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Abstract. We study the asymptotic behavior of a finite network of oscillators (harmonic or
anharmonic) coupled to a number of deterministic Lagrangian thermostats of finite energy.
In particular, we consider a chain of oscillators interacting with two thermostats situated at
the boundary of the chain. Under appropriate assumptions, we prove that the vector (p,q)
of moments and coordinates of the oscillators in the network satisfies (p, q)(t) — (0, ¢c) as
t — 0o, where q¢ is a critical point of some effective potential, so that the oscillators just
stop. Moreover, we argue that the energy transport in the system stops as well without
reaching thermal equilibrium. This result is in contrast to the situation when the energies of
the thermostats are infinite, studied for a similar system in [14] and subsequent works, where
the convergence to a nontrivial limiting regime was established.

The proof is based on a method developed in [22], where it was observed that the ther-
mostats produce some effective dissipation despite the Lagrangian nature of the system.
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1. INTRODUCTION

We study the asymptotic behavior of a finite network of oscillators (harmonic or anharmonic),
where some of the oscillators are coupled to thermostats. Our principal example is a chain of N > 1
oscillators interacting with two thermostats situated at the boundary of the chain. One of the first
rigorous results in this direction was obtained in [14], where the just mentioned case of chain was
considered. The authors modelled the thermostats by the linear wave equations and the interaction
between the thermostats and the chain was chosen to be linear as well. The initial conditions of the
thermostats were assumed to be random and distributed according to the Gibbs measures of given
temperatures 7y, and Tr. Under appropriate assumptions, the mixing property was established,
stating that the asymptotic behavior of the chain is governed by a stationary measure p, which
is unique and absolutely continuous with respect to the Lebesgue measure. More precisely, the
authors proved the total variation convergence of measures

D(p,q)(t) > p as t— oo, (1.1)

where D¢ denotes the distribution of a random variable £ and (p, ¢)(t) is the vector of coordinates
and moments of the oscillators in the chain at the time ¢. Moreover, in [15], the authors proved
that the stationary measure p has positive entropy production. These results were subsequently
developed in [20, 5-9].

Because of the Gibbs distribution of initial conditions, the initial energies £1(0),Er(0) of the
thermostats in the model above are almost surely infinite. In the present work, we address the
following question: What happens if the initial conditions are chosen in such a way that the energies
€1(0),ERr(0) are finite (but probably, very large)? Namely, we consider a system similar to that
investigated in [14], but assume the initial conditions to be deterministic and the total energy of
the system to be finite. Under appropriate assumptions, we show that, as ¢ — +oo, the oscillators
in the chain just stop. That is, we prove the convergence

di

(p,q)(t) — (O,qf) and gt (p,q)(t) =0 Vi>1 as t— +oo, (1.2)
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where the constants ¢F are critical points of some effective potential. The critical points ¢& may
depend on the initial conditions, however, the effective potential is independent of them, so that
the set of all critical points {g} does not depend on the initial conditions.

We next study the asymptotic behavior of the energies £1, and Eg of the thermostats as t — +oo.
For the case in which the chain consists of a unique oscillator (N = 1), we prove that the energies £,
and £ converge to some constants 5Li and 5§ respectively, so that, the energy transport between

the thermostats stops as well. Then, one could expect that 5Li = 5}%, so that the system reaches a

kind of thermal equilibrium. We show, however, that this situation is not generic, but takes place

only for a special set of initial conditions, of codimension one. Thus, the chain plays a role of an

insulator rather than of a conductor. For longer chains, when N > 1, we can prove only that the
sum &y, + £ and the time derivatives

d d’

Er, .

dtt dt*

converge as t — +oo, for any ¢ > 1. We conjecture, however, that the same results as for N =1
hold, probably under stronger assumptions for the function specifying the interaction between the
thermostats and the chain, and for the initial conditions of the thermostats.

We use a method developed by Treschev in [22]. The main idea behind is that the motion of
the oscillators in the chain cannot create parametric resonances in the thermostats: otherwise, the
total energy of the system would not be finite. If the coupling of the thermostats with the chain is
“sufficiently strong,” this implies a serious restriction for the dynamics of the chain which leads to
the convergence (1.2).

The convergence (1.2) generalizes results obtained in [22, 10] and [21], while the asymptotic be-
havior of the energies £y, g is studied here for the first time. In [22], under appropriate assumptions,
the convergence (1.2) was established for the system of one oscillator (N = 1) interacting with one
thermostat. In [10], the result of [22] was generalized to an arbitrary network of N oscillators
(not necessarily forming a chain) interacting with one thermostat, under the assumption that the
oscillators are harmonic. In [21], the assumption of harmonicity was removed but instead it was
assumed that the number M of the thermostats interacting with the system of oscillators is not
less than the number of oscillators, that is,

Er

M > N. (1.3)

To establish the convergence (1.2), in the present paper we significantly relax condition (1.3) taking
into account geometry of the network.! Namely, we prove (1.2) under the assumption that the
oscillators interacting with the thermostats “control” the other oscillators from the network in an
appropriate sense (see assumption A5 in Section 2.2). For example, our results apply to a chain
of oscillators interacting through the boundary with at least one thermostat, as well as to a tree
of oscillators, where the thermostats are coupled to the oscillators in the leafs of the tree. See Fig.1
for more examples. See also Section 2.4 for the comparison of our strategy with that used in [21].

When we were editing our manuscript, the paper [7] was published, where the convergence (1.1)
was generalized to the case of networks under exactly the same assumption A5, which is called the
controllability assumption in[7].

Let us note that, for systems of the type [14], where the energy is infinite and the coupling with
the thermostats provides stochastic perturbation, an analog of assumption (1.3) is well-known.
Namely, one assumes that each oscillator from the network is coupled with its own thermostat.
This assumption significantly simplifies the investigation of the asymptotic dynamics and of the
energy transport. Indeed, under this assumption, the mixing property (1.1) is well understood (see,
e.g., [23, 17]) while, concerning energy transport, there is a number of recent developments (see
[3, 4, 1, 11-13]). Relaxation of assumption (1.3) in this setting is an important and complicated
problem, and paper [14] provides one of the first results in this direction.

Effects similar to the convergence (1.2) are also known in different infinite-dimensional Hamil-
tonian systems with finite total energy, mostly, in the context of nonlinear Hamiltonian PDEs.

I For simplicity, we restrict ourselves to the case when each thermostat is allowed to interact with a unique oscillator.
In contrast, in [21], each thermostat is allowed to interact with several oscillators.
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See the survey [18] and references therein. In particular, using a completely different method, in
a similar but different setting in [19], it was proven that a single oscillator interacting with the
thermostat enjoys the convergence (1.2).

The structure of the paper is as follows. In Section 2, we describe the model, state our main
results and give an outline of their proof. In Section 3, we establish some technical lemmas in the
spirit of [22, 10, 21], playing a central role in the sequel. In Section 4, we prove our main results. In
Section 5, we study the asymptotic behavior of the energies of two thermostats which are coupled
to a unique oscillator.

2. SETUP AND RESULTS

2.1. Setup

Let us take a finite undirected graph I' = (G, €), where G and € stand for the sets of vertices and
edges of I, correspondingly. We consider a system of one-dimensional oscillators enumerated by the
vertices j € G of the graph T'. If the vertices i, j € G are adjacent (we write i ~ j or (i,7) € &), we
couple the corresponding oscillators by an interaction potential V;;. The Lagrangian of the system

has the form )
. qj 1
@)=Y (5 —Uia)) =, D Vila—a).
j€g 1,j€G i~
where the dot stands for the derivative in time, (q,q¢) = (¢;,4;)jeg € R2I91, Uj;,V;; are smooth real
functions and V;;(¢; — q;) = Vji(q; — ). We fix a set

ACg

and couple each oscillator from A with its own thermostat. Each thermostat is modelled as a con-
tinuum collection of independent harmonic oscillators parametrized by their internal frequency v.
The thermostats are given by the Lagrangians

LT (Emsm) = / €2 (v) — 22 (v) dv me A, (2.1)

where &, (v,t),&m(v,t) € R stand for the coordinate and velocity of the oscillator which has the
internal frequency v.

Remark 2.1. It is more natural to assume that the Lagrangians have the form

o0

EGndn) =, [ oG~ ) v

—0Q

where the physical meaning of the function p,,(r) > 0 is the density of oscillators with the inter-
nal frequency v. We consider the simplified Lagranglan (2.1), since it can be obtained from the

Lagrangian ET by the transformation &, = \/pm(m., b = \/mem

The coupling between the system of oscillators and the thermostats is linear and given by the

potentials
o

Vni»?t(me gm) = —Qm/ ﬂm(”)ém(”) dy, m e A’ (2'2)

— 00

where k,, are real continuous functions. The Lagrangian of the total system has the form

£(0,6,6,8) = L%(@ D) + Y LEEmrm) = D Vi (gm, &m);

meAN meAN
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where (£,€) = (EmsEm)men- Set dja = 11if j € A and 6;5 = 0, otherwise. Then the equations of
motion take the form

i; = + Y i) 4 dia /OO 1 (V)€ (v) dv, (2.3)

1€Ging -0
EmW) = =12 W) + km(V)gm, meA, veER, jeg, (2.4)

where U} (), V;; () denote the derivatives of the functions Uy, V;; in x. We fix some initial conditions

(q7£7q7£)(0) = (QO750,QO,£0)- (25)

The total energy of the system has the form

B d =3 (U +0) + ZVW 2 [ ervea

jeg mGA (2.6)

— Z qm/ Km&m dv.

meA

Remark 2.2. In the paper [14], the authors considered a system similar to (2.3)—(2.4), where
the graph I" was chosen as a chain {1,..., N} of length N > 1, and A = {1, N}. The dynamics
of the thermostats was given by the wave equations Oy @, (2,t) = Ay (2, 1) + m(2)gm(t), where
x € R If d = 1, under the Fourier transform, the wave equations take the form

P (V1) = =12 G (1,1) + (V)i (8),

and the total system takes the form (2.3)—(2.4). Note, however, that the effective potential arising
in the formula (3.7) of [14] is different from our effective potential (2.8), introduced in the next
subsection.

2.2. Assumptions

We impose on the system the following assumptions.

A1l. The potentials Uj, Vi; are smooth for everyi,j € G. The second derivatives V have only
isolated zeros.

Denote by L™ the space of measurable functions f : R — C satisfying f ()| dx < 0.

A2. The functions k,, are C*-smooth and k., (v) = 0 if and only if v = O Moreover, Ky, ko,

belong to L' N L? and there exists an integer r > 0 such that v"k, v"/%k’ € L2.
Denote

o) /{%1
K,, = / 2 dv < o0, (2.7)

— o0

where the inequality K, < oo follows from Assumption A2. Introduce the effective potential

2
VG = YU + ) S Vila—a) - Y 29

jEeG i~j meEA

A3. The effective potential VT satisfies |Veﬁ(q)‘ — 00 as |q| = oo.
The total energy (2.6) of the system can be written in the form

3 / - ””;gm>2dy. (2.9)

meA

E(g,€,4,€) = qJ+Z/ émdwrveﬂ“ +
j€G

J
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Fig. 1. Networks a)-e) satisfy Assumption A5 provided that the set A contains the white
oscillators.

Due to Assumption A3, without loss of generality, we can assume V°f > 0, so that £ > 0. Denote
by &, the energy of the m-th thermostat,

Ene =) [ &0 +re 0 (210)

A4. The initial conditions (2.5) satisfy Em(&o,Eo) < 0o for any m € A.

Assumption A4 together with (2.7) implies that the initial total energy E(qo, &0, do, éo) is finite.
Indeed, by the Cauchy-Bunyakovsky inequality, we have

oo oo .2 1/2 oo 1/2
/ Em&om dv < (/ ﬁ”; dl/) / (/ V2§(2)m dy) / < 00,
— 0o — 0o v — 0o

so that, due to (2.6), we obtain E(qo, o, 4o, &0) < 00.

To formulate the next assumption, we construct a set Ar by the following inductive procedure.
We start by setting Ar := A and consider the set A} of vertices j € Ar for which there exists a
unique vertex n(j) € G\ Ar adjacent to j (in particular, for all other i € G, i ~ j, we have i € Ar).
We add n(j) to Ar, so that Ap := UjeA%n(j) U Ar, and iterate the procedure. We finish when we

get AL = 0.

A5. We have Ar = G.

See Fig. 1 for several examples of networks which satisfy Assumption Ab5.

Remark 2.3. We give Assumption A2 in the form above for simplicity of formulation, while in
reality, we use the following weaker assumption.

The functions k,, are continuous and k,,(r) = 0 if and only if v = 0. Moreover,

Vkm € L2 and  ky,, VK2, € L', forany —1<I<r, (2.11)

where L' = F(L') stands for the Fourier transform of the space L. It is straightforward to check
that Assumption A2 implies relation (2.11). To do this, one should use the fact that a C2-smooth
function g satisfying the inclusion g, ¢’ € L', satisfies g € L!, or, equivalently, g € L', where g is
the Fourier transform of the function g. Indeed, this follows from the relations |g(\)| < [|g|/z: and
IA2§(A)| < [lg” || 2, which hold for any .

2.8. Main Results

Our main goal is to study the large-time asymptotic behavior of the system of oscillators. How-
ever, since the total system has infinite dimension, even its well-posedness is not immediate.
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Theorem 2.4. ([21]) Assume A1-A}. Then system (2.3)—(2.5) has a unique solution q(t),&(v,t)
and this solution is defined for allt € R. The energy computed on this solution is finite and does

not depend on time, E(q,&,4,€)(t) = E(qo, o, do, &) < 0o. The functions qi(t), £ (g, &, q,€)(t) are
uniformly bounded and the functions qi(t) are uniformly Lipschitz.

Theorem 2.4 is a particular case of a theorem from [21, Th. 3.1]; see also [22, Th. 1] for an earlier
similar result. The uniform Lipschitz property of the functions g is not stated in the cited works,
but it follows immediately from the uniform boundedness of the derivatives ¢, which takes place
because the energy (2.9) is constant.

Next we state our main results. Let N be a set of critical points of the effective potential,
={qgeR" : 9,V (q) =0Vj € G}

The set N is closed. Denote by dist(q, N®) the Euclidean distance in RI9! from the point ¢ to
the set AN°ff. Recall that the integer r is defined in Assumption A2.

Theorem 2.5. Under Assumptions A1-A5, the solution q(t),&(v,t) of system (2.3) — —(2.5)
satisfies
dist (¢(t),Ns") -0 as t— Foo, (2.12)

where N_‘iﬁ,/\/fﬁ are some connected components of the set N°. Moreover, the solution q(t) is
C"3_smooth and for its time derivatives ¢V, 1 <1< r+ 3, we have

dPt) =0 as t— +oo. (2.13)

The proof of Theorem 2.5 is given in Section 4.1. The choice of the connected components
NN ¢ e may depend on the initial conditions (2.5). Let us now additionally assume

A6. The effective potential VT has only isolated critical points.
Then any connected component of the set N is a singleton. Consequently, Theorem 2.5 implies
the convergence
qt) = ¢F  as t — Foo, (2.14)

where the critical points ¢F, ¢ € N may depend on the initial conditions. If ¢ # ¢, we observe
a transition from one equilibrium at t = —oco to another one at ¢t = +o0.

As a corollary of Theorem 2.5, we obtain the following result specifying the limiting behavior as
t — +oo of the energies &, of the thermostats.

Corollary 2.6. Under Assumptions Al — — A6, the energies of the thermostats En,(t), m € A,
computed on the solution of equation (2.3) — —(2.5) satisfy

eff 1 + Km(qgc)2
Z Em(t) = E(qo, 0, dos S0) — VT (gF) + Z 5 as t— Foo, (2.15)
meA meA

where qF are the critical points of the effective potential given by (2.14). Moreover, the functions
Em are C"T-smooth and their derivatives satisfy

1

jtlé‘m(t)%o as t—doo V1<I<r+1. (2.16)

Corollary 2.6 is established in Section 4.2 and it provokes the following questions. Is it true
that the energies &,,(t) of the thermostats converge as ¢ — £o0? If this is the case, let us assume
that the graph G forms a chain {1,..., N} and only the first and the last oscillators are coupled
to the thermostats, that is A = {1, N}. Assume also that the functions U;, V;;, k; are independent
of i,7. Is it then true that the limits of the energies of the thermostats are equal, so that a kind
of thermal equilibrium is achieved? We are able to give an answer to these questions only in a
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particular case. Namely, in Section 5, we consider a system of one oscillator interacting with two
thermostats and prove that the energies of the thermostats converge. We show, however, that the
set of initial conditions for which the limits coincide is of codimension one, so this situation is not
generic.

Although we do not have a proof, we believe that the same situation takes place for longer chains
as well, at least, in the case when the functions k,, together with the initial conditions &g, &y decay
sufficiently fast at infinity. In the case when the chain consists of a unique oscillator, we are able to
establish the convergence of the energies because of the existence of a special change of variables (see
(5.2)). The latter transforms our system to a system consisting of one oscillator interacting with one
thermostat, and of another isolated thermostat, so that the convergence of energies immediately
follows from Corollary 2.6. In the general case, however, an analogous transformation does not
exist and the main ingredient we lack to prove the convergence of the energies &, is an appropriate
estimate for the rate of convergence (2.12).

2.4. Outline of the Proof of Theorem 2.5

The proof of the theorem relies on a method invented by Treschev in [22] and subsequently
developed in [10, 21]. To explain its main idea, let us study equation (2.4), where the function g, is
viewed as an external force. Assume that g, (t) = sin(At) or ¢,,,(t) = cos(At) for some X # 0. Then
in equation (2.4) with v = A, the parametric resonance will occur, since k,,(\) # 0 by Assumption
A2. However, this contradicts energy conservation, so that such a situation is impossible. This
suggests that the function ¢, cannot have components oscillating with any frequency A # 0.

To make these considerations rigorous, following [22], we introduce the notion of singular support
singsupp # of a distribution Z, where & = F(x) is the Fourier transform of a bounded uniformly
continuous real function x. We say that A € singsupp 2 if, roughly speaking, the function x has a
component oscillating with the frequency \; see Definition 3.3. In particular, if singsupp = (), we
have z(t) — 0 as t — £o00. The conservation of energy together with the relation &, (v) # 0 for
v # 0 implies that singsupp ., C {0} for m € A, and it follows that singsupp (A'Gm (X)) = 0 for

any | > 1, since A4,,()\) vanishes at A = 0. Since .F(q,(,ll))()\) = (iA)!Gm(N), we obtain

sing supp ]-'(qffl)) =0,

so that
¢W(t)—=0 as t—4oo, forany [>1 (2.17)

and m € A. We then use the Duhamel formula to express the function ¢, (t) := [7°_ £ (V)& (v, t) dv
from equation (2.4) through the function ¢,,(t). Using that singsupp ¢,, C {0}, we prove that

Om(t) = K@ (t) + 9m (1), (2.18)

where the constant K, is given by (2.7) and the function 9,,(t) — 0 as t — +oo.

Assume first that A = G, so that each oscillator from the network is coupled with a thermostat
and, consequently, (2.17) holds for all m € G. Then, inserting (2.18) into equation (2.3), letting
t — £oo and using (2.17), we obtain the desired convergence (2.12); a similar argument was used
in the papers [22] and [21]. In difference with these works, we do not have the relation A = G, so
that an additional argument is needed to establish (2.17) for m ¢ A. By construction of the set Ar,
due to Assumption A5, there exists a j € A for which there is exactly one n € G\ A adjacent to j.
In particular, for any ¢ € G adjacent to j, ¢ # n, we have ¢ € A, so for such an ¢, the convergence
(2.17) takes place. Then we differentiate in time both sides of the j-th equation from (2.3) and find
that all the terms of the resulting equation vanish as t — +o00, except the term V,;’] (Gn — 45)dn-
Thus, the latter term vanishes as well and we prove that this implies the convergence ¢, (t) — 0 as
t — £00. Using the uniform continuity of ¢,, we then establish the convergence (2.17) for m = n.
Then we replace the set A by AU {n} and repeat the procedure. Finally, we obtain (2.17) for all
m € Ar, that is, for all m € G since, due to Assumption A5, Ar = G. Arguing as above, we conclude
that this implies the convergence (2.12).

To follow the strategy, outlined above, we need to develop some technical tools used in the papers
[22, 10, 21]. This is done in the next section.
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3. PRELIMINARY RESULTS

In this section, we develop the method used in the papers [22, 10, 21] and obtain technical results
playing a key role in the proof of Theorem 2.5.

3.1. Functional Spaces

We denote by F the Fourier transform and by F~! its inverse. We agree to the convention

I =F@W = [ eMuwd md FrEO =, [ Puma,

for ¢» € L'. We also denote the Fourier transform by a “hat.” Let us recall that, for any ¢, € L!,
we have

1 .
Flov) =, ¢+ and F'(@h) =px,

where * stands for the convolution.

We denote by C, the space of uniformly continuous bounded functions ¢ : R +— C. This is
a Banach space with the standard norm |[¢||cc = supeg |1(t)]. Let Cg,Cy be subspaces of Cp
consisting of functions 1 € C, satisfying ¥ (t) — 0 as t — oo or t — —o0, correspondingly. Set
Co:=Cf N Co , SO that, for ¢ € Cy, we have (t) — 0 as t — +o00. We will also use the Fourier
transforms Cb, CO , and Co of the spaces Cp, C and Cp, understood in the sense of distributions.

Let M be the space of complex Radon measures of bounded variation on R. This is a Banach
space with the norm

lalaec:=  sup (w), where {u9) = / () uldr

YECh: [|[Plleo=1

The Fourier transform M of the space M is defined by

i = [ e tan), (3.2)

— 00

and it is known that M C Cp (see, e.g., [2]). In particular, we have L! := F(L') ¢ M, since any
measure u € M which is absolute continuous with respect to the Lebesgue measure has the form
u(dt) = fi(t) dt with fi € L'. By F~(j1), we write the inverse Fourier transform of i € M, which is
defined as the action of the operator =1 from (3.1) on the space C, and is understood in the sense
of distributions. Thus, F~!(f) is a distribution it which can be viewed as a density of the measure
14, SO that, mformally, w(dt) = f(t )dt We identify I with i and, abusing notation sometimes, we

write p(t) dt instead of u(dt). For ¢ € C, and i € M, we define the pairing

(f1, ) := 27 (u, ), (3.3)

where ¢ = F~1(¢)) and p = F~1(4). In particular, when u(dt) = fi(t)dt and the functions i,
belong to the Schwartz class, we have?

(#.6) = [ 10)b0) dv =27 [ u)ii) v

2Usually one defines the Fourier transform of measures via (3.2) with the exponent e~*** replaced by e***. The sign
“.” in the definition is more convenient for us since we want to have the same formula for the Fourier transform of

spaces M and Cp. The price we pay is the conjugation arising in the formula (3.3).
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Lemma 3.1. Let i, fi1, fio € M, ¢ € C and ¢ € Co. Then firfio € M, jp € Gy, and fig € Co.

The proof of the lemma can be obtained via the Fourier transform in a standard way. We do not
present it but address the reader to [22] (Section 8.1 and Lemma 8.2). In this connection (and for
further needs), we note that we have the following relations:

FUb) = b= [ ot s)u(ds) and F ) = s

where the convolution g1 % ps € M is defined by the formula
(1 * po, ) = / / Y(t+ s) pi(dt)pz(ds), where ¢ € Cy.

For a more detailed discussion of the spaces Cp,Co, M and their Fourier transforms, see [16].

Lemma 3.2. Let i € M, a € R and j(a) = 0. Then, for any € > 0, there exists a [1° € M
satisfying supp i C (a — e,a +¢) and a ¢ supp(ft — i), so that ||uf||pm — 0 as € — 0, where
pe = FH(iF).

Proof. Without loss of generality, we assume that a = 0. Let x be a smooth real function
satisfying supp x C [—1,1] and x(v) = 1 for any |v| < 1/2. Set

NE

) = (/o) and if = {5

Then it remains to show that ||u||p — 0 as € — 0. Since pu® = p * x°, where x* = F1(x%), we
have

|6l = sup  [{uxx",0)| = sup  |[{ue*X")
0€Cy: [ plloo=1 0€Cy: [[@lloo=1

where x°(t) := x°(—t). Set b := (¢ * x°)(0). Since (0) = 0, we have (u,b) = bji(0) = 0. Then,
denoting by I4 the indicator function of a set A, we find

)

(s # X7 = (9 X7 = b) = (1, Tjaycemrroy (05 X5 = 0)) + (1 Ly emr2y (0% X7 = b))
= I+ I5.

Let us estimate the term I§. Using that X°(t) = x°(—t) = ex(—et), we obtain

/OO oy)(X“(t —y) — X (~y)) dy‘

15| < Nl || Tgpey g2y (0 % X° = 0) || o = llullae sup

tl<e=12 1 —oo
o0 o0
v swp < / ey — 1) — x(ew) dy = lula sup / X(y — <t) — x()| dy,
[t]<e—1/2 —o0 [t]<e—1/2 J -0

so that I — 0 as e — 0, uniformly in ¢ € C, satisfying ||¢|lcc = 1. To estimate the term I5, we recall
that, for any p € M, there exist nonnegative ui,...,us € M satisfying puy — po + tus — g = u,
see, e.g., [2]. Then,

4 4
1I5] < Z(Mjaﬂ{\t|>a—l/2}>||80 * X" = blloo < 2[J0p * X% |loo Z<:uj7ﬂ{|t\>e—1/2}>'

j=1 j=1
We have N N
[l % X lloo < llplloo XMy = lixlzr-
Since for any o € M, we have (o, I{jy5.-1/23) — 0 as € — 0, we obtain I5 — 0 as € — 0, uniformly
in ¢ € Cp satisfying [|¢|lcc = 1.
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3.2. Singular Support

Here we discuss the notion of singular support, first introduced in [22] which is central for our
paper.

Definition 3.3. ([22]) Let ¢ € Cy, A € R and * € {+,—}. We say that A € sing supp* ¢ if, for
any interval I C R containing the point A, there exists a i € M, supp it C I, such that ,u¢ ¢ CO
We set sing supp (;5 = sing supp™ ¢> U sing supp ™~ (;5

For example, if d(A\) = (A — Ag), where Ay € R and § is the Dirac delta-function, we have
sing suppgb {Ao}. On the other hand, for ¢ € Co, we have sing supp ¢ = () since, by Lemma 3.1,
fip € Cy, for any fi € M.

Lemma 3.4. Let(;ASECAb and i € M.

(1) Assume that i € Cy. Then singsupp ¢ C {1/ eR: a(v) =0}

(2) Assume that smgsuppgb =0 or smgsupp¢> c{ay,...,an} foray,...,a, € R,n > 1, and
ilay) = -+ = jlay,) = 0. Then fi¢ € Co. Moreover, the equality singsupp ¢ = 0 implies
o€ éo.

Proof. Item 1 is proven in Lemma 8.9 of [22] If singsupp¢ = 0, then Lemma 8.6 from [22]
implies that /u;b € Cp. Choosing i = 1, we get ¢> e Co.
It remains to study the case when sing supp¢> C {ay,...,a,}. We apply Lemma 3.2 to fi at the

point a; and construct /i{ € M satistying ||u5|[p — 0 as e — 0, a1 ¢ supp(fi— fi5) and as, . . ., a, ¢
supp [ij, for e sufficiently small. Next we apply Lemma 3.2 to fi — i§ at the point a2 and obtain

15 € M satisfying ||u5]m — 0 as e — 0, a1, as ¢ supp(it — a5 — i5) and as, ..., a, ¢ supp fi5, for

¢ sufficiently small. Iterating the procedure, we construct /5, ..., i, € M satisfying
ISl —0 as e—0 (3.4)
and
al,...,an¢Supp(ﬂ_ﬂi_"'_,&i)- (35)

Lemma 8.6 from [22] states that relation (3.5), together with the assumption sing supp ¢ C {ay,...,an},
ensures that (f1— /5 —---—f15,)¢ € Co. On the other hand, in view of (3.4), we have || F~"(fi5 ¢)||cc <
15 mlllloc — O as e — 0. This implies the desired inclusion fid € Co.

Lemma 3.5. Assume that a C'-smooth, | > 1, real function ¢ satisfies singsuppgzg C {0} and
its derivatives p*F), 0 < k <1, belong to the space Cyp. Then ¢F) € Cy for any 1 < k < 1.

In particular, the assumption sing supp<2> C {0} is satisfied if ¢ € Cy, since in this case we have
sing supp ¢ = 0.

Proof. Note that F(¢®))(v) = (iv)* $(v). We first claim that, for any 4 € M, with compact
support, (iv)*fi € M. Indeed, take a smooth function y with compact support satisfying y(v) =1
for all v € supp ji. Then (iv)*x € M, since (iv)ky is a Schwartz function and Schwartz functions
belong to the space M. Then, (iv)*fi = ((iv)*xX)ir € M, by Lemma 3.1.

Since (iv)¥ () vanishes at the point v = 0, Lemma 3.4 (2) implies (iv)*ip € Cy. Thus, by the
definition of singular support, we find sing supp ((w)kgg) = (). Then, applying Lemma 3.4(2) once
more, we find (w)kqg € Cy and consequently, (%) € Cp.
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3.8. Main Lemma

In this section, we establish the following proposition, which plays a key role in the proof of
Theorem 2.5. Let (g(t),&(t)) be the solution of equation (2.3)-(2.5). Set

Pm(t) == /OO Fm (A)&m (A, 1) dA.

— o0

Recall that the numbers r and K, are defined in Assumption A2 and (2.7).

Proposition 3.6. Under Assumptions A1-A4, for any m € A,

(1) singsuppgm C {0};

(2) the function @, is C™1-smooth and all its derivatives belong to the space Cy; the functions
g, J €G, are C+3-smooth and their derivatives belong to Cy as well;

(3) ©m — KimGm = U, where 9, € Co; the function ¥, is C™1-smooth and its derivatives
belong to the space Cgp.

Proposition 3.6 is a corollary of a result obtained in Theorem 3.2 of [21], which we formulate
below, in Theorem 3.7. See also Theorem 2 from [22] and Theorem 2.2 from [10] for similar results.

. 2mk2, (V) 1 2 59 . 71 1
Set Wy, (V) == , and wy, := F~(Wy,). By (2.11), k., /v € L*, so that w,, € L" and w,,, € L".
v
Denote
:t 1
W5 (7) = (Tjo,200) (T) (@ (7) — Wi (=7))), (3.6)

where Iy _ o) := —I(_o,0). Using the formula (see, e.g., [24]),

1 1
F (o, 400))(A) = £mI(N) + JUPe

where v.p. means the principal value, we find

Since w,, € L', we find w¥,, € L' and 0%, € L'.

Theorem 3.7. ([21]) Under Assumptions A1-A4 for any m € A,

(1) Wmdm € L' C Co;

(2) Gm — DFmdm € C5-

Despite that Theorem 3.7 is proven in [21], for the sake of consistency as well as for the further
need, we give its proof below.

Proof of Theorem 3.7. Item 1. Using the Duhamel formula, from equation (2.3), we find

Em (V1) = E0, () + &1 (D), (3.8)
e Em’ (v, 1) = 8?( ! €o em) Eom = Eom + W&o
1w
and .
Envt) =" / (=7 = D) gu(r) dr = R e ); (3.9)
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here ¢f,, == gmljoy if t >0, ¢, == —gml}0) if t <0, and ¢}, := F(q},). By a direct computation,
from equation (3.8), we obtain
Emt) = |Kmdl, + Eom|72- (3.10)

By Assumption A4, we have ||€om |22 = £n(0) < oo and, by Theorem 2.4, the function &,,(t) is
bounded. Then
[mdnllze < C, (3.11)

where the constant C' does not depend on the time t. Set
4z = qmljo+00), Where Ipp ooy :=—I_ ],

and let ¢ = F(q).

Lemma 3.8. The function k.G belongs to L? and the functions kg, weakly converge in L?
to Kt ast — %oo.

Proof. We first claim that the functions k,,q’, considered as functionals on the space M con-
verge to k;,G as t — +oo. Indeed, due to (3.3), for any ji € M, we have

(1, fom ) = 2 (e, F~ (K hy)) = 2 (o F 1 (i), @i )-

Since, by (2.11), we have k,, € L' € M, we obtain % F~ (k) € M (see Lemma 3.1). Then it is
straightforward to check that 2m{u * F~!(k,,),qt,) converges to

277(:“ * fﬁl(ﬁm)’qxﬁ = <ﬂv’€m(ﬁ7r1>

Due to the obtained convergence, the norm of the functional k,,q;,, considered as a functional
on M N L2, is bounded by the constant from (3.11). Since the space M N L? is dense in L?, we
can uniquely extend k,,§;; to a continuous functional on L? with the same norm. Identifying the

obtained functional with an element of L?, we obtain the desired result. The case t — —oo can be
studied similarly.

Since G, = ¢ — G, Lemma 3.8 implies the inclusion #,,G,, € L2. Since, by (2.11), we have
27K
K /v € L2, we find WG = . KmGm € L.
i

Item 2. Due to (3.8), we have ¢, = ¢, + ¢}, where ¢J, := [~ k.6 dv, j =0,1. Then

9021 = §R/ /{ é'(]me“/t dv = %.7:_1< 7T./§ £Om) (312)
Lo WV w
2Tk,
Since by (2.11) and Assumption A4, we have k,, /v, m € L?, we obtain 7;/; Eom € L1, so
@2, € Co. (3.13)
Next,
o) /{/2 )
ol — R / ke d = RA). (3.14)
We have
A(t) = FH (tmh,) (t) = (wm * gl (1) = AT (1) — Ag (1), (3.15)
where

AL () = / " ot = g ooy ()0 (7) dr

— 00
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and
t

AL () = /t " (t = Y () dr, AT (1) = / gon(t — T)wn (7) dr-

— 00

Since gy, is real and w,, is purely imaginary, we find
RAE = ) (T sy (1) (i (7) = 0 (7)) * G = F~ (@)
Moreover, since w,, € L', we have AT (t) — 0 as t — +oo. Consequently,
P = RAY (1) = RAGT (1) = F ' (05500m) + Vi

where 9% € CF. Thus, in view of (3.13), we have @, = F~H(dE, Gim) + 9%, where 0% € ¢F. O
Now we deduce Proposition 3.6 from Theorem 3.7.

Proof of Proposition 3.6. Item 1. Due to Theorem 3.7 (1), we have Wgm € L' C Co.
Then Lemma 3.4(1) implies that singsupp ¢, C {v : w,,(v) = 0}. Since, due to assumption A2,
{v: W, (v) =0} = {0}, we obtain the desired result.

Item 2. The result follows in a standard way from equations of motion (2.3)—(2.4). Namely, due
to formulas (3.12)—(3.15), we have ¢, = ¢, +pL . where ¢¥, € Co C Cp and L, (t) = R(w,, *qL,)(t).
Using the inclusion w,,, € L, it can be checked that ¢l & Cp, so that ¢, € Cp.

For the time derivatives of the function ¢,,, we have gogl) = (9D + (oL YD, By (3.12), we
obtain (9 ) = RF~1(2n(iv)' ' km&om). Since by Assumptions A2 and A4, v"k,,, Eom belongs to
L?, we find (¢2,)Y € F~Y(L'Y) € Cy C Cp, for any | < r + 1.

Let us now study the derivatives () )(). Due to (3.9), we have
oo . t .
P (t) = §)“E/ ff%(’/)ewt/ e g (1) drdy = RF ™ (2mk7,d,, ) () = R(FH(K7,) * 41) ().
—00 0

Since by (2.11), we have F~1(k2,) € L', we find ¢!, € C, and, consequently, ¢,, € Cp. Thus,

m
the r.h.s. of equation (2.3) is differentiable in time and its derivative is from the space C,. Then the

Lh.s. also is, so that the functions ¢; are differentiable at least three times and ¢; € Cp, for any
j € G. Next we compute ¢l . Arguing as above, we find

o

(1) = (FH(()2) * 4b) (1) + g (1) / 52, (v) dv.

— o0

Then, using that F~1((iv)k2,) € L, we obtain 3}, € Cy, so that (,, € Cp. Differentiating equation
(2.3) twice, we then find q§4) € Cp. Continuing the procedure in the same way, we arrive at the
desired result.
Item 3. Set 07 (v) := wk, (0) — wF, (v). Since by (3.7), we have W, (0) = K,,, Theorem 3.7
(2) implies
5 . St 4 5+
©m — K Gm + 5QO € C(] .
Since 6% (0) = 0, Lemma 3.4 (2) together with the first item of the present proposition implies that
0 Gm € Co, so that ¥, := @ — KnGm € Ca“ NC, = Co.
Due to item 2 of the proposition, the functions ¥,,, are C"*1-smooth and their derivatives belong

to the space Cp. Since ¥, € Cy, we have singsupp O = (), so the fact that the derivatives of ¥,,
belong to the space Cy follows from Lemma 3.5.
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4. PROOFS OF MAIN RESULTS

4.1. Proof of Theorem 2.5

Step 1. Proposition 3.6 (3) implies that equation (2.3) can be written in the form

i =-Ulg)+ Y.V i)+ 0ia(K g +9;), jE€G. (4.1)

1€EG:ing

Due to Proposition 3.6 (1), we have singsuppg; C {0} for any j € A. Then, Lemma 3.5 implies
that all time-derivatives of g; belong to the space C, that is

q](l)(t)—>0 as t— Foo forany 1<I<r+3 and jeA, (4.2)

where we recall that the functions g; are C™t3-smooth and their derivatives belong to the space Cp
for any j € G, due to Proposition 3.6 (2).

The goal of this step is to show that convergence (4.2) holds for any j € G. If A = G, we obtain
this automatically, so we pass directly to Step 2. Below we assume that A # G. Due to Proposition
3.6 (2), we can differentiate equation (4.1) in time, obtaining

=-U/(g))45 + >, Vij(ai—a)(d — ;) + 60 (K g5 + ;). (4.3)
i€G:iing

In view of convergence (4.2), for j € A, the Lh.s. of equation (4.3) goes to zero as t — +o0, as well

as all the terms from the r.h.s., which are multiplied by ¢; with [ € A, and as well as the function 193
Then, the sum of remaining terms has to vanish as well, that is

Z Vi(gi—q;)4 =0 as t— Foo forany jeA. (4.4)
i€ G\A:

1~

By construction of the set Ar and in view of Assumption A5, there exists a k € A for which there
is a unique n € G \ A satisfying n ~ k. Then, the convergence (4.4) implies

Vi(qn — qe)gn(t) = 0 as t — +oo. (4.5)

n

In Step 3 of the proof, we will show that convergence (4.5) implies
gn(t) =0 as t— £oo. (4.6)

Now let us assume that (4.6) takes place so that ¢, € Cy and, consequently, singsupp F(¢,) = 0.

Then, due to Lemma 3.5, we have q ) ¢ Co for any 1 < I < r+ 3, so that qr(l)( t) = 0 ast — +oo,
and we have the convergence (4.2) with the set A replaced by the set A U {n}. Next we repeat
the argument above with A replaced by A U {n}, and iterate the procedure. Finally, we obtain
the convergence (4.2) with the set A replaced by Ar. Since, by Assumption A5, we have Apr = G,
the convergence (4.2) holds for any j € G.

Step 2. Next we let ¢ — 400 in equation (4.1). Due to the convergence (4.2) which holds for
any j € G, the functions §; vanish as t — 400, as well as the functions ;. Then, ¢(t) approaches

a set consisting of points ¢ € RI9! satisfying

0=-Uj(g)+ > V, )+ 00K;q;, jEG.
1€Ging
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That is, we have dist(q(t), N°f) — 0 as t — Foo, where N is the set of critical points of the
effective potential (2.8). Clearly, the latter convergence implies the desired convergence (2.12).

Step 3. Finally, we deduce the convergence (4.6) from (4.5). Assume that (4.6) is false as

t — +o0; the case t = —oo can be studied similarly. Then there is an M > 0 such that there

exists an arbitrarily large time ¢y satisfying |, (to)| > M. For definiteness, we assume that ¢, (o)

is positive, so that ¢, (tp) > M. Due to the uniform continuity of ¢,,, there exists § > 0 independent
of tg, such that

gn(t) > M/2 for any t € Us(tp), (4.7

where Us(tp) denotes a d-neighbourhood of ¢y. Since ¢x(t) — 0 as ¢ — oo, the inequality (4.7)
implies that, for sufficiently large ¢y, we have

d

dt(q" —qx)(t) > M/4 for any t € Us(to). (4.8)

Take ¢ > 0 and choose tg to be so large that |V} (g, — qx)dn|(to) < €M /2. Then, by (4.7), we have
Vi (an — qi)|(t) < e forall t e Us(to).

Letting £ go to zero, we see that this contradicts to (4.8). Indeed, by Assumption Al, the function
V!, has only finite number of zeros on bounded sets, while the function (g, —¢x)(¢) is bounded. O

4.2. Proof of Corollary 2.6

Applying Proposition 3.6 (3) to formula (2.6), we obtain

E(q0, 0, 40> $0) = E(q,€,4,€)(t)

= WS s@ea OO + vy - 3 O o),

2
JjEG meA meA

where the function ¥ belongs to the space Cy. Then, using (2.13) and (2.14), we get the desired
convergence (2.15).

It is straightforward to check that, due to equation (2.4), Em = Gm ffooo Km&m dv. Then, using
Proposition 3.6 (3), we find
gm = QOQm + 19m7

where the function 9,, is C"*!-smooth and belongs to the space Cy together with all its derivatives.
Then (2.16) follows from (2.13). O

5. ENERGY TRANSPORT IN THE SYSTEM OF ONE
OSCILLATOR COUPLED TO TWO THERMOSTATS

In this section, we consider a system of one oscillator interacting with two thermostats, given by
the equation

i=-v+ | ke dvt / T keady, Env) = —26n0) +r(Me, m=12,  (5.1)

—0o0 —0Q

where ¢(0) = ¢0,4(0) = Go, Em(0) = Eom, Em(0) = Eom. Our goal is to study the asymptotic
behavior of the energies &£, & of the thermostats, which are defined as in (2.10). We assume
that the functions U and k satisfy assumptions A1-A3 and A6 while the initial conditions fulfil
Assumption A4 with m = 1,2. Formally, the system (5.1) does not satisfy assumptions of Section
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2.1, since the oscillator interacts with two thermostats. However, the theory developed in the paper
can be applied to this system as well. Indeed, to see this, it suffices to change the variables

SRS =&
n:i= .

C:_ ) \/2

7 (5.2)

Then equation (5.1) takes the form
i=-U@+v2 |

Equation (5.3) describes a system which consists of an oscillator interacting with a thermostat that
satisfies assumptions of Section 2.1, and of another independent thermostat.

Ry, (V) = —V*((v) + V2r(v)a, iiv) = = n(v). (5:3)

[ee]

Proposition 5.1. The energies &1 (t), E2(t) converge as t — £oo.
Proof. Set ) )
Em = &m + Wm, (:=(+w(, n:=1n+ivn,

where m = 1,2. The equations of motion of the thermostats from (5.3) written in the variables 7, ¢
take the form

¢ =ivC+V2kq, n=ivn. (5.4)
The energy &£ has the form
1 1 1
&= lealle = I +nl3e = | (112, + Il +2R(G ), 5.5
where || - ||z2 and (- ,-)7> denote the standard norm and scalar product in the space L2. Similarly,
1 1 1
&= Nealle = I —nlie = , (I3, + Il — 2R(G ). (5.6

Applying Corollary 2.6 to the system given by the first two equations of (5.3), we find that the
energy of the thermostat ¢, given by ||¢ H%z, converges as t — Fo0o. Moreover, the second equation
from (5.4) implies that the norm ||n|/z2 is independent of time. Thus, in view of (5.5) and (5.6),

to finish the proof of the proposition, it suffices to show that the scalar product (¢,n)r, converges
as t — Fo0.

Set o = n(0) and ¢y = ¢(0). Recall that {y,no € L?, due to Assumption A4. In view of (5.4), we
have

2

t
n=e"n, ¢ =e"G+ V2 / e q(r) dr = e (Go + V264"),
0

where ¢' := qlljg 4y if t > 0, ¢" := —ql} ) if ¢ < 0 and ¢ = F(q"). Set ¢* := gl +o0). In Lemma 3.8,
it is shown that k¢t € L? and k¢® — k¢* weakly in L? as t — +00. Then

<777 <>L2 = <7707 CO + \/2Kth>L2 — <7707 CO + \/2'%in>[/2 as t— +oo. (57)
Now we study whether we generically have
where * = 4+ or x = —. Equations (5.5)—(5.6) imply that the equality (5.8) takes place if and only

if we have lim;_, oo %(n, ¢) = 0. In turn, due to (5.7), the latter convergence takes place if and only
if

R(no, Co + V2kG*) 1, = 0. (5.9)
Obviously, the function k¢* depends on the initial conditions qg, g, so that the equality
Co + V' 2k¢* =0

is generically false. Moreover, the function ¢y + v/2k¢* does not depend on the initial conditions 7.
Consequently, equation (5.9) holds only for a set of the initial conditions qq, §o, (o, 7o of codimension
one, so that (5.8) is not generic. For example, (5.8) takes place if ny = 0, that is when we have

(€01, 501) = (€02, éog), so that the thermostats have the same initial conditions.
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