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Abstract. We consider a d-dimensional harmonic crystal, d � 1, and study the Cauchy
problem with random initial data. The distribution μt of the solution at time t ∈ R is
studied. We prove the convergence of correlation functions of the measures μt to a limit for
large times. The explicit formulas for the limiting correlation functions and for the energy
current density (in the mean) are obtained in terms of the initial covariance. Furthermore,
we prove the weak convergence of μt to a limit measure as t → ∞. We apply these results
to the case when initially some infinite “parts” of the crystal have Gibbs distributions with
different temperatures. In particular, we find stationary states in which there is a constant
nonzero energy current flowing through the crystal. We also study the initial boundary value
problem for the harmonic crystal in the half-space with zero boundary condition and obtain
similar results.
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1. INTRODUCTION

We study the Cauchy problem for a harmonic crystal in dimension d with n components, d, n � 1.
We assume that the initial data Y0(x), x = (x1, . . . , xd) ∈ Z

d, of the problem is a random element
of the Hilbert space Hα consisting of real sequences, see Definition 2.1 below. The distribution of
Y0(x) is a probability measure μ0 with zero mean value. We assume that the covariance Q0(x, y) of
μ0 decreases like |x−y|−N as |x−y| → ∞ for some N > d. Furthermore, we impose the condition S3
(see formulas (2.10)–(2.12) below) which means roughly that Y0(x) is close to different translation-
invariant processes Yn(x) with distributions μn as (−1)njxj → +∞ for all j = 1, . . . , k, with some
k ∈ {1, . . . , d}. Here n stands for the vector n = (n1, . . . , nk), where all nj ∈ {1, 2}. Given t ∈ R,
denote by μt the probability measure that gives the distribution of the solution Y (x, t) to the
dynamical equations with random initial data Y0. We study the asymptotics of μt as t → ∞. The
first objective is to prove the convergence of the correlation functions of μt to a limit,

Qt(x, y) ≡
∫
Hα

(Y0(x)⊗ Y0(y))μt(dY0) → Q∞(x, y), t → ∞, x, y ∈ Z
d. (1.1)

The explicit formulas for the limit covariance Q∞ are given in (2.14)–(2.19). They allow us to
derive the expression for the limiting mean energy current density J∞ in the terms of the initial
covariance Q0(x, y).

We apply our results to a particular case when μn are Gibbs measures with different temperatures
Tn > 0. Therefore, our model can be considered as a “system + 2k reservoirs”, where “reservoirs”
consist of crystal particles lying in 2k regions of the form {x ∈ Z

d : (−1)njxj > a for all j =
1, . . . , k, where nj = 1or 2} with some a > 0, and the “system” is the remaining part of the
crystal. At t = 0, the reservoirs have Gibbs distributions with corresponding temperatures Tn,
n = (n1, . . . , nk). In the case of d = 1, a similar model was studied by Spohn and Lebowitz [24]. We
show that the energy current density J∞ is a constant vector satisfying formulas (4.4) and (4.5).
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Furthermore, under additional symmetry conditions on the harmonic crystal, the coordinates of
the energy current J∞ ≡ (J1

∞, . . . , Jd
∞) are of the form

J l
∞ =

{
−cl

∑′
(Tn|nl=2 − Tn|nl=1) for l = 1, . . . , k,

0 for l = k + 1, . . . , d,
(1.2)

with some constants cl > 0. Here the summation
∑′

is taken over all nj with j �= l.

Our second result gives the (weak) convergence of the measures μt on the Hilbert space Hα with
α < −d/2 to a limit measure μ∞,

μt ⇁ μ∞, t → ∞. (1.3)

This means the convergence of the integrals

∫
f(Y )μt(dY ) →

∫
f(Y )μ∞(dY ) as t → ∞

for any bounded continuous functional f onHα. Furthermore, the limit measure μ∞ is a translation-
invariant Gaussian measure on Hα and has the mixing property.

For infinite one-dimensional (1D) chains of harmonic oscillators, the results (1.1) and (1.3) were
established by Boldrighini, Pellegrinotti and Triolo [1] and by Spohn and Lebowitz [24]. In earlier
works, Lebowitz et al. [23, 4] and Nakazawa [21] analyzed the stationary energy current through
the finite 1D chain of harmonic oscillators in contact with external heat reservoirs at different
temperatures. For d � 1, the convergence (1.3) has been obtained for the first time by Lanford and
Lebowitz [18] for initial measures which are absolutely continuous with respect to the canonical
Gaussian measure. We consider a more general class of initial measures with the mixing condition
and do not assume absolute continuity. The mixing condition was first introduced by Dobrushin
and Sukhov for ideal gas [6]. Using the mixing condition, we have proved the convergence for the
wave and Klein–Gordon equations (see [9] and the references therein) for non translation invariant
initial measures μ0. For multi-dimensional crystals, the results (1.1) and (1.3) were obtained in [7]
for translation invariant measures μ0. The present paper develops our previous work [8], where the
assertions (1.1)–(1.3) were proved in the case k = 1.

In this paper, we also study the initial-boundary value problem for harmonic crystals in the
half-space Zd

+ = {x ∈ Z
d : x1 > 0} with zero boundary condition (as x1 = 0) and obtain the results

similar to (1.1) and (1.3). This generalizes the results of [10] to the more general class of initial
measures. Furthermore, we calculate the limiting energy current density J+,∞(x1), see formulas
(6.12)–(6.15) below. In particular, if d = 1, then J+,∞(x1) ≡ 0. For any d � 2, J+,∞(0) = 0. For
d � 2 and x1 > 0, the coordinates of J+,∞(x1) are of a form similar to (1.2), but with positive
functions cl = cl(x1) if l = 2, . . . , k, and vanish if l = 1, k + 1, . . . , d. Moreover, J+,∞(x1) tends to
a limit as x1 → +∞ (see formula (6.16)). For the 1D infinite chain of harmonic oscillators on the
half-line with nonzero boundary condition, we prove the results (1.1) and (1.3) in [11] and show
that there is a negative limiting energy current at origin (see [11, Remark 2.11]).

There is a large literature devoted to the study of the return to equilibrium, convergence to
nonequilibrium states and heat conduction for nonlinear systems, see [2, 19, 25] and the survey
book [20] for an extensive list of references. For instance, ergodic properties and long time behavior
were studied for weak perturbation of the infinite chain of harmonic oscillators as a model of 1D
harmonic crystals with defects by Fidaleo and Liverani [14] and for the finite chain of anharmonic
oscillators coupled to a single heat bath by Jakšić and Pillet [15]. A finite chain of nonlinear
oscillators coupled to two heat reservoirs was studied by Eckmann, Rey-Bellet and others [12, 13,
22]. For such systems, the existence of nonequilibrium states and the convergence to them were
investigated in [12, 22]. In [13], Eckmann, Pillet, and Rey-Bellet showed that heat (in the mean)
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430 DUDNIKOVA

flows from the hot reservoir to the cold one. Fourier’s law for a harmonic crystal with stochastic
reservoirs was proved by Bonetto, Lebowitz, and Lukkarinen [3]. In the present paper, we find
stationary nonequilibrium states in which there is a nonzero energy current flowing through the
infinite d-dimensional harmonic crystal.

The paper is organized as follows. In Section 2, we impose the needed conditions on the model
and on the initial measures μ0 and state the main results. In Section 3, we construct examples of
random initial data satisfying all assumptions imposed. The application to Gibbs initial measures
and the derivation of the formula (1.2) are given in Section 4. In Section 5.1, uniform bounds for
covariance of μt are obtained, and the proof of (1.3) is discussed. The asymptotics (1.1) is proved
in Section 5.2. In Section 6, we study the initial-boundary value problem for harmonic crystals in
the half-space and prove results similar to (1.1)–(1.3).

2. MAIN RESULTS

2.1. The Model

We consider a Bravais lattice in R
d with a unit cell which contains a finite number of atoms.

For notational simplicity, the lattice is assumed to be simple hypercubic. Let u(x) be the field of
displacements of the crystal atoms in cell x (x ∈ Z

d) from the equilibrium position. In the harmonic
approximation, the field u(x) is governed by equations of the following type (see, e.g., [18]):

{
ü(x, t) = −

∑
y∈Zd V (x− y)u(y, t), x ∈ Z

d, t ∈ R,

u|t=0 = u0(x), u̇|t=0 = v0(x).
(2.1)

Here u(x, t) = (u1(x, t), . . . , un(x, t)), u0(x) = (u01(x), . . . , u0n(x)) ∈ R
n and correspondingly

for v0(x), V (x) is the real interaction (or force) matrix, (Vkl(x)), k, l = 1, . . . , n. Physically
n = d × (number of atoms in the unit cell). Here we take n to be an arbitrary positive inte-
ger. The dynamics (2.1) is invariant under lattice translations.

Let us denote Y (t) = (Y 0(t), Y 1(t)) ≡ (u(·, t), u̇(·, t)), Y0 = (Y 0
0 , Y

1
0 ) ≡ (u0(·), v0(·)). Then (2.1)

takes the form of an evolution equation

Ẏ (t) = A(Y (t)), t ∈ R; Y (0) = Y0. (2.2)

This is a linear Hamiltonian system, since A(Y ) = J

(
V 0
0 I

)
Y = J∇H(Y ) and J =

(
0 I

−I 0

)
.

Here V is a convolution operator with matrix kernel V , I is the unit matrix, and H is the Hamil-
tonian functional

H(Y ) :=
1

2
〈v, v〉 + 1

2
〈u,Vu〉, Y = (u, v), (2.3)

where the kinetic energy is given by

(1/2)〈v, v〉 = (1/2)
∑
x∈Zd

|v(x)|2

and the potential energy by

(1/2)〈u,Vu〉 = (1/2)
∑

x,y∈Zd

(u(x), V (x− y)u(y)),

(· , ·) stands for the real scalar product in Euclidean space R
n (or in R

d).

We assume that the initial data Y0 belongs to the phase space Hα, α ∈ R.
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Definition 2.1. Hα is the Hilbert space of pairs Y ≡ (u(x), v(x)) of Rn-valued functions of
x ∈ Z

d endowed with the norm

‖Y ‖2α ≡
∑
x∈Zd

〈x〉2α(|u(x)|2 + |v(x)|2) < ∞, 〈x〉 :=
√

1 + |x|2.

We impose the following conditions E1–E6 on the matrix V .

E1. There exist positive constants C and γ such that ‖V (x)‖ � Ce−γ|x| for x ∈ Z
d, where

‖V (x)‖ denotes the matrix norm. Let V̂ (θ) be the Fourier transform of V (x), with the convention

V̂ (θ) = Fx→θ[V (x)] ≡
∑
x∈Zd

ei(x,θ)V (x) , θ ∈ T
d,

where T
d denotes the d-torus Rd/(2πZ)d.

E2. V is real and symmetric, i.e., Vlk(−x) = Vkl(x) ∈ R, k, l = 1, . . . , n, x ∈ Z
d.

The conditions E1 and E2 imply that V̂ (θ) is a real-analytic Hermitian matrix-valued function
in θ ∈ T

d.

E3. The matrix V̂ (θ) is nonnegative definite for every θ ∈ T
d.

Let us define the Hermitian nonnegative definite matrix,

Ω(θ) = (V̂ (θ))
1/2 � 0. (2.4)

Ω(θ) has the eigenvalues (“dispersion relations”) 0 � ω1(θ) < ω2(θ) < · · · < ωs(θ), s � n, and the
corresponding spectral projections Πσ(θ) with multiplicity rσ = trΠσ(θ).

Lemma 2.2. (see [7, Lemma 2.2]) Let conditions E1 and E2 be fulfilled. Then there ex-
ists a closed subset C∗ ⊂ T

d of zero Lebesgue measure such that the following assertions hold.
(i) For any point Θ ∈ T

d \C∗, there exists a neighborhood O(Θ) such that each band function ωσ(θ)
can be chosen as real-analytic function in O(Θ). (ii) The eigenvalue ωσ(θ) has constant multiplicity
in T

d \ C∗. (iii) The following spectral decomposition holds,

Ω(θ) =

s∑
σ=1

ωσ(θ)Πσ(θ), θ ∈ T
d \ C∗, (2.5)

where Πσ(θ) is the orthogonal projection in R
n. Πσ is a real-analytic function on T

d \ C∗.

Below we denoted by ωσ(θ) the local real-analytic functions from Lemma 2.2 (i). The next
condition on V is the following.

E4. For each l = 1, . . . , d and σ = 1, . . . , s, ∂θlωσ(θ) does not vanish identically on T
d \ C∗.

To prove the convergence (1.3), we need a stronger condition E4’.

E4’. For each σ = 1, . . . , s, the determinant of the matrix of second partial derivatives of ωσ(θ)
does not vanish identically on T

d \ C∗.
Write

C0 = {θ ∈ T
d : det V̂ (θ) = 0}, Cσ =

d⋃
l=1

{θ ∈ T
d \ C∗ : ∂θlωσ(θ) = 0}, σ = 1, . . . , s. (2.6)

Then the Lebesgue measure of Cσ vanishes, σ = 0, 1, . . . , s (see [7, Lemma 2.3]).

E5. For each σ �= σ′, the identities ωσ(θ) ± ωσ′(θ) ≡ const±, θ ∈ T
d \ C∗, do not hold with

const± �= 0.

The condition E5 can be weakened to the condition E5’, see Remark 2.7 below.

E6. ‖V̂ −1(θ)‖ ∈ L1(Td).
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Example 2.3. For any d, n � 1, we consider the nearest neighbor crystal for which

〈u,Vu〉 =
n∑

l=1

∑
x∈Zd

(
d∑

i=1

κl|ul(x+ ei)− ul(x)|2 +m2
l |ul(x)|2

)
, κl > 0, ml � 0,

where ei = (δi1, . . . , δid). Then

Vkl(x) = 0 for k �= l, Vll(x) =

⎧⎨
⎩

−κl for |x| = 1,
2dκl +m2

l for x = 0,
0 for |x| � 2,

l = 1, . . . , n. (2.7)

Hence, the eigenvalues of V̂ (θ) are

ω̃l(θ) =
√

2κl(1− cos θ1) + · · ·+ 2κl(1− cos θd) +m2
l , l = 1, . . . , n. (2.8)

These eigenvalues still have to be labelled according to magnitude and degeneracy as in Lemma 2.2.
Clearly conditions E1–E5 hold and C∗ = ∅. If all ml > 0, then the set C0 is empty and condition
E6 is fulfilled. Otherwise, if ml = 0 for some l, then C0 = {0}. In this case, E6 is equivalent to
the condition ω̃−2

l (θ) ∈ L1(Td) that holds if d � 3. Therefore, conditions E1–E6 hold for (2.7)
provided either (i) d � 3, or (ii) d = 1, 2 and all ml > 0.

The following proposition is proved in [18, p. 150; 1, p. 128].

Proposition 2.4. Let conditions E1 and E2 hold, and choose some α ∈ R. Then for any
Y0 ∈ Hα, there exists a unique solution Y (t) ∈ C(R,Hα) to the Cauchy problem (2.2); the operator
U(t) : Y0 �→ Y (t) is continuous in Hα.

We assume that Y0 in (2.2) is a measurable random function and denote by μ0 a Borel probability
measure on Hα that gives the distribution of Y0. The expectation with respect to μ0 is denoted by
E. We impose the following conditions S1–S3 on the initial measure μ0.

S1. μ0 has zero expectation value, E(Y0(x)) ≡
∫
(Y0(x))μ0(dY0) = 0, x ∈ Z

d.

S2. The initial correlation functionsQij
0 (x, y) := E

(
Y i
0 (x)⊗ Y j

0 (y)
)
, x, y ∈ Z

d, satisfy the bound

|Qij
0 (x, y)| � h(|x− y|), where rd−1h(r) ∈ L1(0,+∞). (2.9)

Here for a, b, c ∈ C
n, we denote by a⊗ b the linear operator (a⊗ b)c = a

∑n
j=1 bjcj .

S3. Choose some k ∈ {1, . . . , d}. The initial covariance Q0(x, y) = (Qij
0 (x, y))i,j=0,1 depends on

the difference xl − yl for all l = k + 1, . . . , d, i.e.,

Q0(x, y) = q0(x̄, ȳ, x̃− ỹ), (2.10)

where x = (x1, . . . , xd) ≡ (x̄, x̃), x̄ = (x1, . . . , xk), x̃ = (xk+1, . . . , xd). Write

N k := {n = (n1, . . . , nk), where all nj ∈ {1, 2}}. (2.11)

Suppose that for any ε > 0, there exists an N(ε) ∈ N such that for any ȳ ∈ Z
k such that

(−1)njyj > N(ε) for each j = 1, . . . , k, the following bound holds

|q0(ȳ + z̄, ȳ, z̃)− qn(z)| < ε for any fixed z = (z̄, z̃) ∈ Z
d and n ∈ N k. (2.12)
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Here qn(z), n ∈ N k, are the correlation matrices of some translation-invariant measures μn with
zero mean value in Hα.

In particular, if k = 1, then condition S3 means that

Q0(x, y) = q0(x1, y1, x̃− ỹ), where x = (x1, x̃), x̃ = (x2, . . . , xd),

and

q0(y1 + z1, y1, z̃) →
{
q1(z) as y1 → −∞,
q2(z) as y1 → +∞,

z = (z1, z̃) ∈ Z
d. (2.13)

A measure μ is called translation invariant if μ(ThB) = μ(B) for B ∈ B(Hα) and h ∈ Z
d, where

ThY (x) = Y (x − h), x ∈ Z
d, B(Hα) stands for the Borel σ-algebra in Hα. Note that the initial

measure μ0 is not translation-invariant if qn �= qn′ for some n �= n′. Examples of μ0 satisfying
conditions S1–S3 are given in Section 3.

2.2. Convergence of Correlations Functions

Definition 2.5. Let μt be a Borel probability measure in Hα which gives the distribution of
Y (t), μt(B) = μ0(U(−t)B), ∀B ∈ B(Hα), t ∈ R. The correlation functions of the measure μt are
defined by

Qij
t (x, y) = E

(
Y i(x, t)⊗ Y j(y, t)

)
, i, j = 0, 1, x, y ∈ Z

d;

here Y i(x, t) are the components of the random solution Y (t) = (Y 0(·, t), Y 1(·, t)).
Denote by Qt the quadratic form with matrix kernel (Qij

t (x, y))i,j=0,1,

Qt(Ψ,Ψ) =

∫
|〈Y,Ψ〉|2 μt(dY ) =

∑
i,j=0,1

∑
x,y∈Zd

(
Qij

t (x, y),Ψ
i(x)⊗Ψj(y)

)
, t ∈ R,

Ψ = (Ψ0,Ψ1) ∈ S := S ⊕ S, S := S(Zd) ⊗ R
n, where S(Zd) denotes the space of real quickly

decreasing sequences,

〈Y,Ψ〉 =
∑
i=0,1

∑
x∈Zd

(
Y i(x),Ψi(x)

)
.

Let us introduce the limiting correlation matrix Q∞(x, y) = (Qij
∞(x, y))1i,j=0 as follows

Q∞(x, y) = q∞(x− y), x, y ∈ Z
d. (2.14)

Here q∞(x) has the form (in its Fourier transform)

q̂∞(θ) =
s∑

σ=1

Πσ(θ)(M
+
k,σ(θ) + iM−

k,σ(θ))Πσ(θ), θ ∈ T
d \ C∗, (2.15)

where Πσ(θ) is the spectral projection from Lemma 2.2 (iii),

M+
k,σ(θ) =

1

2k

∑
n∈N k

L+
1 (q̂n(θ))

[
1 + Seven

k,n (ωσ(θ))
]
, M−

k,σ(θ) =
1

2k

∑
n∈N k

L−
2 (q̂n(θ))S

odd
k,n (ωσ(θ)),

(2.16)

Seven
k,n (ωσ) =

∑
evenm∈{1,...,k}

∑
(p1,...,pm)∈Pm(k)

sgn

(
∂ωσ(θ)

∂θp1

)
· . . . · sgn

(
∂ωσ(θ)

∂θpm

)
(−1)np1

+···+npm ,

Sodd
k,n (ωσ) =

∑
oddm∈{1,...,k}

∑
(p1,...,pm)∈Pm(k)

sgn

(
∂ωσ(θ)

∂θp1

)
· . . . · sgn

(
∂ωσ(θ)

∂θpm

)
(−1)np1

+···+npm ,
(2.17)
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The symbol Pm(k) denotes the collection of all m-combinations of the set {1, . . . , k} (for instance,
P2(3) = {(1, 2), (2, 3), (1, 3)}),

L±
1 (q̂n(θ)) =

1

2
(q̂n(θ)± C(θ)q̂n(θ)C

∗(θ)) , L±
2 (q̂n(θ)) =

1

2
(C(θ)q̂n(θ)± q̂n(θ)C

∗(θ)) ,
(2.18)

C(θ) =

(
0 Ω(θ)−1

−Ω(θ) 0

)
, C∗(θ) =

(
0 −Ω(θ)

Ω(θ)−1 0

)
, (2.19)

the matrices qn are introduced in condition S3. In particular, if k = 1, then formulas (2.16) become

M+
1,σ(θ) =

1

2
L+
1 (q̂2(θ) + q̂1(θ)) , M−

1,σ(θ) =
1

2
L−
2 (q̂2(θ)− q̂1(θ)) sgn

(
∂ωσ(θ)

∂θ1

)
(2.20)

with the matrices q1 and q2 defined in (2.13). For d = n = 1, formulas (2.20) were obtained in [1, p.
139]. For any d, n � 1 and k = 1, these formulas were derived in [8].

Note that q̂∞ ∈ L1(Td) by Lemma 5.1 and condition E6. Moreover, by (2.15)–(2.19), the matrix
q̂∞(θ) satisfies the “equilibrium condition,” i.e., q̂11∞(θ) = V̂ (θ)q̂00∞(θ), q̂10∞(θ) = −q̂01∞(θ). We also
have

(q̂ii∞(θ))∗ = q̂ii∞(θ)�0, i = 0, 1, (q̂10∞(θ))∗ = −q̂10∞(θ).

The first result of the paper is the following theorem.

Theorem 2.6. Let d, n � 1, α < −d/2, and assume that conditions E1–E6 and S1–S3 hold.
Then the convergence (1.1) is true, where Q∞ is defined in (2.14)–(2.19).

In Sec. 6, we study the initial boundary value problem for harmonic crystals with zero boundary
condition and obtain results similar to Theorem 2.6, see Theorem 6.4 below.

Remark 2.7. Condition E5 on the matrix V can be weakened. Namely, it suffices to impose
the following restriction.

E5’. If for some σ �= σ′, ωσ(θ) + ωσ′(θ) ≡ const+ with const+ �= 0, then

p11n,σσ′(θ)− ωσ(θ)ωσ′(θ)p00n,σσ′(θ) ≡ 0 and ωσ(θ)p
01
n,σσ′(θ) + ωσ′(θ)p10n,σσ′(θ) ≡ 0.

If for some σ �= σ′, ωσ(θ)− ωσ′(θ) ≡ const− with const− �= 0, then

p11n,σσ′(θ) + ωσ(θ)ωσ′(θ)p00n,σσ′(θ) ≡ 0 and ωσ(θ)p
01
n,σσ′(θ)− ωσ′(θ)p10n,σσ′(θ) ≡ 0.

Here

pijn,σσ′(θ) := Πσ(θ)q̂
ij
n (θ)Πσ′(θ), θ ∈ T

d, σ, σ′ = 1, . . . , s, i, j = 0, 1, n ∈ N k. (2.21)

This condition holds, for instance, for the canonical Gibbs measures μn considered in Section 4.2.

Examples 2.8. We rewrite the formulas for q∞ in some particular cases.

(i) In the case when the initial covariance is translation invariant, i.e., Q0(x, y) = q0(x− y), the
matrix q̂∞ is of the form

q̂∞(θ) =

s∑
σ=1

Πσ(θ)L
+
1 (q̂0(θ))Πσ(θ), θ ∈ T

d \ C∗. (2.22)

(ii) Let the initial covariance Q0 satisfy a stronger condition than (2.12). Namely, assume that
Q0 has the form (2.10) and for any z = (z̄, z̃) ∈ Z

d, lim|ȳ|→∞ q0(ȳ + z̄, ȳ, z̃) = q∗(z). Then the

condition (2.12) is fulfilled with qn(z) = q∗(z) for any n ∈ N k. In this case, Theorem 2.6 holds,
and q̂∞ is of the form (2.22) with q̂∗ instead of q̂0. Therefore, Theorem 2.6 generalizes the result of
[7, Prop. 3.2], where the convergence (1.1) was proved in the case when Q0(x, y) = q0(x− y).
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2.3. Weak Convergence of Measures

To prove the convergence (1.3) of the measures μt, we impose the stronger condition S4 on μ0

than the bound (2.9). To formulate this condition, let us denote by σ(A), A ⊂ Z
d, the σ-algebra

in Hα generated by Y0(x) with x ∈ A. Define the Ibragimov mixing coefficient of a probability
measure μ0 on Hα by the rule (cf [16, Definition 17.2.2])

ϕ(r) ≡ sup
A,B ⊂ Z

d :
dist(A,B) � r

sup
A ∈ σ(A), B ∈ σ(B)

μ0(B) > 0

|μ0(A ∩B)− μ0(A)μ0(B)|
μ0(B)

.

Definition 2.9. We say that the measure μ0 satisfies a strong uniform Ibragimov mixing con-
dition if ϕ(r) → 0 as r → ∞.

S4. The initial mean “energy” density is uniformly bounded:

E[|u0(x)|2 + |v0(x)|2] = trQ00
0 (x, x) + trQ11

0 (x, x) � e0 < ∞, x ∈ Z
d. (2.23)

Moreover, μ0 satisfies the strong uniform Ibragimov mixing condition and

∫ ∞

0

rd−1ϕ1/2(r) dr < ∞.

Remark 2.10. By [16, Lemma 17.2.3], conditions S1 and S4 imply the bound (2.9) with
h(r) = Ce0ϕ

1/2(r), where e0 is a constant from the bound (2.23).

For a probability measure μ on Hα, we denote by μ̂ the characteristic functional (Fourier trans-
form),

μ̂(Ψ) ≡
∫

exp(i〈Y,Ψ〉)μ(dY ), Ψ ∈ S.

A measure μ is called Gaussian (of zero mean) if its characteristic functional has the form μ̂(Ψ) =
exp{−Q(Ψ,Ψ)/2}, where Q is a real nonnegative quadratic form in S.

Theorem 2.11. Let d, n � 1, α < −d/2, and assume that conditions E1–E3, E4’, E5’, E6,
S1, S3, and S4 are fulfilled. Then the following assertions hold.

(i) The measures μt weakly converge in the Hilbert space Hα,

μt → μ∞ as t → ∞. (2.24)

The limit measure μ∞ is a Gaussian translation-invariant measure on Hα. The characteristic
functional of μ∞ is of the form μ̂∞(Ψ) = exp{−Q∞(Ψ, Ψ)/2}, Ψ ∈ S, where Q∞ is the quadratic
form with the matrix kernel Q∞(x, y) defined in (2.14).

(ii) The measure μ∞ is time stationary, i.e., [U(t)]∗μ∞ = μ∞, t ∈ R.

(iii) The flow U(t) is mixing with respect to the measure μ∞, i.e., for any f, g ∈ L2(Hα, μ∞),

lim
t→∞

∫
f(U(t)Y )g(Y )μ∞(dY ) =

∫
f(Y )μ∞(dY )

∫
g(Y )μ∞(dY ).

In particular, the flow U(t) is ergodic with respect to the measure μ∞.

For harmonic crystals in the half-space, the convergence (2.24) also holds. For details, see Sec-
tion 6. Assertion (i) of Theorem 2.11 follows from Propositions 2.12 and 2.13.
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Proposition 2.12. Let the conditions E1–E3, E6, S1 and S2 hold. Then the family of measures
{μt, t ∈ R} is weakly compact in Hα with any α < −d/2, and the following bound holds

sup
t∈R

E‖U(t)Y0‖2α < ∞. (2.25)

Proposition 2.13. Let conditions E1–E3, E4’, E5’, E6, S1, S3, and S4 hold. Then for every
Ψ ∈ S, the characteristic functionals of μt converge to a Gaussian functional,

μ̂t(Ψ) :=

∫
ei〈Y,Ψ〉μt(dY ) → exp

{
−1

2
Q∞(Ψ,Ψ)

}
, t → ∞.

Proposition 2.12 (Proposition 2.13) provides the existence (respectively, the uniqueness) of the
limit measure μ∞. Proposition 2.12 is proved in Section 5.1. Proposition 2.13 can be proved using
the technique from [8]. Assertion (ii) of Theorem 2.11 follows from (2.24) since the group U(t) is
continuous in Hα by Proposition 2.4. The ergodicity and mixing of the limit measures μ∞ follow
by the same arguments as in [7].

Lemma 2.14. Let conditions E1–E4, E5’, and E6 hold. Assume that the initial measure μ0 is
Gaussian and satisfies conditions S1–S3. Then all assertions of Theorem 2.11 remain valid.

This lemma follows from Theorem 2.6 and Proposition 2.12.

3. EXAMPLES OF INITIAL MEASURES

Now we construct Gaussian initial measures μ0 satisfying conditions S1–S3. For k = 1 (see the
condition S3), an example of μ0 is given in [8]. For any k � 1, the measure μ0 can be constructed
in the following way. At first, for simplicity, we assume that u0, v0 ∈ R

1 and define the correlation
functions qijn (x− y), n ∈ N k, which are zero for i �= j, while for i = 0, 1,

q̂iin (θ) := Fz→θ[q
ii
n (z)] ∈ L1(Td), q̂iin (θ) � 0. (3.1)

Then, by the Minlos theorem [5], there exist Borel Gaussian measures μn on Hα, α < −d/2, with
correlation functions qijn (x− y), because

∫
‖Y ‖2α μn(dY ) =

∑
x∈Zd

〈x〉2α tr
(
q00n (0) + q11n (0)

)
= C(α, d)

∫
Td

tr
(
q̂00n (θ) + q̂11n (θ)

)
dθ < ∞.

Further, we take functions ζn ∈ C(Zk) such that

ζn(x̄) = ζn1
(x1) · . . . · ζnk

(xk), x̄ = (x1, . . . , xk), n = (n1, . . . , nk), nj ∈ {1, 2},

where the sequences ζ1(x) and ζ2(x), x ∈ Z, are defined by the rule

ζ1(x) =

{
1 for x < −a,
0 for x > a,

ζ2(x) =

{
1 for x > a,
0 for x < −a,

with some a > 0. (3.2)

Finally, define a Borel probability measure μ0 as a distribution of the random function

Y0(x) =
∑

n∈N k

ζn(x̄)Yn(x), x = (x̄, x̃) ∈ Z
d, x̄ = (x1, . . . , xk), x̃ = (xk+1, . . . , xd), (3.3)
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where Yn(x) are Gaussian independent functions in Hα with distributions μn. Then, the correlation
matrix of μ0 is of the form

Q0(x, y) =
∑

n∈N k

ζn(x̄)ζn(ȳ)qn(x− y), (3.4)

where x = (x̄, x̃), y = (ȳ, ỹ) ∈ Z
d, and qn(x − y) are the correlation matrices of the measures μn.

Hence, Q0(x, y) = q0(x̄, ȳ, x̃− ỹ), and for every z = (z̄, z̃) ∈ Z
d,

q0(ȳ + z̄, ȳ, z̃) = qn(z) if (−1)njyj > a+ |zj |, ∀j = 1, . . . , k, n = (n1, . . . , nk).

Therefore, the measure μ0 satisfies conditions S1 and S3. If

|qiin (z)| � h(|z|), where rd−1h(r) ∈ L1(0,+∞), (3.5)

then μ0 satisfies S2 by (3.4). Now we give examples of qiin satisfying (3.1) and (3.5).

Example 3.1. Put qiin (z) = f(z1)f(z2) · . . . · f(zd) and construct sequences f(z), z ∈ Z, such
that conditions (3.1) and (3.5) hold.

(i) Let f(z) = N0−|z| for |z| � N0 and f(z) = 0 for |z| > N0 with some N0 > 0. Then qiin (z) = 0

for |z| � r0 ≡ N0

√
d, and f̂(θ) = (1 − cosN0θ)/(1 − cos θ), θ ∈ T

1. Hence, (3.1) and (3.5) are
fulfilled. Furthermore, the condition S4 also follows with ϕ(r) = 0 for r � r0. This example of the
sequence f can be generalized as follows.

Let f be an even nonnegative sequence such that f ∈ �1 and ΔLf(z) � 0 for any z � 1. Then

f̂(θ) � 0 by [17, Th. 4.1 and 2.7], and (3.1) follows. If, in addition, |f(z)| � C(1 + |z|)−N with
N > d, then (3.5) holds.

(ii) Let f(z) = (a + b|z|)γ|z|, z ∈ Z, with γ ∈ (0, 1), a > 0 and b � 0. Hence, (3.5) is fulfilled

with h(r) = C(1 + r)−N (N > d). If a � 2bγ/(1− γ), then ΔLf(z) � 0 for any z � 1 and f̂(θ) � 0
(see case (i)). If 2bγ/(1− γ2) � a < 2bγ/(1− γ), then ΔLf(1) < 0. However, in this case, (3.1) also
holds because

f̂(θ) =
a(1− γ2)

1− 2γ cos θ + γ2
+

2bγ
(
(1 + γ2) cos θ − 2γ

)
(1− 2γ cos θ + γ2)2

=
[a(1− γ2) + 2bγ cos θ)](1− γ)2 + [a(1− γ2)− 2bγ](1− cos θ)2γ

(1− 2γ cos θ + γ2)
2 � 0.

Example 3.2. Let u0, v0 ∈ R
n with any n � 1, and

q00n (z) = TnF
−1
θ→z[V̂

−1(θ)], q11n (z) = TnI, z ∈ Z
d,

with some constants Tn > 0. Assume, in addition, that C0 = ∅ (see (2.6)), i.e.,

det V̂ (θ) �= 0, ∀θ ∈ T
d. (3.6)

Hence,

|q00n (z)| = Tn

∣∣∣F−1
θ→z[V̂

−1(θ)]
∣∣∣ ∼ (1 + |z|)−N , ∀N ∈ N, (3.7)

and conditions (3.1) and (3.5) are fulfilled with h(r) = (1 + r)−N , where N > d.

Remark 3.3. Suppose that the initial covariance has the following particular form:

Q0(x, y) = T (x̄+ ȳ)r(x− y) or Q0(x, y) =
√

T (x̄)T (ȳ)r(x− y), (3.8)

where T (x̄) is a bounded nonnegative sequence on Z
k, r(x) = (rij(x)) is a correlation matrix of

some translation-invariant measure in Hα with zero mean value, |rij(x)| � h(|x|), where we assume
that rd−1h(r) ∈ L1(0,+∞). Then, condition S2 is fulfilled. For every n ∈ N k, we assume that
for any ε > 0 there exists an N(ε) ∈ N such that for any x̄ ∈ Z

k: (−1)njxj > N(ε) with any
j = 1, . . . , k, |T (x̄)− Tn| < ε. Hence, condition S3 is fulfilled with qn(z) := Tn r(z).
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4. ENERGY CURRENT

4.1. nonequilibrium States

First we derive an expression for the energy current density. Let u(x, t) be a solution of Eq. (2.1)
with finite energy (see (2.3)). For the half-space Ωl := {x ∈ Z

d : xl � 0}, we define the energy in
the region Ωl as

El(t) :=
1

2

∑
x∈Ωl

⎧⎨
⎩|u̇(x, t)|2 +

∑
y∈Zd

(u(x, t), V (x− y)u(y, t))

⎫⎬
⎭ , l = 1, . . . , d.

Introduce new variables: x = x′ + mel, y = y′ + pel, where x′, y′ ∈ Z
d with x′

l = y′l = 0, el =

(δl1, . . . , δld), l = 1, . . . , d. Using Eq. (2.1), we obtain Ėl(t) =
∑

x′ J l(x′, t). Here J l(x′, t) stands for
the energy current density in the direction el:

J l(x′, t) :=
1

2

∑
y′

⎧⎨
⎩

∑
m�−1, p�0

(u̇(x′ +mel, t), V (x′ +mel − y′ − pel)u(y
′ + pel, t))

−
∑

m�0, p�−1

(u̇(x′ +mel, t), V (x′ +mel − y′ − pel)u(y
′ + pel, t))

⎫⎬
⎭ ,

where x′, y′ ∈ Z
d with x′

l = y′l = 0. Now let u(x, t) be a random solution of (2.1) with the initial
measure μ0 satisfying conditions S1–S3. The convergence (1.1) yields

E
(
J l(x′, t)

)
→ J l

∞ :=
1

2

∑
y′

⎛
⎝ ∑

m�−1, p�0

tr [q10∞(x′ − y′ + (m−p)el)V
T (x′ − y′ + (m−p)el)]

−
∑

m�0, p�−1

tr [q10∞(x′ − y′ + (m−p)el)V
T (x′ − y′ + (m−p)el)]

⎞
⎠

=− 1

2

∑
z∈Zd

zl tr [q
10
∞(z)V T (z)] as t → ∞.

Applying the Fourier transform and the equality V̂ ∗(θ) = V̂ (θ), we obtain

J l
∞ = −(2π)−d 1

2

∫
Td

i tr
[
q̂10∞(θ)∂θl V̂ (θ)

]
dθ, l = 1, . . . , d.

Since Πσ(θ) are orthogonal projections, Πσ(θ) (∂θlΠσ′(θ))Πσ(θ) = 0 for any σ, σ′ = 1, . . . , s and

l = 1, . . . , d. Hence, applying the formula (2.15) and the following decomposition of V̂ (θ),

V̂ (θ) =
s∑

σ=1

Πσ(θ)ω
2
σ(θ),

we obtain tr
[
q̂10∞(θ)

∑s
σ=1 ω

2
σ(θ)∂θlΠσ(θ)

]
= 0 and

J l
∞ =− i(2π)−d

s∑
σ=1

∫
Td

tr

[
Πσ(θ)

(
M+

k,σ(θ) + iM−
k,σ(θ)

)10

Πσ(θ)

]
ωσ(θ)∂θlωσ(θ) dθ

=− (2π)−d 1

2k

s∑
σ=1

∑
n∈N k

{
1

2

∫
Td

tr
[
ω2
σ(θ)p

00
n,σσ(θ) + p11n,σσ(θ)

]
Sodd
k,n (ωσ)∂θlωσ(θ) dθ

+

∫
Td

Im
(
tr p01n,σσ(θ)

) (
1 + Seven

k,n (ωσ)
)
ωσ(θ)∂θlωσ(θ) dθ

}
, l = 1, . . . , d, (4.1)

where the pijn,σσ are introduced in (2.21). Here we use the equality tr pijn,σσ(θ) = tr pjin,σσ(θ).
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Example 4.1. Let, for simplicity, all the functions tr[pijn,σσ(θ)] and ωσ(θ) be even for every

variable θ1, . . . , θd. Then, J
l
∞ = 0 for l > k, and J l

∞ = C l
1 − C l

2 for l = 1, . . . , k, where

C l
j := (2π)−d 1

2k

s∑
σ=1

∑
n

′ 1

2

∫
Td

tr
[
ω2
σ(θ)p

00
n,σσ(θ) + p11n,σσ(θ)

]
|nl=j |∂θlωσ(θ)| dθ, j = 1, 2.

Here the summation
∑′

n is taken over n1, . . . , nl−1, nl+1, . . . , nk ∈ {1, 2}. Assume, in addition,
that the initial correlation matrix Q0 has the form (3.8). Then, pijn,σσ(θ) = Tnp

ij
σσ(θ), where, by

definition, pijσσ(θ) := Πσ(θ)r̂
ij(θ)Πσ(θ). In this case, J∞ is of the form (1.2) with

cl =
s∑

σ=1

(2π)−d 1

2

∫
Td

tr
[
ω2
σ(θ)p

00
σσ(θ) + p11σσ(θ)

]
|∂θlωσ(θ)| dθ.

We see that one can choose positive numbers Tn such that J∞ �= 0.

Below we simplify formula (4.1) in the case when μn are Gibbs measures corresponding to
positive temperatures Tn. Furthermore, under additional symmetry conditions on the eigenvalues
ωσ(θ), we derive formula (1.2) for J∞. Thus, there exist stationary nonequilibrium states (in fact,
Gaussian measures μ∞) in which there is a nonzero constant energy current passing through the
points of the crystal.

4.2. Energy Current for Gibbs Measures

Formally, Gibbs measures gβ are gβ(dY ) = 1
Z
e−βH(Y )∏

x∈Zd dY (x), where H(Y ) is defined
in (2.3), Z is normalization factor, β = T−1, T > 0 is a corresponding absolute temperature. We
introduce the Gibbs measures gβ(dY ) as the Gaussian measures in Hα, α < −d/2, with zero mean
and with the correlation matrices defined by their Fourier transform,

q̂00β (θ) = T V̂ −1(θ), q̂11β (θ) = TI, q̂01β (θ) = q̂10β (θ) = 0, (4.2)

where I denotes unit matrix in R
n×R

n. By the Minlos theorem [5], the Borel probability measures
gβ exist in the spaces Hα. Indeed,

∫
‖Y ‖2α gβ(dY ) =

∑
x∈Zd

〈x〉2α tr[q00β (0) + q11β (0)] < ∞,

since α < −d/2 and

tr[q00β (0) + q11β (0)] = (2π)−d

∫
Td

tr[q̂00β (θ) + q̂11β (θ)] dθ = T (2π)−d

∫
Td

tr V̂ −1(θ) dθ + Tn < ∞.

The last bound is obvious if C0 = ∅ and follows from the condition E6 if C0 �= ∅.
Let μ0 be a Borel probability measure in Hα giving the distribution of the random function Y0

constructed in Section 3 (see formula (3.3)) with Gibbs measures μn ≡ gβn
(βn = 1/Tn, Tn > 0)

which have correlation matrices qn(x) ≡ qβn
(x), where the matrix qβ = (qijβ )i,j=0,1 is defined by

(4.2). We impose, in addition, condition (3.6). Then, conditions S1–S3 hold (see Example 3.2). We
check that in the case of the Gibbs measures μn ≡ gβn

, condition E5’ is fulfilled (see Remark 2.7).
Indeed, by (4.2), we have

p00n,σσ′(θ) = Πσ(θ)q̂
00
n (θ)Πσ′(θ) = Tnω

−2
σ (θ)Πσ(θ)δσσ′

p11n,σσ′(θ) = Πσ(θ)q̂
11
n (θ)Πσ′(θ) = Tn Πσ(θ)δσσ′

∣∣∣∣ σ, σ′ = 1, . . . , s, (4.3)
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and pijn,σσ′(θ) = 0 for i �= j. Hence, assertions (1.1) and (2.24) hold, see Lemma 2.14.

Now we rewrite the limit covariance q̂∞(θ) and the limit mean energy current J∞ in the case
when μn = gβn

are Gibbs measures. Applying (2.15), (2.16), and (2.18), we obtain

q̂11∞(θ) = V̂ (θ)q̂00∞(θ) =

s∑
σ=1

Πσ(θ)
1

2k

∑
n∈N k

Tn

[
1 + Seven

k,n (ωσ(θ))
]
,

q̂10∞(θ) = −q̂01∞(θ) = −i

s∑
σ=1

Πσ(θ)ω
−1
σ (θ)

1

2k

∑
n∈N k

TnS
odd
k,n (ωσ(θ)),

where the functions Seven
k,n (ωσ) and Sodd

k,n (ωσ) are defined in (2.17). Substituting pijn,σσ(θ) from (4.3)
in the r.h.s. of (4.1), we obtain

J l
∞=− 1

(2π)d
1

2k

s∑
σ=1

∑
n∈N k

∫
Td

rσ Tn Sodd
k,n (ωσ(θ)) ∂θlωσ(θ) dθ

=− 1

2k

∑
n∈N k

Tn

⎛
⎝ ∑

oddm∈{1,...,k}

∑
(p1,...,pm)∈Pm(k)

clp1...pm
(−1)np1

+···+npm

⎞
⎠ , l = 1, . . . , d,

(4.4)

where rσ = tr[Πσ(θ)] is the multiplicity of the eigenvalue ωσ (see Lemma 2.2), the numbers clp1...pm

are defined as follows

clp1...pm
:=

1

(2π)d

s∑
σ=1

∫
Td

rσ sign

(
∂ωσ(θ)

∂θp1

)
· . . . · sign

(
∂ωσ(θ)

∂θpm

)
∂ωσ(θ)

∂θl
dθ. (4.5)

Under the additional symmetry conditions (SC) on the interaction matrix V , the formulas (4.4)
and (4.5) can be simplified.

SC. Suppose that one of the following conditions on ωσ, σ = 1, . . . , s, holds.

(a) Each ωσ(θ) is even for every variable θk+1, . . . , θd, and, in addition, if k � 2, then each ωσ(θ)
is even for some k − 1 variables from the set {θ1, . . . , θk}.

(b) Each ωσ(θ) is even for every variable θ1, . . . , θk.

(c) For every p = 1, . . . , k, sgn (∂θpωσ(θ)) depends only on the variable θp, and, in addition, if
k � 3, then each ωσ(θ) is even for some k − 1 variables from {θ1, . . . , θk}.

For instance, conditions (a), (b), and (c) hold for the nearest neighbor crystal, see (2.8). Under
these restrictions on ωσ, all numbers clp1...pm

in (4.5) are equal to zero except for the case when
m = 1 and l = p1 ∈ {1, . . . , k}. Write

cl ≡ cll =
1

(2π)d

s∑
σ=1

∫
Td

rσ

∣∣∣∣∂ωσ(θ)

∂θl

∣∣∣∣ dθ > 0, l = 1, . . . , k. (4.6)

Therefore,

J l
∞ =

{
−cl

1
2k

∑
n∈N k(−1)nlTn = −cl

1
2k

∑′ (
Tn|nl=2 − Tn|nl=1

)
, l = 1, . . . , k,

0, l = k + 1, . . . , d,
(4.7)

where the summation
∑′ is taken over n1, . . . , nl−1, nl+1, . . . , nk ∈ {1, 2}. In particular, if k = 1,

then the limiting energy current density is

J∞ = −1

2
(c1 (T2 − T1) , 0, . . . , 0), c1 > 0. (4.8)
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In this case, the harmonic crystal can be considered as a “system + two reservoirs,” where by
“reservoirs” we mean the two parts of the crystal consisting of the particles with x1 � −a and with
x1 � a (a > 0), and by a “system” the remaining (“middle”) part (cf [24, Section 3]). Initially, the
reservoirs are in thermal equilibrium with temperatures T1 and T2. Therefore, the formula (4.8)
corresponds to the Second Law (see, for instance, [2, 24]), i.e., the heat flows (on average) from the
“hot reservoir” to the “cold” one.

If k = 2, then our model can be represented as a “system + four reservoirs,” where the reservoirs
consist of particles lying in the four regions {x1, x2 � −a}, {x1 � −a, x2 � a}, {x1 � a, x2 � −a},
and {x1, x2 � a}. The initial states of the reservoirs are distributed according to Gibbs measures
with corresponding temperatures T11, T12, T21, and T22. Formula (4.7) becomes

J∞ = −1

4
(c1 (T21 − T11 + T22 − T12) , c2 (T12 − T11 + T22 − T21) , 0, . . . , 0) , c1, c2 > 0.

Hence, J∞ �= 0 for any positive values of Tij except in the case when T11 = T22 and T12 = T21.

For any k, our model is a “system + 2k reservoirs”, where the “reservoirs” are the crystal particles
with position in the regions {x ∈ Z

d : (−1)njxj > a ∀j = 1, . . . , k}. At t = 0, these reservoirs are
assumed to be in thermal equilibrium with temperatures Tn, n ∈ N k. By virtue of formula (4.7),
we can choose the temperatures Tn so that the limiting energy current density J∞ is not zero.

5. CONVERGENCE OF COVARIANCE

5.1. Bounds of Correlation Matrices

By lp ≡ lp(Zd) ⊗ R
n, p, d, n � 1, we denote the space of sequences f(x) = (f1(x), . . . , fn(x))

endowed with the norm
‖f‖lp = (

∑
x∈Zd

|f(x)|p)1/p.

Lemma 5.1. (i) Let conditions S1 and S2 hold. Then for any Φ,Ψ ∈ l2,

|〈Q0(x, y),Φ(x)⊗Ψ(y)〉| � C‖Φ‖l2‖Ψ‖l2 . (5.1)

(ii) Let conditions S1–S3 hold. Then qijn ∈ �1. Hence, q̂ijn ∈ C(Td), i, j = 0, 1.

Proof. (i) It follows from the bound (2.9) that

∑
y∈Zd

|Qij
0 (x, y)| �

∑
z∈Zd

h(|z|) < ∞.

Similarly, ∑
x∈Zd

|Qij
0 (x, y)| � C < ∞ for all y ∈ Z

d.

This implies the bound (5.1) by the Shur lemma.

(ii) The bound (2.9) and condition (2.12) imply the same bound for qijn (z), i.e., |qijn (z)| � h(|z|),
where rd−1h(r) ∈ L1(0,+∞). Hence, qijn ∈ l1.

Lemma 5.2. Let conditions E1–E3, E6, S1, S2 hold, and α < −d/2. Then the bound (2.25)
holds.

This lemma can be proved by a same way as in [8]. We repeat the proof, since some notation
and some technical bounds obtained in the proof will be applied in Section 5.2 below.
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Proof. Note first that

E‖Y (·, t)‖2α =
∑
x∈Zd

〈x〉2α(trQ00
t (x, x) + trQ11

t (x, x)), where α < −d/2.

Hence, to prove (2.25), it suffices to check that supt∈R
supx,y∈Zd ‖Qt(x, y)‖ � C < ∞. Applying the

Fourier transform to (2.2), we obtain

˙̂
Y (t) = Â(θ)Ŷ (t), t ∈ R, Ŷ (0) = Ŷ0. (5.2)

Here we denote Â(θ) =

(
0 1

−V̂ (θ) 0

)
, θ ∈ T

d. Therefore, the solution Ŷ (θ, t) of (5.2) admits the

representation Ŷ (θ, t) = Ĝt(θ)Ŷ0(θ) with Ĝt(θ) := exp (Â(θ)t). In the coordinate space, we have

Y (x, t) =
∑

x′∈Zd

Gt(x− x′)Y0(x
′), x ∈ Z

d. (5.3)

The Green function Gt(x) has the form (in its Fourier transform)

Ĝt(θ) =

(
cos Ωt sinΩt Ω−1

− sinΩt Ω cosΩt

)
, (5.4)

where Ω = Ω(θ) is the Hermitian matrix defined by (2.4). Then

Ĝt(θ) = cos Ωt I + sinΩt C(θ), (5.5)

where C(θ) is defined by (2.19). The representation (5.3) gives

Qij
t (x, y) = E(Y i(x, t)⊗ Y j(y, t)) =

∑
x′,y′∈Zd

∑
k,l=0,1

Gik
t (x−x′)Qkl

0 (x′, y′)Gjl
t (y−y′)

= 〈Q0(x
′, y′),Φi

x(x
′, t)⊗ Φj

y(y
′, t)〉,

(5.6)

where Φi
x(x

′, t) := (Gi0
t (x−x′),Gi1

t (x−x′)), x′ ∈ Z
d, i = 0, 1. Note that the Parseval formula, (5.4),

and condition E6 imply

‖Φi
x(·, t)‖2l2 = (2π)−d

∫
Td

|Φ̂i
x(θ, t)|2 dθ = (2π)−d

∫
Td

(|Ĝi0
t (θ)|2 + |Ĝi1

t (θ)|2) dθ � C0 < ∞.

Then the bound (5.1) gives

|Qij
t (x, y)| = |〈Q0(x

′, y′),Φi
x(x

′, t)⊗ Φj
y(y

′, t)〉| � C‖Φi
x(·, t)‖l2 ‖Φj

y(·, t)‖l2 � C1 < ∞,

where the constant C1 does not depend on x, y ∈ Z
d, t ∈ R.

Proposition 2.12 follows from the bound (2.25) by the Prokhorov Theorem [26, Lemma II.3.1]
using the method of [26, Th. XII.5.2], since the embedding Hα ⊂ Hβ is compact if α > β.
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5.2. Proof of Theorem 2.6

To prove Theorem 2.6, it suffices to check that for all Ψ ∈ S,

Qt(Ψ,Ψ) → Q∞(Ψ,Ψ), t → ∞. (5.7)

In the cases when k = 0 and k = 1, the convergence (5.7) was proved in [7] and [8], respectively.
We derive (5.7) for any k � 1.

Definition 5.3. (i) The critical set is C := C∗ ∪ C0 ∪σ Cσ with C∗ as in Lemma 2.2 and sets C0
and Cσ defined by (2.6).

(ii) S0 := {Ψ ∈ S : Ψ̂(θ) = 0 in a neighborhood of C}.

Obviously mes C = 0. Write the inner product 〈Y (·, t),Ψ〉 in the form 〈Y (·, t),Ψ〉 = 〈Y0,Φ(·, t)〉,
where Φ(x, t) := F−1

θ→x[Ĝ∗
t (θ)Ψ̂(θ)]. Therefore,

Qt(Ψ,Ψ) = E|〈Y (·, t),Ψ〉|2 = 〈Q0(x, y),Φ(x, t) ⊗ Φ(y, t)〉, (5.8)

where the Parseval identity and (5.4) yield

‖Φ(·, t)‖2l2 = (2π)−d

∫
Td

‖Ĝ∗
t (θ)‖2|Ψ̂(θ)|2dθ � C

∫
Td

(
1 + ‖V −1(θ)‖

)
|Ψ̂(θ)|2dθ =: C‖Ψ‖2V . (5.9)

By (5.1), (5.8), and (5.9), the uniform bounds hold, supt∈R
|Qt(Ψ,Ψ)| � C‖Ψ‖2V , Ψ ∈ S. Therefore,

it suffices to prove the convergence (5.7) for Ψ ∈ S0 only.

We define a matrix Q∗(x, y), x, y ∈ Z
d, as follows

Q∗(x, y) =
1

2k

∑
n∈N k

qn(x− y)(1 + (−1)n1 sgn y1) · . . . · (1 + (−1)nk sgn yk)

=
1

2k

∑
n∈N k

qn(x− y)

⎡
⎣1 +

k∑
m=1

∑
(p1,...,pm)∈Pm(k)

(−1)np1
+···+npm sgn yp1

· . . . · sgn ypm

⎤
⎦
(5.10)

with the matrices qn(x) introduced in condition S3. For instance, for k = 1,

Q∗(x, y) =
1

2
(q1(x− y) + q2(x− y)) +

1

2
(q2(x− y)− q1(x− y)) sgn y1.

Note that Q∗(x, y) = qn(x − y) in every region {(x, y) ∈ Z
2d : (−1)n1y1 > 0, . . . , (−1)nkyk > 0},

n = (n1, . . . , nk) ∈ N k. Denote Qr(x, y) = Q0(x, y) − Q∗(x, y). Therefore, the convergence (5.7)
follows from (5.8) and the following proposition.

Proposition 5.4. For any Ψ ∈ S0, the following assertions hold.

(a) limt→∞〈Q∗(x, y),Φ(x, t) ⊗ Φ(y, t)〉 = 〈q∞(x− y),Ψ(x)⊗Ψ(y)〉,
(b) limt→∞〈Qr(x, y),Φ(x, t) ⊗ Φ(y, t)〉 = 0.

At first, we prove the auxiliary lemma.
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Lemma 5.5. Let q(x) =
(
qij(x)

)
i,j=0,1

, x ∈ Z
d, be 2n×2n matrix with n×n entries qij(x) sat-

isfying the bound |qij(x)| � h(|x|), where rd−1h(r) ∈ L1(0,+∞). Assume that either condition E5
holds or condition E5’ is fulfilled with the matrices q̂ij(θ) instead of q̂ijn (θ). Then for any Ψ ∈ S0,

lim
t→∞

〈q(x− y),Φ(x, t) ⊗ Φ(y, t)〉 = 〈q0∞(x− y),Ψ(x)⊗Ψ(y)〉, (5.11)

where

q̂0∞(θ) =

s∑
σ=1

Πσ(θ)L
+
1 (q̂(θ))Πσ(θ), θ ∈ T

d \ C∗.

Moreover, for any k ∈ {1, . . . , d},
lim
t→∞

〈q(x− y) sgn y1 · . . . · sgn yk,Φ(x, t)⊗ Φ(y, t)〉 = 〈qk∞(x− y),Ψ(x)⊗Ψ(y)〉, (5.12)

where the matrix qk∞(x) has the form (in its Fourier transform)

q̂k∞(θ) =

s∑
σ=1

Πσ(θ)Lk (q̂(θ))Πσ(θ) sgn(∂θ1ωσ(θ)) · . . . · sgn(∂θkωσ(θ)), θ ∈ T
d \ C∗.

Here

Lk (q̂(θ)) =

{
L+
1 (q̂(θ)) if k is even,

i L−
2 (q̂(θ)) if k is odd,

(5.13)

where the expressions L+
1 and L−

2 are introduced in (2.18).

Proof. Using the Parseval identity, we have

It := 〈q(x− y) sgn y1 · . . . · sgn yk,Φ(x, t)⊗ Φ(y, t)〉

= (2π)−2d

∫
T2d

(F x → θ
y → −θ′

[q(x− y) sgn y1 · . . . · sgn yk], Φ̂(θ, t)⊗ Φ̂(θ′, t) ) dθ dθ′.

Note that Fy→θ(sgn y) = iPV(1/tg(θ/2)), θ ∈ T
1, y ∈ Z

1, where PV stands for the Cauchy
principal part. Hence,

Fx→θ

y→−θ′
[q(x− y) sgn y1 · . . . · sgn yk]

= (2π)d−kδ(θ̃ − θ̃′) q̂(θ) ik PV

(
1

tg((θ1 − θ′1)/2)

)
· . . . · PV

(
1

tg((θk − θ′k)/2)

)
,

where θ̃ = (θk+1, . . . , θd). We choose a finite partition of unity

M∑
m=1

gm(θ) = 1, θ ∈ supp Ψ̂, (5.14)

where gm are nonnegative functions from C∞
0 (Td), which vanish in a neighborhood of the set C

introduced in Definition 5.3 (i). Using the equality Φ̂(θ, t) = Ĝ∗
t (θ)Ψ̂(θ), formula (5.5), the decom-

position (2.5), and the partition (5.14), we obtain

It= (2π)−d−k ik PV

∫
Td+k

1

tg((θ1 − θ′1)/2)
· . . . · 1

tg((θk − θ′k)/2)

×
(
Ĝt(θ)q̂(θ)Ĝ∗

t (θ
′), Ψ̂(θ)⊗ Ψ̂(θ′)

)
|θ′=(θ̄′,θ̃) dθ̄dθ̄

′dθ̃

= (2π)−d−k ik
∑
m,m′

s∑
σ,σ′=1

PV

∫
Td+k

gm(θ)gm′(θ′)
1

tg((θ1−θ′1)/2)
· . . . · 1

tg((θk−θ′k)/2)

×
(
Πσ(θ)Ĝt,σ(θ)q̂(θ)Ĝ∗

t,σ′(θ′)Πσ′(θ′), Ψ̂(θ)⊗ Ψ̂(θ′)
)
|θ′=(θ̄′,θ̃) dθ̄dθ̄

′dθ̃.

(5.15)
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Here we denote

Ĝt,σ(θ) = cosωσ(θ)t I + sinωσ(θ)t Cσ(θ), Cσ(θ) =

(
0 1/ωσ(θ)

−ωσ(θ) 0

)
. (5.16)

By Lemma 2.2, we can choose the supports of gm so small that the eigenvalues ωσ(θ) and the
matrices Πσ(θ) are real-analytic functions inside supp gm for everym. (We do not label the functions
by the index m so as not to overburden the notation.) Changing variables θ′j → ξj = θ′j − θj ,
j = 1, . . . , k, in the inner integrals in the r.h.s. of (5.5), we obtain

It =(2π)−d−k (−i)k
∑
m,m′

s∑
σ,σ′=1

∫
Td

(
gm(θ)Ψ̂(θ)Πσ(θ)Ĝt,σ(θ)q̂(θ)

×PV

∫
Tk

1

tg(ξ1/2)
· . . . · 1

tg(ξk/2)
gm′(θ′)Ĝ∗

t,σ′(θ′)Πσ′(θ′)Ψ̂(θ′)|θ′=(θ̄+ξ̄,θ̃)dξ̄

)
dθ.

(5.17)

It follows from Definition 5.3 that ∂θ′
j
ωσ′(θ′) �= 0 for θ′ ∈ supp gm′ ⊂ supp Ψ̂. The next lemma

follows from [1, Prop. A.4 (i), (ii)].

Lemma 5.6. Let χ(θ) ∈ C1(Td) and ∂θ1ωσ(θ) �= 0 for θ ∈ suppχ. Then for θ ∈ suppχ,

Pσ(θ, t) := PV

∫
T1

e±iωσ(θ1+ξ,θ̃)t

tg(ξ/2)
χ(θ1 + ξ, θ̃) dξ=e±iωσ(θ)t sgn(∂θ1ωσ(θ)) + o(1) as t → +∞,

where θ̃ = (θ2, . . . , θd). Moreover, supt∈R, θ∈Td |Pσ(θ, t)| < ∞. Furthermore, yields (5.16), we have

PV

∫
T1

1

tg(ξ/2)
Ĝ∗
t,σ(θ1 + ξ, θ̃)χ(θ1 + ξ, θ̃) dξ = 2π χ(θ)C∗

σ(θ)Ĝ∗
t,σ(θ) sgn(∂θ1ωσ(θ)) + o(1)

as t → +∞.

Applying Lemma 5.6 to the inner integrals w.r.t. ξ1, . . . , ξk in (5.17), we obtain

It = (2π)−d (−i)k
∑
m

s∑
σ,σ′=1

∫
Td

gm(θ)(Πσ(θ)R
k
t (θ)σσ′Πσ′(θ), Ψ̂(θ)⊗ Ψ̂(θ)) dθ + o(1), (5.18)

where we denote Rk
t (θ)σσ′ := Ĝt,σ(θ)q̂(θ) (C

∗
σ′(θ))

k Ĝ∗
t,σ′(θ). Note that

(C∗
σ′(θ))

k
= (−1)l if k = 2l, and (C∗

σ′(θ))
k
= (−1)lC∗

σ′(θ) if k = 2l + 1 (with any l � 0).

Using (5.16), we can write

Rk
t (θ)σσ′ =

{
(−1)l

∑
±
(
cos

(
ω±
σσ′(θ)t

)
L∓
1 (q̂) + sin

(
ω±
σσ′(θ)t

)
L±
2 (q̂)

)
, k = 2l,

(−1)l
∑

±
(
± cos

(
ω±
σσ′(θ)t

)
L±
2 (q̂)∓ sin

(
ω±
σσ′(θ)t

)
L∓
1 (q̂)

)
, k = 2l + 1,

(5.19)

where ω±
σσ′(θ) ≡ ωσ(θ) ± ωσ′(θ). The oscillatory integrals in (5.18) with ω±

σσ′(θ) �≡ const vanish
as t → ∞ by the Lebesgue–Riemann theorem, since all integrands in (5.18) are summable. Fur-
thermore, the identities ω±

σσ′(θ) ≡ const± with the const± �= 0 are impossible by E5. If we impose
condition E5’ (with q̂ij(θ) instead of q̂ijn (θ)), then the case ω±

σσ′(θ) ≡ const± (with const± �= 0) is
possible. However, in this case,

Πσ(θ)L
∓
1 (q̂(θ))Πσ′(θ) ≡ 0 and Πσ(θ)L

±
2 (q̂(θ))Πσ′(θ) ≡ 0,
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which implies that Πσ(θ)R
k
t (θ)σσ′Πσ′(θ) ≡ 0. Thus, only the integrals with ω−

σσ′(θ) ≡ 0 contribute
to the limit, since ω+

σσ′(θ) ≡ 0 would imply ωσ(θ) ≡ ωσ′(θ) ≡ 0 which is impossible by E4.
Therefore, using (5.18) and (5.19), we obtain

It = (2π)−d
∑
m

s∑
σ=1

∫
Td

gm(θ)(Πσ(θ)Lk(q̂(θ))Πσ(θ), Ψ̂(θ)⊗ Ψ̂(θ)) dθ + o(1), t → ∞,

where Lk is defined in (5.13). The convergence (5.12) is proved. The convergence (5.11) can be
derived in a similar way.

Now Proposition 5.4 (a) follows from the decomposition (5.10), formulas (2.15)–(2.18) and
Lemma 5.5 with the matrices q(x) ≡ qn(x). The assertion (b) was proved in [1, p. 140] for d = n = 1
and in [8] for any d, n � 1 and k = 1. For any k, this assertion can be proved using the methods of
[8, Lemma 8.4].

6. HARMONIC CRYSTALS IN THE HALF-SPACE

In this section, we consider the dynamics of the harmonic crystals in the integer half-space
Z
d
+ = {x ∈ Z

d : x1 > 0}, d � 1,

ü(x, t) = −
∑
y∈Zd

+

(V (x− y)− V (x− y−))u(y, t), x ∈ Z
d
+, t ∈ R, (6.1)

y− := (−y1, y2, . . . , yd), with zero boundary condition (as x1 = 0)

u(x, t)|x1=0 = 0, (6.2)

and with the initial data (as t = 0)

u(x, 0) = u0(x), u̇(x, 0) = v0(x), x ∈ Z
d
+. (6.3)

The matrix V (x) satisfies conditions E1–E4. In addition, we assume that

V (x−) = V (x). (6.4)

This condition is fulfilled, for instance, for the nearest neighbor crystal (2.7). Condition E6 imposed
on V (x) in Section 2.1 can be weakened as follows.

E6’.

∫
Td

sin2(θ1)‖V̂ −1(θ)‖ dθ < ∞.

Assume that the initial datum Y0 = (u0, v0) of the problem (6.1)–(6.3) belongs to the phase
space Hα,+, α ∈ R.

Definition 6.1. Denote by Hα,+ the Hilbert space of Rn × R
n-valued functions of x ∈ Z

d
+

endowed with the norm ‖Y ‖2α,+ =
∑

x∈Z
d
+
〈x〉2α|Y (x)|2 < ∞.

To coordinate the boundary and initial conditions, we assume that u0(x) = v0(x) = 0 for x1 = 0.
Write Y (t) = (u(·, t), u̇(·, t)).

Lemma 6.2. (see [10, Corollary 2.4]) Let conditions (6.4), E1, and E2 hold, and choose some
α ∈ R. Then for any Y0 ∈ Hα,+, there exists a unique solution Y (t) ∈ C(R,Hα,+) to problem
(6.1)–(6.3). The operator U+(t) : Y0 �→ Y (t) is continuous in Hα,+.

Below, we assume that α < −d/2 if condition E6 holds, and α < −d/2 − 1 if condition E6’
holds.

We assume that Y0 is a measurable random function with values in (Hα,+,B(Hα,+)) and denote
by μ+

0 a Borel probability measure on Hα,+ giving the distribution of Y0. Let E+ stand for the
integral w.r.t. μ+

0 . Denote by Q+
0 (x, y) the correlation matrix of μ+

0 ,

Q+
0 (x, y) = E+ (Y0(x)⊗ Y0(y)) ≡

∫
(Y0(x)⊗ Y0(y)) μ

+
0 (dY0), x, y ∈ Z

d
+.
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In particular, Q+
0 (x, y) = 0 for x1 = 0 or y1 = 0. Assume that μ+

0 satisfies conditions S1 and
S2 stated in Section 2.1 (but with Z

d
+ and E+ instead of Zd and E). Condition S3 needs some

modification.

S3. Choose some k ∈ {1, . . . , d}. The initial covariance Q+
0 (x, y) is Q+

0 (x, y) = q+0 (x̄, ȳ, x̃ − ỹ),
x, y ∈ Z

d
+, where x = (x̄, x̃), x̄ = (x1, . . . , xk), x̃ = (xk+1, . . . , xd). Write (cf. (2.11))

N k
+ := {n = (n1, n2, . . . , nk), n1 = 2, nj ∈ {1, 2} for all j = 2, . . . , k}.

Suppose that for any ε > 0 there exists an N(ε) ∈ N such that for any ȳ = (y1, . . . , yk) ∈ Z
k:

y1 > N(ε) and (−1)njyj > N(ε), ∀j = 2, . . . , k, the following bound holds (cf (2.12))∣∣q+0 (ȳ + z̄, ȳ, z̃)− qn(z)
∣∣ < ε for any fixed z = (z̄, z̃) ∈ Z

d.

Here qn(z), n ∈ N k
+, are the correlation matrices of some translation-invariant measures μn with

zero mean value in Hα.

In particular, if k = 1, then Q+
0 (x, y) = q+0 (x1, y1, x̃− ỹ), x̃ = (x2, . . . , xd), and (cf. (2.13))

q+0 (y1 + z1, y1, z̃) → q2(z) as y1 → +∞, z = (z1, z̃) ∈ Z
d. (6.5)

Example 6.3. The examples of initial measures μ+
0 satisfying conditions S1–S3 can be con-

structed by a similar way as for μ0 in Section 3. Indeed, let us define a Borel probability measure
μ+
0 as a distribution of the random function (cf. (3.3))

Y0(x) =
∑

n∈N k
+

ζn(x̄)Yn(x), x = (x̄, x̃) ∈ Z
d
+, x̄ = (x1, . . . , xk), x̃ = (xk+1, . . . , xd),

where ζn(x̄) = ζ2(x1)ζn2
(x2) · . . . · ζnk

(xk), n ∈ N k
+, the sequences ζ1 and ζ2 are defined in (3.2),

Yn(x) are Gaussian independent vectors in Hα,+ with distributions μn. The Gaussian measures
μn satisfying conditions S1 and S2 are constructed in Section 3. Then, the measure μ+

0 satisfies
S1–S3.

We define μ+
t , t ∈ R, as a Borel probability measure in Hα,+ which gives the distribution of the

random solution Y (t), μ+
t (B) = μ+

0 (U+(−t)B), B ∈ B(Hα,+), t ∈ R. Denote by

Q+
t (x, y) =

∫
(Y (x)⊗ Y (y)) μ+

t (dY ), x, y ∈ Z
d
+,

the covariance of μ+
t . The mixing condition S4 (see Section 2.3) for μ+

0 is formulated as for the
measure μ0, but with sets A and B from Z

d
+ instead of Zd.

Introduce the limiting correlation matrix Q+
∞(x, y). It has the form

Q+
∞(x, y) = q+∞(x− y)− q+∞(x− y−)− q+∞(x− − y) + q+∞(x− − y−), x, y ∈ Z

d
+. (6.6)

Here q+∞(x) is defined as q∞(x) (see formulas (2.15)–(2.19)), but with N k
+ instead of N k. For

example, if k = 1, then q̂+∞(θ) has the form (2.15) with matrices (cf. (2.20))

M+
1,σ(θ) =

1

2
L+
1 (q̂2(θ)) , M−

1,σ(θ) =
1

2
L−
2 (q̂2(θ)) sgn (∂θ1ωσ(θ)) ,

where q̂2(θ) is the Fourier transform of the matrix q2(z) introduced in (6.5).

Theorem 6.4. (i) Let conditions (6.4), E1–E4, E5’, E6’, and S1–S3 be fulfilled. Then for any
x, y ∈ Z

d
+, Q

+
t (x, y) → Q+

∞(x, y) as t → ∞. (ii) Let conditions (6.4), E1–E3, E4’, E5’, E6’, S1,
S3, and S4 be fulfilled. Then the measures μ+

t weakly converge in the Hilbert space Hα,+ as t → ∞.
The limiting measure μ+

∞ is a Gaussian measure on Hα,+ with the covariance Q+
∞(x, y) defined in

(6.6).

Theorem 6.4 can be proved using the technique of Theorems 2.6, 2.11 and [10, Th. A]. Below
we note only some features in the proof of Theorem 6.4.
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6.1. The Proof

Lemma 6.5. Let conditions (6.4), E1–E3, E6’, S1, and S2 be fulfilled. Then the following
uniform bound holds, supt∈R

E+

(
‖Y (t)‖2α,+

)
< ∞.

Proof. By l2+ ≡ l2(Zd
+) ⊗ R

n, d, n � 1, we shall denote the Hilbert space of sequences f(x) =
(f1(x), . . . , fn(x)) endowed with the norm

‖f‖l2
+
=

√ ∑
x∈Z

d
+

|f(x)|2.

Let 〈· , ·〉+ stand for the inner product in �2+ × �2+. At first, by conditions S1 and S2, we have (cf.
(5.1))

|〈Q+
0 (x, y),Φ(x) ⊗Ψ(y)〉+| � C‖Φ‖l2

+
‖Ψ‖l2

+
for any Φ,Ψ ∈ �2+ × �2+. (6.7)

Second, the solutions of problem (6.1)–(6.3) has the form

Y (x, t) =
∑

x′∈Z
d
+

Gt,+(x, x
′)Y0(x

′), where Gt,+(x, x
′) = Gt(x− x′)− Gt(x− x′

−), (6.8)

with Gt(x) defined in (5.4). As for (5.6), we have

(
Q+

t (x, y)
)ij

=
〈
Q+

0 (x
′, y′),Φi

x(x
′, t)⊗ Φj

y(y
′, t)

〉
+
, x, y ∈ Z

d
+, (6.9)

where Φi
x(x

′, t) :=
(
Gi0
t,+(x, x

′),Gi1
t,+(x, x

′)
)
, i = 0, 1. By the Parseval identity, formula (5.4), and

condition E6’, we have

‖Φi
x(·, t)‖2l2 =(2π)−d

∫
Td

∣∣∣Φ̂i
x(θ, t)

∣∣∣2 dθ = (2π)−d4

∫
Td

sin2(θ1x1)
(
|Ĝi0

t (θ)|2 + |Ĝi1
t (θ)|2

)
dθ

�
∫
Td

sin2(θ1x1)
(
C1 + C2‖V̂ −1(θ)‖

)
dθ � C3 + C4|x1|2,

(6.10)

where the constants C3 and C4 do not depend on t ∈ R and x ∈ Z
d, and C4 = 0 if condition E6

holds. Hence, (6.7), (6.9), and (6.10) imply

|
(
Q+

t (x, y)
)ij | � C‖Φi

x(·, t)‖	2+‖Φ
j
y(·, t)‖	2+ � C

√
C3 + C4|x1|2

√
C3 +C4|y1|2, x, y ∈ Z

d
+.

Therefore, the choice of α implies the following bound

E+(‖Y (·, t)‖2α,+) =
∑
x∈Z

d
+

〈x〉2α tr
((

Q+
t (x, x)

)00
+

(
Q+

t (x, x)
)11)

�C
∑
x∈Z

d
+

〈x〉2α
(
C3 + C4|x1|2

)
< ∞.

By the Prokhorov Theorem, Lemma 6.5 implies that the family of measures {μ+
t , t ∈ R} is

weakly compact on the space Hα,+.

Remark 6.6. Suppose that V (x) is of the particular form (2.7). If (i) d � 3 or (ii) d = 1, 2 and
all ml are positive, then V (x) satisfies condition E6 and the results of Theorem 6.4 are valid with
any α < −d/2. If d = 1, 2 and ml = 0 for some l, then the condition E6’ holds. In this case, we can
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apply Feiér’s theorem (see, e.g., [17]) and obtain ‖Φi
x(·, t)‖2l2 � C3 + C4|x1| (cf. the bound (6.10)).

Then the assertions of Theorem 6.4 remain valid with any α < −(d+ 1)/2.

Proof of Theorem 6.4 (i). At first, using (6.8), we decompose the covariance Q+
t (x, y) into a

sum of four terms:

Q+
t (x, y) =

∑
x′,y′∈Z

d
+

Gt,+(x, x
′)Q+

0 (x
′, y′)GT

t,+(y, y
′) = Rt(x, y)−Rt(x, y−)−Rt(x−, y)+Rt(x−, y−),

where ( )T denotes matrix transposition,

Rt(x, y) :=
∑

x′,y′∈Z
d
+

Gt(x− x′)Q+
0 (x

′, y′)GT
t (y − y′).

Therefore, Theorem 6.4 (i) follows from the following convergence

Rt(x, y) → q+∞(x− y) as t → ∞, x, y ∈ Z
d. (6.11)

To prove (6.11), let us define Q̄+
0 (x, y) to be equal to Q+

0 (x, y) for x, y ∈ Z
d
+, and to 0, otherwise.

Denote by Q+
∗ (x, y) the matrix defined as Q∗(x, y) (see (5.10)), but with the summation over

N k
+ instead of N k. Put Q+

r (x, y) = Q̄+
0 (x, y) − Q+

∗ (x, y). Then (6.11) follows from the two next
assertions. For any x, y ∈ Z

d,

∑
x′,y′∈Zd

Gt(x− x′)Q+
∗ (x

′, y′)GT
t (y − y′) → q+∞(x− y), t → ∞,

∑
x′,y′∈Zd

Gt(x− x′)Q+
r (x

′, y′)GT
t (y − y′) → 0, t → ∞.

The proof of these assertions similar to the proof of Proposition 5.4.

6.2. Energy Current in the Half-Space

Here we calculate the limiting energy current density J+,∞ = (J1
+,∞, . . . , Jd

+,∞).

Lemma 6.7. If d = 1, then J+,∞ = 0. If d � 2, then the coordinates on the energy current
density J+,∞ ≡ J+,∞(x1), x1 � 0, are

J1
+,∞(x1) ≡ 0, J l

+,∞(x1) = − 2i

(2π)d

∫
Td

sin2(θ1x1) tr
[(
q̂+∞(θ)

)10
∂θl V̂ (θ)

]
dθ, l = 2, . . . , d, (6.12)

with q+∞ from (6.6). In particular, J+,∞(0) = 0.

To prove (6.12), we first formally derive the expression of the energy current for the finite energy
solutions u(x, t). We define the energy in the region Ωl := {x ∈ Z

d
+ : xl � 0} as

E l
+(t) :=

1

2

∑
x∈Ωl

⎧⎨
⎩|u̇(x, t)|2 +

∑
y∈Z

d
+

(u(x, t), (V (x− y)− V (x− y−))u(y, t))

⎫⎬
⎭ , l = 1, . . . , d.

Then, using Eq. (6.1) and conditions (6.12) and E2, we obtain

Ė1
+(t) = 0, Ė l

+(t) =
∑

x′∈Zd
+

J l
+(x

′, t), l = 2, . . . , d.
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Here J l
+(x

′, t) stands for the energy current density in the direction el = (0, δl2, . . . , δld),

J l
+(x

′, t) :=
1

2

∑
y′∈Z

d
+

⎧⎨
⎩

∑
m�−1, p�0

Al
mp(x

′, y′, t)−
∑

m�0, p�−1

Al
mp(x

′, y′, t)

⎫⎬
⎭ ,

where Al
mp(x

′, y′, t) := (u̇(x, t), (V (x− y)− V (x− y−)) u(y, t)) for x ≡ x′ + mel, y ≡ y′ + pel,

x′, y′ ∈ Z
d
+ with x′

l = y′l = 0, l = 2, . . . , d.

Let u(x, t) be a random solution to problem (6.1)–(6.3) with initial measure μ+
0 satisfying S1–S3.

Using Theorem 6.4 (i), we can write

E+

(
J l
+(x

′, t)
)
→ J l

+,∞ :=
1

2

∑
y′∈Z

d
+

⎧⎨
⎩

∑
m�−1, p�0

Bl
mp(x

′, y′)−
∑

m�0, p�−1

Bl
mp(x

′, y′)

⎫⎬
⎭ as t → ∞,

where Bl
mp(x

′, y′) := tr [(Q+
∞(x, y))10

(
V T (x− y)− V T (x− y−)

)
], x ≡ x′ + mel, y ≡ y′ + pel,

x′, y′ ∈ Z
d
+ with x′

l = y′l = 0. Applying (6.6), (6.4) and the Parseval identity, we obtain

J l
+,∞ =− 1

2
tr

∑
y∈Zd

yl

((
q+∞(x′ + y)

)10 − (
q+∞(x′

− + y)
)10) (

V T (x′ + y)− V T (x′ + y−)
)

=− i

2
(2π)−d tr

∫
Td

(
e−i(x′,θ) − e−i(x′

−,θ)
) (

q̂+∞(θ)
)10 (

ei(x
′,θ) − ei(x

′
−,θ)

)
∂θl V̂

∗(θ) dθ.

Using equalities ei x1θ1 − e−i x1θ1 = 2i sin(θ1x1) and V̂ ∗(θ) = V̂ (θ), we obtain (6.12).

Let μn = gβn
, n ∈ N k

+, be the Gibbs measures constructed in Section 4.2 with temperatures
Tn > 0. The correlation matrices of μn are qn(x − y) ≡ qβn

(x − y), see (4.2). We impose, in
addition, condition (3.6) on the matrix V , which implies the bound (3.7) for q00n . Then, condition
S2 is fulfilled. In this case,

(
q̂+∞(θ)

)10
= −i

s∑
σ=1

ω−1
σ (θ)Πσ(θ)

⎛
⎝ 1

2k

∑
n∈N k

+

TnS
odd
k,n (ωσ(θ))

⎞
⎠ ,

where the function Sodd
k,n (ωσ) is defined in (2.17). Hence, for l = 2, . . . , d (cf. (4.4)),

J l
+,∞(x1) =− 4

(2π)d

s∑
σ=1

∫
Td

rσ sin
2(θ1x1)

⎛
⎝ 1

2k

∑
n∈N k

+

TnS
odd
k,n (ωσ(θ))

⎞
⎠ ∂ωσ(θ)

∂θl
dθ

=−
∑

oddm∈{1,...,k}

∑
(p1,...,pm)∈Pm(k)

clp1...pm
(x1)

1

2k−1

∑
n∈N k

+

(−1)np1
+···+npmTn,

(6.13)

where the functions clp1...pm
(x1), x1 � 0, are defined as follows (cf. (4.5))

clp1...pm
(x1) :=

2

(2π)d

s∑
σ=1

∫
Td

rσ sin
2(θ1x1) sgn

(
∂ωσ(θ)

∂θp1

)
· . . . · sgn

(
∂ωσ(θ)

∂θpm

)
∂ωσ(θ)

∂θl
dθ.

Write

cl(x1) ≡ cll(x1) =
2

(2π)d

s∑
σ=1

∫
Td

rσ sin
2(θ1x1)

∣∣∣∣∂ωσ(θ)

∂θl

∣∣∣∣ dθ > 0, l = 2, . . . , k. (6.14)
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Let us apply condition SC to ωσ(θ). Then, J+,∞(x1) ≡ 0 if k = 1. For k � 2, we obtain

J l
+,∞(x1) =

⎧⎪⎨
⎪⎩

−cl(x1)
1

2k−1

∑
n∈N k

+

′
(Tn|nl=2 − Tn|nl=1), l = 2, . . . , k,

0, l = 1, l = k + 1, . . . , d,

(6.15)

where the summation
∑′ is taken over n2, . . . , nl−1, nl+1, . . . , nk ∈ {1, 2}. Therefore, in the case of

d, k � 2, we can choose positive numbers Tn so that J+,∞(x1) �= 0 for x1 > 0.

Using the formula 2 sin2(θ1x1) = 1−cos(2θ1x1) and the Lebesgue–Riemann theorem, we see that
cl(x1) → cl as x1 → +∞, where the positive constant cl is defined in (4.6). Hence, for l = 2, . . . , k,

J l
+,∞(x1) → −cl

1

2k−1

∑′ (
Tn|nl=2 − Tn|nl=1

)
as x1 → +∞. (6.16)

Consider some particular cases of the formula (6.13).

Example 6.8. Let k = 1 and μ+
0 satisfy condition S3 with a Gibbs measure μ2 ≡ gβ , β = 1/T2.

For instance, the initial data Y0 has the form Y0(x) = ζ2(x1)Y2(x), where ζ2 is defined in (3.2) and
Y2(x) has the Gibbs distribution gβ . Hence, J

1
+,∞ ≡ 0, and

J l
+,∞(x1) = − 2T

(2π)d

s∑
σ=1

∫
Td

rσ sin2(θ1x1) sgn

(
∂ωσ(θ)

∂θ1

)
∂ωσ(θ)

∂θl
dθ, l = 2, . . . , d.

If condition SC holds, then J+,∞(x1) = 0 for any x1 � 0.

Example 6.9. Let d � 2, k = 2 and μ+
0 satisfy condition S3 with Gibbs measures

μn ≡ gβn
, βn = 1/Tn, n = (n1, n2) ∈ N 2

+ = {(2, 1); (2, 2)}.

For instance, the initial data Y0 is of a form

Y0(x) = ζ2(x1)(ζ1(x2)Y21(x) + ζ2(x2)Y22(x)), x ∈ Z
d
+,

where ζn(x) is defined in (3.2), Y21(x) and Y22(x) are independent vectors in Hα with Gibbs
distributions μ21 and μ22 corresponding to positive temperatures T21 and T22, respectively. Hence,
our model can be considered as a “system + two reservoirs,” where the “reservoirs” consist of
crystal particles lying in the two regions {x ∈ Z

d
+ : x2 < −a} and {x ∈ Z

d
+ : x2 > a}, a > 0. It

follows from Lemma 6.7 and formula (6.13) that J1
+,∞(x1) ≡ 0 and

J l
+,∞(x1) =− 1

(2π)d

s∑
σ=1

∫
Td

rσ sin
2(θ1x1)

[
sign

(
∂ωσ(θ)

∂θ1

)
(T21 + T22)

+ sgn

(
∂ωσ(θ)

∂θ2

)
(T22 − T21)

]
∂ωσ(θ)

∂θl
dθ, l = 2, . . . , d.

Under condition SC on the eigenvalues ωσ(θ), we obtain

J+,∞(x1) = −1

2
(0, c2(x1)(T22 − T21), 0, . . . , 0)

with c2(x1) introduced in (6.14). Moreover,

J+,∞(x1) → −1

2
(0, c2(T22 − T21), 0, . . . , 0) as x1 → +∞,

where the positive constant c2 is defined in (4.6).
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Remark 6.10. In [11], we considered the 1D chain of harmonic oscillators on the half-line with
nonzero boundary condition and studied the following initial boundary value problem:

ü(x, t) =

⎧⎨
⎩

(ΔL −m2)u(x, t), x � 1, t > 0,
ü(0, t) = −κu(0, t) −m2u(0, t) − γu̇(0, t) + u(1, t) − u(0, t), t > 0,

u(x, 0) = u0(x), u̇(x, 0) = v0(x), x � 0.

Here u(x, t) ∈ R, m � 0, γ � 0, ΔL denotes the second derivative on Z. We impose some restrictions
on the coefficients m,κ, γ of the system. In particular, if γ > 0, then either m > 0 or κ > 0. If
γ = 0, then κ ∈ (0, 2). We obtain results similar to (1.1) and (1.3). Furthermore, the limiting energy

current at the origin equals J∞ := −γ limt→∞ E (u̇(0, t))
2
. Hence, in the case when γ > 0, J∞ �= 0

(cf. Example 6.8) if
∫
(Y 1(0))2 μ∞(dY ) �= 0 (the limit measures μ∞ satisfying the last condition

are constructed in [11]).
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