI +y0)

i — —i(z’ —i(z’ N 10 ( i(z’ i(z’ Yo
=— 2(271) dtr/Td (e (@.6) _ =i —’9)) (4%(9)) (e( 0 _ il —’9)> 0p, V() db.

Using equalities e?#1% — ¢=##101 = 2jsin(f,21) and V*(0) = V(#), we obtain (6.12).

Let pn = gp,, n € N. * be the Gibbs measures constructed in Section 4.2 with temperatures
Ty > 0. The correlation matrices of py are gn(r — y) = ¢, (z — y), see (4.2). We impose, in
addition, condition (3.6) on the matrix V, which implies the bound (3.7) for ¢°. Then, condition
S2 is fulfilled. In this case,

(@20)" =~ Yo O6) | 5 S TusyH o (6) |

neNF

where the function SOdd( o) is defined in (2.17). Hence, for | = 2,...,d (cf. (4.4)),

Owy(0)
l odd o
J+ wol(1) = (2m)d Z/Td T sin’ (0121) 2k ZkT Sy 6)) oy do
ne (6.13)
1 T
= — Z Z Clpl“.pm (,:Ul) 2k—1 Z (_1) p1+ + men,

odd me{1,....k} (p1,--,Pm )EPm (k) nGNf

where the functions cél___pm (z1), 1 = 0, are defined as follows (cf. (4.5))

. 2 / . dws(0)) 0w, (0)\ Ow,(0)
Cpy oo py (T1) 1= (%)d; Td?“gsm (0171) sgn 2, ...esgn o, 96, de.

Write

= (l(
() = ¢ 27rd E /drgsm (011)
T
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Let us apply condition SC to w,(#). Then, J; o (z1) =0 if k = 1. For k > 2, we obtain

1 /
1 _Cl($1)2k_1 Z (Tn|nl=2 _Tﬂ|nl:1)’ l=2,...,k,
Si o0 (21) = nenNk (6.15)
0, l=11=k+1,...,d,
where the summation Z’ is taken over mo,...,n_1,n541,...,n, € {1,2}. Therefore, in the case of

d,k > 2, we can choose positive numbers Ty, so that J; o (x1) # 0 for 1 > 0.

Using the formula 2sin?(6;21) = 1—cos(26;2;) and the Lebesgue-Riemann theorem, we see that
¢i(r1) = ¢ as x1 — 400, where the positive constant ¢; is defined in (4.6). Hence, for [ = 2,... k,

J—lf—,oo(xl — — Qk . Z m e n|m:1) as ] — +oo. (6.16)

Consider some particular cases of the formula (6.13).

Example 6.8. Let £k =1 and ,ug satisfy condition S3 with a Gibbs measure ps = gg, 5 = 1/T5.
For instance, the initial data Y; has the form Yy (z) = (2(x1)Y2(x), where (s, is defined in (3.2) and
Y>(x) has the Gibbs distribution gg. Hence, J} =0, and

0wy (0)\ 0w, (0
Jioo(xl dZ/ rgsm (0121) sgn( (29(1)> %H(l)dQ, 1=2,....,d.

If condition SC holds, then J o (z1) = 0 for any =1 > 0.
Example 6.9. Let d > 2, k =2 and g satisfy condition S3 with Gibbs measures
fin = 9ps  Bo=1/Tn, n=(n,n2) € N7 ={(2,1);(2,2)}.
For instance, the initial data Yy is of a form
Yo(z) = Co(21) (G (22)Yor1 (2) + Co(22) Yoo (2)), z € Z4,

where (,(z) is defined in (3.2), Y51(x) and Yao(z) are independent vectors in H, with Gibbs
distributions p9; and p9o corresponding to positive temperatures To; and Tho, respectively. Hence,
our model can be considered as a “system + two reservoirs,” where the “reservoirs” consist of
crystal particles lying in the two regions {z € Z4 : 25 < —a} and {z € Z% : 25 > a}, a > 0. It
follows from Lemma 6.7 and formula (6.13) that J} _(x1) = 0 and

Ow, (0 Owe (0
—i—sgn( (:;92 )>(T22—T21):| %9(1 )de, 122,,d

Under condition SC on the eigenvalues w,(#), we obtain

1
—2(0, c2(21)(Ta2 — T21),0,...,0)

with co(x1) introduced in (6.14). Moreover,

i oo(1) =

1
J+’Oo(f1}']_)—>—2(O,CQ(TQQ—TQ]_),O,...,O) as r1 — +00,

where the positive constant ¢y is defined in (4.6).
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Remark 6.10. In [11], we considered the 1D chain of harmonic oscillators on the half-line with
nonzero boundary condition and studied the following initial boundary value problem:

(Ap — m?)u(x,t), x>1, t>0,
ii(x,t) = < i(0,t) = —ku(0,t) — m2u(0,t) — yu(0,t) +u(1,t) — u(0,t), t>0,
u(z,0) = ugp(z), u(z,0)=uvo(z), x=0.

Here u(x,t) € R,m > 0, > 0, Az denotes the second derivative on Z. We impose some restrictions
on the coefficients m, k,~ of the system. In particular, if v > 0, then either m > 0 or k > 0. If
v =0, then x € (0,2). We obtain results similar to (1.1) and (1.3). Furthermore, the limiting energy
current at the origin equals Joo := —7 limy_, E ((0,¢)). Hence, in the case when v > 0, Jo # 0
(cf. Example 6.8) if [(Y1(0))? ioo(dY) # 0 (the limit measures o satisfying the last condition
are constructed in [11]).
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