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Abstract. We generalize (in two natural ways) the C∗-algebra generated by matrices of
bounded operators in a separable Hilbert spaceH with a bounded number of nonzero elements
in each row and each column, introduced recently by V. Manuilov. We consider the standard
C∗-Hilbert module HA instead of H = HC. Also we consider the algebras with finiteness
conditions only on rows or only on columns. For related general linear groups, we prove the
contractibility (Kuiper type theorems) and some other properties.
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INTRODUCTION

Recently V. Manuilov introduced the algebra B
f (H), which is the C∗-algebra generated by

matrices of bounded operators in a separable Hilbert space H with a bounded number of nonzero
elements in each row and each column [6]. He discovered very interesting properties of this algebra in
the same paper, in particular, he proved the contractibility of the general linear group GL(Bf (H))
(the group of invertible elements) of this algebra. The relation of the algebra to some previously
known ones remains unclear (see the discussion in [6]). Then Manuilov applied the approach to the
study of graphs in [7].

We introduce some natural generalizations of this algebra from operators on H to operators on
the standard Hilbert module HA over a unital C∗-algebra A.

The study of contractibility of general groups of operators on HA has a long and dramatic history
(see [9, Chap. 7]). Here we have two operator algebras: the Banach algebra of all operators (bounded
A-homomorphisms) B(HA) and the C∗-algebra B

�(HA) of adjointable operators. Respectively, we
have two general linear groups: GL(B(HA)) and GL(B�(HA)). The contractibility of GL(B�(HA))
when A is σ-unital was proved in [1] (see also the previous papers [10, 4, 16, 11]). The contractibility
of GL(B(HA)) was established only for some classes of algebras (see [17] and some examples and
counterexamples in [14] and [15]). The proof of the case of GL(B(HA)) in [16] contains a mistake
(in contrast with the case of GL(B�(HA)) in the same paper). An analog of the Dixmier–Douady
theorem on strong contractibility was obtained for Hilbert modules in [17].

It is natural to consider two distinct generalizations of the Manuilov algebra to HA: the first
one (strong) is more or less analogous to the case of H (Definition 3.1 below) and the other one
(weak) supposes finitely many nonzero values ϕ(daia

∗
i d) for each pure state ϕ, an element d ∈ A,

and ai running along a row of the matrix (and for columns in an adjoint manner) (see the precise
form of this in Definition 3.3). Denote these algebras by B

f (HA) and WB
f(HA), respectively. We

also consider the algebras with finiteness conditions only on rows or only on columns: Bf
L(HA),

B
f
C(HA), WB

f
L(HA), WB

f
C(HA) (Definitions 3.1 and 3.3 below).

We prove here some properties of these algebras and the contractibility of the following groups
of invertible elements:

GL(Bf
C(HA) ∩ B

�(HA)) (Theorem 5.1), GL(Bf
L(HA)) (Theorem 5.3),

GL(Bf (HA)) (Theorem 5.5), GL(WB
f
C(HA) ∩ B

�(HA)) (Theorem 6.1),
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GL(WB
f
L(HA) ∩ B

�(HA)) (Theorem 6.2), GL(WB
f (HA)) ∩ B

�(HA) (Theorem 6.3).

We also prove that the group GL(WB
f (HA)) is contractible inside GL(B(HA)) (Theorem 6.4).

As a corollary, we obtain a Kuiper type theorems for one-side algebras in the initial case of a

Hilbert space: the contactibility of GL(Bf
C(H)) (Theorem 5.2) and GL(Bf

L(H)) (Theorem 5.4).

Some open questions and directions of research are indicated.

1. PRELIMINARIES

For the general theory of C∗-Hilbert modules, we refer to the monographs [5, 9] and the survey
paper [8]. Some current trends in the field can be found in [3, 13].

We deal here only with the standard moduleHA = �2(A), and thus we skip the general definition.

Definition 1.1. The standard Hilbert module is the right A-module of sequences a = (a1, a2,
. . . ), ai ∈ A, such that

∑
i(ai)

∗ai is norm-convergent in A. It is equipped with the inner product
〈a, b〉 =

∑
i(ai)

∗bi, where b = (b1, b2, . . . ).

The left module is defined via the inner product
∑

i ai(bi)
∗.

Definition 1.2. Denote the elements of the standard base of HA by ei, where ei has 1A at the
ith place and zeros at the remaining ones. The submodule Lm generated by e1, . . . , em will be called
the “first base submodule.” Denote by qm the orthogonal projection qm : HA → Lm.

The main distinction of HA from a Hilbert space is the following: a bounded A-homomorphism
need not admit an adjoint in the evident sense (see the discussion in [9, Sec. 2.1]). The same holds
for A-functionals. They can be described in the unital case as sequences (α1, α2, . . . ) such that
partial sums of

∑
i αi(αi)

∗ are uniformly bounded (see, e.g., [9, Proposition 2.5.5]).

Example 1.3. A typical example of an A-functional on HA without adjoint over A = C[0, 1]
is defined by a sequence (γ1, γ2, . . . ) of functions of norm 1 with disjoint supports (see [9, Example
2.1.2]).

Definition 1.4. Denote the C∗-algebra of adjointable operators (i.e., bounded adjointable A-
homomorphisms) by B

�(HA) and the Banach algebra of all bounded operators by B(HA). A matrix
of an operator F is evidently formed by columns which are the components of F (ei) regarded as
an element of HA.

The following statement is evident.

Theorem 1.5. An operator from B(HA) is adjointable if and only if each row of its matrix
defines an adjointable functional.

We will need the following known fact, for which we have not found a reference.

Lemma 1.6. For any a ∈ A, we have

‖a‖ � 2 sup
ϕ is a pure state

|ϕ(a)|.

Proof. Since a = 1
2
(a+ a∗) + i · 1

2i
(a − a∗), we have by [12, Th. 3.3.6], for some states ϕ1 and

ϕ2,

‖a‖ � 1

2
‖a+ a∗‖+ 1

2
‖i(a− a∗)‖ =

1

2
(ϕ1(a+ a∗) + ϕ2(i(a− a∗))

� 1

2
(|ϕ1(a) + ϕ1(a)|+ |ϕ2(a)− ϕ2(a)|) � 2 sup

ϕ is a state
|ϕ(a)| � 2 sup

ϕ is a pure state
|ϕ(a)|,

because any state is approximated by convex combinations of pure states.
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2. A GENERAL SCHEME FOR KUIPER TYPE THEOREMS

In this section, we summarize and slightly modify some argument known mostly from [16, 17]
(see also [18] and [9, Chap. 7]) for proving of Kuiper type theorems for Hilbert modules.

We suppose A to be unital. The general argument based on the Atiyah theorem “on small balls”
reduces a proof of contractibility of the general linear group of a Banach algebra B⊆B(HA) to the
proof of the following fact: for any finite polyhedron P with vertexes A1, . . . , AN and its inclusion
J : P → GL(B), there is a homotopy of J to the constant mapping P → 1 ∈ GL(B). Also, as a
result of arbitrary small perturbation, we may assume that the columns of the matrix of A are of
finite length:

for any i, there exists j(i) such that aij = 0 for j > j(i). (2.1)

Step 1. Find, for arbitrary small ε, a homotopy of the polyhedron P to another one, denoted
P ′, such that there exists a decomposition HA = H0

A⊕H1
A⊕H2

A, where H
0
A, H

1
A, and H2

A are some
sums of the base modules Ei, with bases {ei0(r)}, {ei1(r)}, and {ei2(r)}, respectively (i.e., elements
of these bases are some sequences of ej with increasing indices), such that

i0(1) = 1, i0(r + 1) = max{j(i1(1)), . . . , j(i1(r))}+ 1, (2.2)

(in the notation of (2.1)), and

‖qm(r)A
′ei1(r+1)‖ <

ε

2r
, (2.3)

for any element A′ ∈ P ′, where qm(r) is the projection on the first basic module Lm(r), which
contains ei0(1), . . . , ei0(r+1), A

′ei1(1), . . . , A
′ei1(r). In other words, m(r) = i0(r + 1).

We will take ε such that the ε-neighbourhood of P ′ lies in GL(B).
Note that for some algebras under consideration below, this step will be unnecessary.
Step 2. Consider the linear homotopy

A′
t(el) =

{
A′(el)− t · qm(r)A

′(el), if l = i1(r + 1),
A′(el), otherwise,

t ∈ [0, 1], l = 1, 2, . . . (2.4)

Denote the resulting polyhedron by P ′′ with elements A′′. They satisfy

qm(r)A
′′ei1(r+1) = 0, r = 1, 2, . . . (2.5)

for any r. The inequality (2.3) and the choice of ε imply that this linear homotopy is in GL(B).
Step 3. Properties (2.2) and (2.5) imply that the elements ei0(r) and A′ei0(u) form an orthogonal

system and generate an orthogonally complementable submodule (its complement H3
A is equal to

the orthogonal sum of complements to A′′ei1(r+1) in Lm(r+1) 
 Lm(r)).

Thus, we can perform a generalized rotation,

RA′′(t)(ei0(r)) = cos t · ei0(r) − sin t · A′′ei1(r),

RA′′(t)(A′′ei1(r)) = sin t · ei0(r) + cos t · A′′ei1(r),

RA′′(t)(x) = x, for x ∈ H3
A,

(2.6)

r = 1, 2, . . . , t ∈ [0, π/2]. Evidently it is continuous in A′′.

Then
RA′′(π/2) · A′′|H1

A
= IdH1

A
. (2.7)

For the argument used below, we need to find the matrix form for (2.6). Evidently, it consists
of square blocks Rr

A′′(t) corresponding to r. The size of Rr
A′′(t) is m(r) − m(r − 1). Denote the

components of A′′ei1(r) in Lm(r) 
 Lm(r−1)+1 by a1, . . . , au, u = m(r) − m(r − 1) − 1 (the other
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components vanish by (2.2) and (2.5)). Denote b := a∗1a1 + a∗2a2 + · · ·+ a∗uau. Then the mentioned
block Rr

A′′(t) has the form
⎛

⎜
⎜
⎝

cos(t) sin(t)b−1a∗1 . . . sin(t)b−1a∗u
− sin(t)a1

... cos(t) · pra
− sin(t)au

⎞

⎟
⎟
⎠+

⎛

⎜
⎝

0 0 . . . 0
0
... 1− pra
0

⎞

⎟
⎠ , (2.8)

where

pra =

⎛

⎜
⎝

a1b
−1a∗1 . . . a1b

−1a∗u
...

...
...

aub
−1a∗1 . . . aub

−1a∗u

⎞

⎟
⎠

is the projection on the submodule in Lm(r)
Lm(r−1)+1 generated by (a1, . . . , au). Here the inclu-
sion A′′ ∈ GL(B) implies the invertibility of b = 〈A′′ei1(r), A

′′ei1(r)〉.

The last two steps are very similar to Kuiper’s.
Step 4. After this generalized rotation and re-scaling, we obtain the following matrices for all

points of the corresponding polyhedron P ′′′ with respect to the decomposition HA = (H1
A)

⊥⊕H1
A:

A′′′ =

(
D′′′ 0
C ′′′ 1

)

.

Evidently, here D′′′ is an isomorphism and the linear homotopy

A′′′
t =

(
D′′′ 0

t · C ′′′ 1

)

(2.9)

consists of isomorphisms and connects A′′′ = A′′′
1 and A′′′

0 =: AD, which is of the block-diagonal

form

(
D 0
0 1

)

, D = D′′′.

Step 5. Now decompose H1
A in an orthogonal sum of countably many pairs of sub-modules

H0
i , H

1
i , i = 1, 2, . . . , generated by certain countable collections of basic elements es. Connect(

1 0
0 1

)

=

(
DD−1 0

0 1

)

at each summand H0
i ⊕H1

i with

(
D−1 0
0 D

)

via the homotopy

(
cos t − sin t
sin t cos t

)(
D 0
0 1

)(
cos t sin t

− sin t cos t

)(
D−1 0
0 1

)

, t ∈ [0, π/2].

If we extend this homotopy to be constant are equal to D on (H1
A)

⊥, we obtain a path connecting

AD = diag(D, 1, 1, 1, . . . ) and diag(D,D−1,D,D−1,D, . . . ) =: ADD ,

with respect to the decomposition HA = (H1
A)

⊥ ⊕ (H0
1 ⊕H1

1 )⊕ (H0
2 ⊕H1

2 )⊕ · · · . Write down this

HA as HA = ((H1
A)

⊥⊕H0
1 )⊕(H1

1 ⊕H0
2 )⊕(H1

2 ⊕H0
3 )⊕· · · and connect the restriction

(
D 0
0 D−1

)

of ADD on each of these couples of subspaces with the identity by using the following homotopy:
(
cos t − sin t
sin t cos t

)(
D−1 0
0 1

)(
cos t sin t

− sin t cos t

)(
D 0
0 1

)

, t ∈ [0, π/2].

Taking the direct sum, we obtain a homotopy ADD ∼ Id. This completes the scheme.

We need to verify the continuity of all above homotopies with respect to the operator argument
(i.e., in A, A′, . . . , ADD). Because of the formulas, this is evident for all steps, except maybe the
above (generalized) rotations. But they are decomposed in a direct orthogonal sum of rotations in
some finite-dimensional modules of the form Lm(r) 
 Lm(r−1)+1, which are contunuous uniformly
in r, because the distance between Rr

A′′(t) and Rr
A′′

0
(t) can be estimated in terms of the distance

between A′′ei1(r) and A′′
0ei1(r). This implies the continuity.
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3. MANUILOV ALGEBRAS ON C∗-HILBERT MODULES

Passing from the separable Hilbert space �2 to the standard C∗-Hilbert module �2(A) = HA
over a C∗-algebra A, we can give several distinct definitions.

It is natural to restrict ourselves to the unital case, because only in this case an operator from
B(HA) has a matrix ‖aij‖, aij ∈ A, with respect to the standard base {ei}. In the general case, aij
are left multipliers, are they do not form a C∗-algebra.

Definition 3.1. Denote by B
(k)
L (HA) the set of operators in B(HA) having no more than k

nonzero elements in each row of their matrices, and by B
(k)
C (HA) the set of operators in B(HA)

having no more than k nonzero elements in each column of their matrices. Let us put B(k)(HA) =

B
(k)
L (HA) ∩ B

(k)
C (HA). Write

B
∞
L (HA) :=

⋃

k

B
(k)
L (HA), B

∞
C (HA) :=

⋃

k

B
(k)
C (HA), B

∞(HA) :=
⋃

k

B
(k)(HA).

Definition 3.2. For a positive functional ϕ : A → C, denote by ϕa the positive functional
ϕa(b) = ϕ(aba∗), where a ∈ A.

Definition 3.3. Denote by WB
(k)
L (HA) → B(HA) (weakly having no more than k nonzero

elements in a row) the set of all operators from B(HA) such that, for any pure state ϕ on A and

any d ∈ A, there is no more than k elements in any row of the matrix of the operator, say aj1i , . . . ajki
in the ith row, with the property ϕd(a

js
i (ajsi )∗) �= 0.

Similarly, denote by WB
(k)
C (HA) → B(HA) the set of all operators from B(HA) such that, for

any pure state ϕ on A and any element d ∈ A, there is no more than k elements in any column of
the matrix of the operator, say aij1 , . . . , a

i
jk

in the ith column, with the property ϕd((a
js
i )∗ajsi ) �= 0.

Write WB
(k)(HA) := WB

(k)
L (HA) ∩WB

(k)
C (HA) and

WB
∞
L (HA) :=

⋃

k

WB
(k)
L (HA), WB

∞
C (HA) :=

⋃

k

WB
(k)
C (HA), WB

∞(HA) :=
⋃

k

WB
(k)(HA).

Remark 3.4. Note that, for any positive functional ϕ, if ϕ(aa∗) = 0, then ϕ(ba∗) = 0 and
ϕ(ab) = 0 for any b ∈ A, because

|ϕ(yx∗)|2 � ϕ(xx∗)ϕ(yy∗) (3.1)

(see [2, Subsec. 2.1]).

Lemma 3.5. The above sets B
∞
L (HA), B

∞
C (HA), B

∞(HA), WB
∞
L (HA), WB

∞
C (HA), and

WB
∞(HA) are subalgebras of B(HA). More precisely,

WB
(k)
L (HA) ·WB

(m)
L (HA) ⊆ WB

(k+m)
L (HA),

WB
(k)
C (HA) ·WB

(m)
C (HA) ⊆ WB

(k+m)
C (HA),

and the same for B
(k).

Proof. Everything is obvious except the above inclusions for WB
(k) (for B(k) they are obvious

and quite similar to the complex case [6]).

Suppose, A ∈ WB
(k)
L (HA), B ∈ WB

(m)
L (HA), d ∈ A, and ϕ is a pure state on A. Consider the

ith row of A. Suppose, ϕd(a
js
i (ajsi )∗) = 0 for all elements of the ith row, except maybe aj1i , . . . , ajki .
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Then for each s = 1, . . . , k, we can find such elements b
r(s,1)
js

, . . . , b
r(s,m)
js

of the row number

js of B that ϕdajs
i
(btjs(b

t
js
)∗) = ϕ(dajsi btjs(b

t
js
)∗(ajsi )∗d∗) = 0 if t /∈ {r(s, 1), . . . , r(s,m)}. Then

ϕd((AB)ri ((AB)ri )
∗) = 0 if r �= r(s, u), s = 1, . . . , k, u = 1, . . . ,m. Indeed, in all nonzero summands

of

ϕd((AB)ri ((AB)ri )
∗) = ϕ

(
∑

v

davi b
r
v

(
∑

v

avi b
r
v

)∗

d∗

)

=
∑

v,w

ϕ(davi b
r
v(b

r
w)

∗, (awi )
∗d∗)

one has u and v among j1, . . . , jk by Remark 3.4. Thus,

ϕd((AB)ri ((AB)ri )
∗) =

k∑

s,z=1

ϕ(dajsi brjs(b
r
jz )

∗(ajzi )∗d∗).

By (3.1),

|ϕd((AB)ri ((AB)ri )
∗)| �

k∑

s,z=1

(
ϕ(dajsi brjs(b

r
js)

∗(ajsi )∗d∗)ϕ(dajzi brjz (b
r
jz )

∗(ajzi )∗d∗)
)1/2

= 0

for our choice of r. So the ith row of AB can have entries with ϕd((AB)ri ((AB)ri )
∗) �= 0 only for

r = r(s, u), s = 1, . . . , k, u = 1, . . . ,m.

Similarly for WB
(k)
C (HA), but starting from B. More precisely, suppose, that A ∈ WB

(k)
C (HA),

B ∈ WB
(m)
C (HA), d ∈ A, and ϕ is a positive functional on A. Consider the ith column of B.

Suppose, ϕd((b
i
js
)∗bijs) = ϕ(d(bijs)

∗bijsd
∗) = 0 for all elements of the ith column, except maybe

bij1 , . . . , b
i
jm

. Then for each s = 1, . . . ,m, we can find such elements ajsr(s,1), . . . , a
js
r(s,k) of the column

number js of A that ϕd(bi
js

)∗((a
js
t )∗ajst ) = ϕd((b

i
js
)∗(ajst )∗ajst bijs) = 0 if t /∈ {r(s, 1), . . . , r(s, k)}.

Then ϕd(((AB)ir)
∗(AB)ir) = 0 if r �= r(s, u), s = 1, . . . ,m, u = 1, . . . , k. Indeed, in all nonzero

summands of

ϕd(((AB)ir)
∗(AB)ir) = ϕd

((
∑

v

avrb
i
v

)∗
∑

v

avrb
i
v

)

=
∑

v,w

ϕ(d(biw)
∗(awr )

∗avrb
i
vd

∗),

one has u and v among j1, . . . , jk by Remark 3.4. Thus,

ϕd(((AB)ir)
∗(AB)ir) =

k∑

s,z=1

ϕ(d(bijz )
∗(ajzr )∗ajsr bijsd

∗).

By (3.1),

|ϕd(((AB)ir)
∗(AB)ir)| �

k∑

s,z=1

(ϕ(d(bijs )
∗(ajsr )∗ajsr bijsd

∗)ϕ(d(bijz )
∗(ajzr )∗ajzr bijzd

∗))1/2 = 0

for our choice of r. Now we can complete the proof as in the previous case.

Definition 3.6. Denote the closure in B(HA) of each of the above subalgebras, respectively, by

B
f
L(HA) := B∞

L (HA), B
f
C(HA) := B∞

C (HA), B
f (HA) := B∞(HA),

WB
f
L(HA) := WB∞

L (HA), WB
f
C(HA) := WB∞

C (HA), WB
f(HA) := WB∞(HA).

So, these closures are Banach subalgebras of B(HA).

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 25 No. 4 2018



540 TROITSKII

4. RELATION TO ADJOINTABLE OPERATORS

The following statement shows that the relationship between one-side algebras is complicated in
the Hilbert module case.

Theorem 4.1. The algebras B
f
L(HA) and B

f (HA) consist of adjointable operators, i.e., are
subalgebras of the C∗-algebra B

�(HA).

Moreover, Bf(HA) is an involutive subalgebra, hence, a C∗-algebra.

The algebras B
f
R(HA), WB

f
L(HA), WB

f
R(HA), and WB

f(HA) generally contain nonadjointable
operators.

Proof. Any element of B
(k)
L (HA) is adjointable by Theorem 1.5. This implies the first statement.

Hence, we can consider an adjoint of an element from B
(k)(HA). Evidently, it will be in B

(k)(HA).
This gives the second statement.

To prove the third statement, consider an operator with the first row (γ1, γ2, . . . ) from Example
1.3, and zeros in other places. This operator is not adjointable by Theorem 1.5. On the other hand,

it belongs to B
(1)
C (HA), WB

(1)
C (HA), and WB

(1)
L (HA).

Remark 4.2. If we would consider not only pure states, the argument with the example in the
proof does not work. Thus, generally we obtain some other algebras if we will remove the word
‘pure’ in the above definitions. Their relationship with adjointable operators is an open question.

If (a1, a2, . . . ) is a column of a matrix and (a∗1, a
∗
2, . . . ) is the corresponding row of the matrix of

the adjoint operator, then the condition ϕd((ai)
∗ai) = 0 is the same as ϕd((ai)

∗(a∗i )
∗) = 0, i.e., two

conditions of Definition 3.3 come to each other under taking the adjoint matrix. Hence, the proof
of the previous theorem implies

(B
(k)
L (HA) ∩ B

�(HA))
� = (B

(k)
C (HA) ∩ B

�(HA)),

(WB
(k)
L (HA) ∩ B

�(HA))
� = (WB

(k)
C (HA) ∩ B

�(HA)).

Using the first statement of Theorem 4.1, we arrive to

Theorem 4.3. One has the following identities:

(Bf
L(HA))

� = (Bf
C(HA) ∩ B

�(HA)),

(WB
f
L(HA) ∩ B

�(HA))
� = (WB

f
C(HA) ∩ B

�(HA)).

5. KUIPER TYPE THEOREMS FOR THE STRONG CASE

Theorem 5.1. The group GL(Bf
C(HA) ∩ B

�(HA)) is contractible.

Proof. As in the scheme in Section 2, if we have a polyhedron P with vertices A1, . . . , AN ,

Ai ∈ GL(B
(k)
C (HA) ∩ B

�(HA)). Elements of a row of the matrix of an adjointable operator must
tend to zero. Thus, we can find ei0(r), r = 1, 2, . . . , with the properties as in Step 1 of Section 2.
The homotopy of Step 2 will not increase the number of nonzero elements and remain operators in

B
(k)
C (HA). Since A

′′ei0(r) has no more than k nonzero entries, the block (2.8) will have no more than
k+1 nonzero entries in each column. Then the matrix of the entire rotation will have this property

and the resulting operators will be in B
(k(k+1))
C (HA). Thus, Step 3 preserves our subspaces. Finally,

Steps 4 and 5 keep operators in B
(k′)
C (HA), where k′ = 4(2k(k + 1))4.

Theorem 5.2. The group GL(Bf
C(H)) is contractible.

Proof. Take A = C in Theorem 5.1 and note that bounded operators in a Hilbert space are
always ajointable, i.e.,

GL(Bf
C(HC) ∩ B

�(HC)) = GL(Bf
C(HC)).
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Theorem 5.3. The group GL(Bf
L(HA)) is contractible.

Proof. The statement follows immediately from Theorem 5.1 and the first equivalence in The-
orem 4.3.

Taking A = C, we obtain the following statement.

Theorem 5.4. The group GL(Bf
L(H)) is contractible.

Theorem 5.5. The group GL(Bf (HA)) is contractible.

Proof. The proof repeats the proof of Theorem 5.1, because

GL(Bf (HA)) → GL(Bf
C(HA) ∩ B

∗(HA)).

We only need to observe that the ingredients of the construction of the homotopy (rotations,

diagonal scaling and linear decreasing of a corner) lie not only in GL(Bf
C(HA)), but in GL(Bf (HA)).

Once again, the explicit form (2.8) shows this.

6. KUIPER TYPE THEOREMS FOR THE WEAK CASE

Theorem 6.1. The group GL(WB
f
C(HA) ∩ B

�(HA)) is contractible.

Proof. We repeat the proof of Theorem 5.1. We need only to verify that (2.8) is inWB
(k+1)
C (HA)

under the assumption that the operator A′′ is in WB
(k)
C (HA). Indeed, for any d ∈ A and any pure

state ϕ, we have ϕd((ai)
∗ai) �= 0 no more than for k elements (this gives the desired property for

the first column) and

ϕd((aib
−1a∗j )

∗aib
−1a∗j ) = ϕd(ajb

−1(ai)
∗aib

−1a∗j ) = ϕdajb−1((ai)
∗ai) �= 0

no more than for k values of i and fixed j (this gives the property for the jth column of pra).

Theorem 6.2. The group GL(WB
f
L(HA) ∩ B

�(HA)) is contractible.

Proof. This follows immediately from Theorems 6.1 and 4.3.

In the same way as in Theorem 6.1, one can prove the following statement.

Theorem 6.3. The group GL(WB
f (HA)) ∩ B

�(HA) is contractible.

Proof. Once again we need additionally to verify only that (2.8) defines an element from

WB
(k+1)
L (HA) under the assumption that the operator A′′ is in WB

(k)(HA) (only WB
(k)
L (HA)

is insufficient in this place). For this purpose we observe that, for any d ∈ A,

ϕd(b
−1(ai)

∗aib
−1) = ϕdb−1((ai)

∗ai), ϕd(ajb
−1a∗i aib

−1(aj)
∗) = ϕdajb−1((ai)

∗ai),

then use A′′ ∈ WB
(k)
C (HA), and argue similarly to the proof of Theorem 6.1.

For operators without adjoint, we can prove only the following.

Theorem 6.4. The group GL(WB
f (HA)) is contractible inside GL(B(HA)).

Remark 6.5. The formulation means that the contracting homotopy can be valued not only
in GL(WB

f (HA)), but in the wider space GL(B(HA)) (see the second paragraph of Section 2).

This theorem makes sense because the question about the contractibility of GL(B(HA)) for
general A is open, as was explained above.
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Proof. Consider an operator A in WB
(k)(HA). The next argument is based on the following

two observations.
Observation 1. Suppose, ai = (ai1, ai2, . . . ) is a row of the matrix of A and ε > 0 is arbitrary

small. Then, for sufficiently large n and any element of HA of the form

x =
(
0, . . . , 0, 0,

1√
n
, . . . ,

1√
n

︸ ︷︷ ︸
n positions

, 0, 0, . . .
)

(6.1)

we have ‖ai(x)‖ < ε, where we consider ai as an A-functional HA → A.

Indeed, take n >
(

2k‖A‖
ε

)2

. Then by Lemma 1.6 and Remark 3.4, we have

‖ai(x)‖ � 2 sup
ϕ is a pure state

|ϕ(ai(x))| = 2
1√
n

sup
ϕ is a pure state

∑

j

|ϕ(aij)|

� 2
k√
n
sup
k

‖aik‖ � 2k‖A‖√
n

< ε.

Observation 2. Consider an increasing sequence ni and corresponding projections ‘on diagonal’

pi =

⎛

⎜
⎝

1
ni

1
ni

. . . 1
ni

...
...

...
...

1
ni

1
ni

. . . 1
ni

⎞

⎟
⎠ .

According to Proposition 2.3 from [6], we have ⊕pi ∈ B
f (H). Now we add some one-dimensional

zero projections to the direct sum:

p = 0⊕ pi1 ⊕ 0⊕ pi2 ⊕ · · · .

Evidently, we still have p ∈ B
f(H). Now consider the elements e′s to be base elements, corresponding

to zero summands above, and elements fs of the form (6.1). Thus, pis is the projection of nis-
dimensional space on its diagonal, generated by fs. More formally:

e′s := et, where t = s+ ni1 + · · ·+ nis−1
,

fs = (f1
s , f

2
s , . . . ), where

f t
s :=

{
0, if t � s+ ni1 + · · ·+ nis−1

or t � s+ 1 + ni1 + · · ·+ nis ,
1√
nis

, if s+ ni1 + · · ·+ nis−1
< t < s+ 1 + ni1 + · · ·+ nis .

Then the rotation, which takes each fs to e′s, e
′
s to −fs, and is constant on the orthogonal comple-

ment to all fs and e′s, is an element of B�(HA).

More explicitly, the matrix of the restriction of the rotation R(α) onto the span of all e′s and fs
is composed of blocks of the form:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

cos(α) sin(α)√
ni

sin(α)√
ni

. . . sin(α)√
ni

− sin(α)√
ni

cos(α)
ni

cos(α)
ni

. . . cos(α)
ni

...
...

...
...

...
− sin(α)√

ni

cos(α)
ni

cos(α)
ni

. . . cos(α)
ni

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, α ∈ [0, π/2]. (6.2)
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We need this explicit form for a negative observation in Remark 6.6 below.

Now we reduce the situation to the scheme of Section 2.
We can suppose (after an arbitrary small perturbation, if necessary) that all vertices Ai (hence,

all elements) of P are inWB
(k)(HA). Now, applying Observation 1, and taking a common estimation

for all ‖A‖ (from a compact set), we will find inductively nis (in the notation of Observation 2) to
keep the following estimations:

‖〈Afs, ek〉‖ <
ε

k2k
, A ∈ P, k = 1, 2, . . . (6.3)

After that, we perform a rotation as in Observation 2. Then after performing the homotopy A◦R(α),
α ∈ [0, π/2], we have for A′ = AR(π/2), and the conditions of Step 2 in Section 2 is fulfilled.

Then we argue following the next steps in Section 2 without additional considerations, because
we do not need to control the number of nonzero entries. Also, the “additional” homotopy at the
beginning does not depend on A, hence, it is continuous.

Remark 6.6. It is very unlikely that this (Kuiper) approach will allow to prove the contractibil-
ity of GL(WB

f (HA)) in itself, because the first rows of blocks (6.2) form an operator, which is not
in WB

f(HA) (cf. [6, Proposition 2.1]).

One can also remark that, at the next step, we also have no control on (2.8) because (a1, . . . , au)
is now a mixture of ni → ∞ columns.
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