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1. INTRODUCTION

Topological complexity was introduced in [9]. It is closely related to the Lyusternik–Shnirel’-
man category and is very useful when describing configuration spaces of mechanical systems. By
definition, the topological complexity of a space X is the Schwarz genus of the natural bundle
PX → X × X, where PX is the space of paths in X. In [11], a noncommutative version of
Farber‘s topological complexity for unital C∗-algebras was introduced, and it was shown that,
for commutative C∗-algebras, it coincides with the usual (“commutative”) topological complexity.
Recall the definition of topological complexity. Throughout the paper, ⊗ denotes the minimal
tensor product of C∗-algebras. Let αA

0 , α
A
1 : A → A ⊗ A be the ∗-homomorphisms αA

0 (a) = a⊗ 1,
αA
1 (a) = 1⊗ a, a ∈ A.

Definition 1. For a unital C∗-algebra A, the topological complexity TC(A) is the smallest in-
teger n (or ∞ if no such n exists) such that there exist unital C∗-algebras Bj , j = 1, . . . , n and sur-
jective ∗-homomorphisms βj : A⊗A → Bj for which ⊕n

j=1βj is injective and the ∗-homomorphisms

βj ◦ αA
0 , βj ◦ αA

1 : A → Bj are homotopic for every j.

2. CALCULATION OF TOPOLOGICAL COMPLEXITY. EXAMPLES

It is often too hard to calculate the topological complexity. For some noncommutative C∗-
algebras, it was computed in [11]. In this section, we extend the list of noncommutative C∗-algebras
with known topological complexity. Namely, we calculate it for the algebra B(H) of all bounded
operators on a Hilbert space, for AF algebras, AI algebras, and for some NCCW-complexes.

The following lemma is useful for computing the topological complexity.

Lemma 2. Let A,B be C∗-algebras with TC(A) = 1. If there exists a homotopy between
∗-homomorphisms γ0, γ1 : B → B ⊗B ⊗A defined by γ0(b) = b⊗ 1⊗ 1 and γ1(b) = 1⊗ b⊗ 1, then
TC(B ⊗A) = 1.

Proof. Let γt, t ∈ [0, 1], be the homotopy mentioned in the lemma. Since TC(A) = 1, there
exists a homotopy αt between αA

0 and αA
1 . Define λt : B ⊗A → B ⊗B ⊗A⊗A by

λt =

{
αB
0 ⊗ α2t for 0 � t � 1/2;

γ2t−1 ⊗ id for 1/2 � t � 1.

Then λt is a homotopy connecting αB⊗A
0 and αB⊗A

1 . This suffices to conclude that TC(B⊗A) = 1.

Let B(H) (K(H)) be the C∗-algebra of all bounded (compact, respectively) operators on a
separable Hilbert space H.
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Proposition 3. TC(B(H)) = ∞.

Proof. Assume that TC(B(H)) < ∞. Let p ∈ B(H) be a rank one projection, e1, . . . , en, . . .
an orthogonal basis of H, Pn the orthogonal projection onto span〈e1, . . . , en〉, QN = PN ⊗ PN .
Since ⊕jβj is injective, there is a j such that βj(p ⊗ p) �= 0. Let 〈p ⊗ p〉 be the ideal generated
by p ⊗ p. Clearly, 〈p ⊗ p〉 = K(H) ⊗ K(H). Since this ideal is simple, βj |K(H)⊗K(H) is injective.
Let us prove that βj |B(H)�B(H) is injective, where � is the algebraic tensor product. Let 0 �= ω ∈
B(H) � B(H). Then ω =

∑
i ai ⊗ bi for some operators ai, bi ∈ B(H). Since QnωQn → ω in the

weak operator topology, we have QNωQN �= 0 for some N . Obviously, QNωQN ∈ K(H)⊗K(H). So
βj(QNωQN ) �= 0, and therefore βj(ω) �= 0. Since βj is surjective and βj |B(H)�B(H) is injective, Bj

contains B(H)�B(H) as a dense ∗-subalgebra; thus, Bj
∼= B(H)⊗α B(H) for some tensor product

⊗α. However, βj : B(H) ⊗ B(H) → Bj
∼= B(H) ⊗α B(H) is surjective and is equal to the identity

mapping on the elementary tensors; hence ⊗α = ⊗, and βj is an isomorphism.

Thus, γ0 = βj◦αB(H)
0 and γ1 = βj ◦αB(H)

1 are homotopic. Consider the quotient ∗-homomorphism
π : B(H)⊗B(H) → Q(H)⊗B(H), where Q(H) = B(H)/K(H). Then the ∗-homomorphisms π ◦ γ0
and π ◦ γ1 are also homotopic, where π ◦ γ0(p) = 0 and π ◦ γ1(p) �= 0. This contradiction completes
the proof.

One of the reasons for the validity of the condition TC(B(H)) = ∞ is that the spectrum is
not Hausdorff. Recall that Prim(B(H)) = A2, where A2 is the two-point Alexandroff arrow, i.e.,
A2 = {0, 1} with the topology in which the open sets are {{0}, {0, 1}}. This seems similar to the
case of A = C

2 (i.e., a two-point Hausdorff space), for which the topological complexity is infinite
because the space is not path-connected. Although, in some non-Hausdorff cases, the topological
complexity feels a ‘similar’ Hausdorff space, this is not always the case, as is shown by the following
example.

Example 4. Let C (C2) be the subalgebra of scalar (diagonal) matrices in the algebra M2 of
all 2 × 2 matrices. Write A = {f ∈ C[0, 2] ⊗M2 : f(0) ∈ C, f(t) ∈ C

2 for t ∈ (0, 1)}. It is easy to
see that the spectrum of A is non-Hausdorff, more precisely, Prim(A) = ([0, 2] � [0, 2])/ ∼, where
∼ is gluing the points in {0} ∪ (1, 2] from both segments, and the point {1} is a “non-Hausdorff”
point. Let φ1(f)(s) = f(0), f ∈ A, φ0 = idA. Then

φt(f)(s) =

{
f(0) for 0 � s � 2t,

f(s− 2t) for 2t � s � 2,

is a homotopy connecting φ0 and φ1, and hence A is homotopy equivalent to C. Since the topological
complexity is homotopy invariant, we conclude that TC(A) = 1. It is unclear whether or not the
topological complexity is infinite when a C∗-algebra is not homotopy equivalent to a C∗-algebra
with a Hausdorff spectrum, even in the case of NCCW-complexes.

The homotopy theory of NCCW-complexes is incomplete; however, in some cases, one can find
conditions implying that the topological complexity of an NCCW-complex is infinite. By an NCCW-
complex we mean an algebra of the form A = {f ∈ C(X) ⊗ Mn : f |Xj

∈ Aj}, where X is a CW
complex, Xj ⊂ X are CW subcomplexes, and Aj ⊂ Mn are ∗-subalgebras.

Proposition 5. Let A = {f ∈ C(X) ⊗Mn : f |Xj
∈ C}, n � 2, for some CW complex X and

at most two CW subcomplexes Xj ⊂ X with Xi ∩Xj = ∅ for every pair i, j. Then TC(A) = ∞.

Proof. Let TC(A) < ∞. Then there are surjections βj : A ⊗ A → Bj . It can readily be seen
that βj(f) = f |Yj

for some Yj ⊂ X ×X. Consider two points of different subcomplexes, x ∈ Xk,
y ∈ Xl, k �= l. Since ⊕βj is injective, there is a j such that (x, y) ∈ Yj ⊂ X × X. Then, by the
definition of topological complexity, the ∗-homomorphisms ϕx, ϕy : A → C defined by the relations
ϕx(f) = f(x), ϕy(f) = f(y) are homotopic. Since every epimorphism ϕ : A → A′ is of the form
ϕ(f) = f |Y for some Y ⊂ X, it is clear that Hom(A,C) is homeomorphic to �jXj ⊂ X. Since ϕx

and ϕy are in different path-connected components, they cannot be homotopic.

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 24 No. 3 2017



TOPOLOGICAL COMPLEXITY OF CERTAIN CLASSES 349

Corollary 6. Let A = {f ∈ C(X) ⊗ Mn : f(x1), . . . , f(xm) ∈ C}, where X is a CW-complex
and x1, . . . , xm ∈ X, m � 2. Then TC(A) = ∞.

Proposition 7. Suppose that A is a unital AF algebra. If A is UHF, then TC(A) = 1; otherwise
TC(A) = ∞.

Proof. If A is UHF, then TC(A) = 1 ([11], Proposition 3.6). Let A be not UHF. Let us prove
that, in this case, K0(A) contains a copy of Z2. Suppose the contrary. Then, for every projection
p ∈ A, there exist x, y ∈ Z such that x[p] = y[1] ∈ K0(A) (because, if not, then x[p] �= y[1] for some
x, y ∈ Z, and thus [p] and [1] generate a rank-2 free Abelian subgroup in K0(A)). Let us construct
a mapping ϕ : K0(A) → Q. For a projection p ∈ A, set ϕ([p]) = y/x, where x[p] = y[1] (we may
assume that x �= 0). Let us prove that ϕ is well defined. Assume that xp[p] = yp[1] and x′

p[p] = y′p[1].
Then 0 = xpx

′
p([p]− [p]) = (x′

pyp−xpy
′
p)[1]. Since the K-theory of an AF algebra has no torsion, we

conclude that (x′
pyp−xpy

′
p) = 0, and hence yp/xp = y′p/x

′
p. Since xpxq([p]+ [q]) = (xpyq+xqyp)[1],

we have ϕ([p] + [q]) =
xpyq+xqyp

xpxq
=

yp

xp
+

yq

xq
= ϕ([p]) +ϕ([q]). Thus, ϕ is well defined on the formal

differences [p]− [q] ∈ K0(A), and is a group homomorphism. It is monotone. Indeed, let [p]− [q] � 0,
xp[p] = yp[1], and xq[q] = yq[1]. Then 0 � xpxq([p] − [q]) = (xqyp − xpyq)[1] and ϕ([p] − [q]) =

yp/xp − yq/xq =
xqyp−xpyq

xpxq
� 0. Finally, ϕ is injective. Let [p] − [q] �= 0. Then xpxq([p] − [q]) �= 0,

since the K-theory of an AF algebra has no torsion. However, xpxq([p] − [q]) = (xqyp − xpyq)[1].
Thus, (xqyp − xpyq) �= 0 and ϕ([p] − [q]) �= 0.

By the Elliott theorem (Theorem IV.4.3 of [6]), A is ∗-isomorphic to a UHF algebra U with
K0(U) = ϕ(K0(A)) ⊂ Q, a contradiction.

Thus, in the non-UHF case, there is a projection p ∈ A such that N [p] �= M [1] for every N,M ∈ Z

(except for N = M = 0). Let A = ∪n∈NAn, where An are finite-dimensional C∗-algebras, and

γn : An ⊂ An+1 and γn,k : An ⊂ Ak, where γn,k = γn+k−1 ◦ · · · ◦ γn, k > n. Then An = ⊕kn

i=1M[n,i],
where [n, i] are some positive integers. If the sequence of integers kn contains infinitely many ones,
then A is an UHF algebra; thus, we may assume that kn > 1 for any n ∈ N. Since A is an AF
algebra, A⊗A is also an AF algebra, and A⊗A = ∪n∈NAn ⊗An. The quotients of AF algebras can
be described in terms of Bratteli diagrams (see Chapter III of [6]). Every quotient is determined
by a projection onto a subdiagram which is a complement to some hereditary directed diagram.
Let Ω be a diagram for A ⊗ A, and let ΩJ be the hereditary directed diagrams for the algebras
ker βJ ⊂ A ⊗ A, J = 1, . . . ,K. Then BJ = ∪n∈NBJ,n, where BJ,n = ⊕(i,j)∈Ωn\Ωn

J
M[n,i][n,j], and

βJ : A⊗A → BJ is the limit of the mappings βJ,n : An⊗An → BJ,n, which are the usual projections
⊕(i,j)∈ΩnM[n,i][n,j] → ⊕(i,j)∈Ωn\Ωn

J
M[n,i][n,j]. Since ΩJ is directed and ∩1�J�K ker βJ = 0, it follows

that ∩ΩJ = ∅, and therefore ∪1�J�K(Ω\ΩJ ) = Ω. We may think that p ∈ An0
for some n0. Let d[k,i]

be the dimension of the projection γn0,k(p) in the direct summand M[k,i] ⊂ Ak. Since N [p] �= M [1]
for every N,M ∈ Z except for N = M = 0, it follows that, for every n > n0, there are i, j such
that d[n,i]/[n, i] �= d[n,j]/[n, j]. The projections p⊗ 1 and 1⊗ p have the dimensions d[n,i][n, j] and
d[n,j][n, i], respectively, in the direct summand M[n,i][n,j] ⊂ An ⊗ An. Since ∩1�J�KΩJ = ∅, it
follows that, for every n, there is a Jn for which (i, j) ∈ Ωn\Ωn

Jn
. Assume that TC(A) = K < ∞.

Consider the sequence {Jn}, n ∈ N. There is a J ∈ {1, 2, . . . ,K} which repeats infinitely in the
sequence {Jn}. By assumption, the projections p0 = βJ ◦αA

0 (p) and p1 = βJ ◦αA
1 (p) are homotopic

in BJ . This is equivalent to the fact that there is an n1 > n0 such that p0 and p1 are homotopic
in BJ,n1

⊂ BJ ; however, this is impossible, because the dimensions of p0 and p1 in the direct
summand M[n,i][n,j] ⊂ BJ,n = ⊕(i,j)∈Ωn\Ωn

J
M[n,i][n,j] are d[n,i][n, j] and d[n,j][n, i], respectively, and

differ (here n is any integer greater than n1). Thus, TC(A) = ∞.

The ideology is very clear: to compute the topological complexity of a nonsimple C∗-algebra A,
we must have a good understanding of the quotients of A⊗A. In the case of a simple C∗-algebra A,
we must have effective methods for checking when ∗-homomorphisms αA

0 and αA
1 are homotopic.

The homotopy theory of ∗-homomorphisms between AH algebras is vaguely known, even in the
case of simple algebras. However, in the case of simple AI algebras, the topological complexity can
be computed (see Sec. 3.2 of [13] or Chap. 2 of [16] for an information about AI algebras). Recall
Theorem 3.10 of [1].
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Theorem 8. Let A,B be simple unital AI algebras. Two unital ∗-homomorphisms α, β : A → B
are homotopic if and only if α∗ = β∗ : K0(A) → K0(B).

We have an easy corollary to this important theorem.

Corollary 9. Let A be a simple unital AI algebra. Then TC(A) = 1 if and only if there is an
injective homomorphism K0(A) ⊂ Q. Otherwise TC(A) = ∞.

Proof. It is an easy exercise to show that, for a torsion-free countable Abelian group G, the
homomorphisms γ0, γ1 : G → G⊗G, γ0(g) = g⊗ 1, γ1(g) = 1⊗ g coincide if and only if G does not
contain a copy of a rank-two free Abelian group Z

2, which holds in turn if and only if there is an
injective homomorphism G ⊂ Q.

It is of interest that the form of conditions for TC(A) = 1 in the case of simple AI algebras
coincides with that in the case of AF algebras. It can readily be seen that a unital AF algebra A
is UHF if and only if K0(A) embeds in Q. Recall that every AF algebra is also an AI algebra.

Example 10. Let AF be a Fibonacci AF algebra, i.e., A = ∪n∈NAn, where An = Mϕn
⊕Mϕn+1

,
with connective ∗-homomorphisms αn : An → An+1 defined by αn(a⊕b) = b⊕ (a⊕b). This algebra
is the simplest example of a simple non-UHF unital AF algebra (see Example III.2.6 of [6]). By
Proposition 7, TC(AF ) = ∞.

Example 11. An interesting example of a simple AI algebra is the Goodearl algebra (see
Example 3.1.7 of [13] for more details). Let {xn}n∈N be a countable dense subset of [0, 1]. Write
An = C[0, 1] ⊗M2n and define αn : An → An+1 by αn(f)(x) = diag(f(x), f(xn)). Let A = limAn

be the inductive limit of the system. Then A is a simple unital AI algebra with K0(A) = Z[1
2
],

because K0(An) = Z, and (αn)∗ : Z → Z is given by (αn)∗(x) = 2x. Thus TC(A) = 1.

3. REDUCING THE TOPOLOGICAL COMPLEXITY BY TENSORING BY MATRICES

In what follows, all CW complexes are finite with a base point. By H∗(X) (K̃∗(X)) we denote
the cohomology (the reduced K-theory) groups of a CW complex X.

For C∗-algebras A and B, by [A,B] we denote the set of homotopy classes of ∗-homomorphisms
if either A or B is nonunital and the set of homotopy classes of unital ∗-homomorphisms if both
A and B are unital. Consider the bifunctor kk(Y,X) = limn[C(X), C(Y ) ⊗Mn] introduced in [4]
with the mappings αn : [C(X), C(Y ) ⊗ Mn] → [C(X), C(Y ) ⊗ Mn+1] defined by αn(β)(f)(y) =
β(f)(y) ⊕ f(x0), where x0 is the base point of X, f ∈ C(X), β ∈ [C(X), C(Y ) ⊗ Mn]. Write
C0(X) = C(X\{x0}). As is known (see [4]), kk(Y,X) ∼= [C0(X)⊗K, C(Y )⊗K]. This isomorphism
gives rise to a homomorphism γ : kk(Y,X) → KK(C0(X), C0(Y )).

Theorem 12 (Theorem 3.3 of [8]). Let X be an n-dimensional CW complex and Y an m-
connected CW-complex. Let n + 3 � m and Hn(X) be a finite group. Then γ : kk(Y,X) →
KK(C0(X), C0(Y )] is an isomorphism.

Theorem 13 (Theorem 6.6.4 of [4]). Let m > (3dimY )/2. Then the following equality holds
kk(Y,X) = [C(X), C(Y )⊗Mm].

Combining these two theorems, we show that tensoring by matrix algebras can reduce topological
complexity.

Corollary 14. Let X be a two-dimensional finite CW complex such that K̃∗(X) = 0, and let
H2(X) be a finite group. Then TC(C(X)⊗M7) = 1.

Proof. By Lemma 2, it suffices to prove that the homomorphisms α, β : C(X) → C(X2)⊗M7,
α(f)(x, y) = f(x)⊗ 1, β(f)(x, y) = f(y)⊗ 1 are homotopic. By Theorem 12 with n = 2,m = 0 and

by Theorem 13, we have [C(X), C(X2) ⊗M7] = KK(C0(X), C0(X
2)). Since K̃∗(X) = 0, we see,

by the Künneth theorem, that KK(C0(X), C0(X
2)) = Hom(K̃∗(X), K̃∗(X2)) = 0. Thus, each of

the two unital *-homomorphisms C(X) → C(X2)⊗M7 are homotopic.
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Example 15. Conditions of Corollary 14 hold for the classifying space BH of the Higman
group H = 〈a, b, c, d|bab−1 = a2, cbc−1 = b2, dcd−1 = c2, ada−1 = d2〉. The space BH is just the
wedge sum of 4 circles with 4 two-dimensional discs attached by the mappings defined by the given
relations. As was shown in ([7], Sec. 4), H̃n(BH) = 0 for n � 0 and K̃∗(BH) = 0. Corollary 14
implies that TC(BH ⊗M7) = 1, while TC(BH) > 1, since BH is not contractible.

4. TOPOLOGICAL COMPLEXITY OF EVEN CUNTZ ALGEBRAS

Recall that two ∗-homomorphisms α, β : A → B are strongly asymptotically unitarily equiva-
lent if there is a continuous unitary path t �→ ut ∈ U(B), t ∈ [0,∞), such that u(0) = 1 and
limt→∞ ‖α(a) − utβ(a)u

∗
t ‖ = 0 for any a ∈ A. Strongly asymptotically unitarily equivalent ∗-

homomorphisms are obviously homotopic.
Recall that a C∗-algebra A is said to be K1-injective if the canonical mapping U(A)/U(A)0 →

K1(A) is injective (here U(A)0 is the path-connected component of 1A in the unitary group U(A)
of A). A C∗-algebra D is said to be strongly self-absorbing if there are unitaries un ∈ D ⊗D and
a ∗-isomorphism β : D → D ⊗D such that β(d) − un(1 ⊗ d)u∗

n → 0 for every d (see [5] for more
details).

The homotopy theory of ∗-homomorphisms between simple nuclear C∗-algebras is well studied
in the literature (better than in the nonsimple case).

Theorem 16 (Theorem 2.2 of [5]). Let A be a C∗-algebra, and let D be a strongly self-absorbing
K1-injective C∗-algebra. Then any two unital *-homomorphisms α, β : D → D ⊗ A are strongly
asymptotically unitarily equivalent (and hence homotopic).

Corollary 17. Let D be a strongly self-absorbing C∗-algebra. Then TC(D) = 1.

Proof. Take A = D in Theorem 16.

Corollary 17 applies to many C∗-algebras, for example, to the Cuntz algebras O2 and O∞,
to the Jiang–Su algebra Z, and to the UHF algebras of infinite type (i.e., UHF algebras with
supernatural numbers of the form n = p∞1 p∞2 . . . , where p1, p2, . . . are primes). The Cuntz algebras
On with n �= 2,∞ are not self-absorbing (i.e., On � On ⊗On), and we can compute its topological
complexity only for even n. Since the Cuntz algebras are simple, we have either TC(On) = 1 or
TC(On) = ∞.

Proposition 18. Let n be an odd positive integer. Then TC(On+1) = 1.

Proof. As is well known, K∗(On+1) = (Zn, 0). Write A = On+1, B = On+1 ⊗ On+1, α = αA
0 ,

and β = αA
1 . Define the flip automorphism σ : B → B by the formula σ(a ⊗ b) = b ⊗ a for

a, b ∈ A. Since A is simple, it suffices to prove that α and β are homotopic. By the Künneth
theorem (see [15]), K∗(B) = (Zn,Zn). For the unital C∗-algebra D, define the cone as follows:
CD = {f ∈ C[0, 1] ⊗D : f(0) = 0, f(1) ∈ C1D}. For a unital ∗-homomorphism γ : A → B, define
Cγ : CA → CB ⊂ M(SB) by Cγ(f)(t) = γ(f(t)), where M(SB) stands for the multiplier algebra
of SB = C0(0, 1)⊗B (for details, see [2]). Choose a unital absorbing homomorphism j (in our case,
every unital homomorphism is automatically absorbing by Proposition 2.8 of [2], and therefore we
can set j = α). Let χ(γ) = 〈Cγ,Cj〉 be a pair of quasi-homomorphisms. By Corollary 3.10 of [2],
α is homotopic to β if and only if χ(α) = χ(β) ∈ KK(CA,SB). We have χ(α) = 〈Cα,Cα〉 = 0,
and thus it suffices to prove that χ(β) = 〈Cβ,Cα〉 = 0. Write ω = χ(β).

Consider he canonical exact sequence

0 → SA → CA → C → 0.

The following six-term exact diagram holds:

K1(A) −−−−→ K0(CA) −−−−→ K0(C)�⏐⏐i∗ i∗

⏐⏐�
K1(C) ←−−−− K1(CA) ←−−−− K0(A)
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As is known, the vertical homomorphisms are induced by the inclusion i : C ↪→ A (see [12]) in
the case of unital C∗-algebra A. Since [1] ∈ K0(A) is a generator of Zn, it follows that i∗ is an
epimorphism. Thus, K∗(CA) = (Z, 0). By the UCT theorem (see [14]), 0 → 0 → KK(CA,SB) →
Zn → 0. Therefore, KK(CA,SB) = Zn. We claim that [σ] = 1 ∈ KK(B,B). We have K0(B) =
K0(A) ⊗K0(A) and K1(B) = Tor(K0(A),K0(A)). Since x ⊗ 1 = 1 ⊗ x ∈ K0(A) ⊗K0(A) by the
naturalness of the Künneth sequence, we have σ∗ = 1 : K∗(B) → K∗(B).

By the UMCT theorem, we have the exact sequence

0 → Pext(K∗(B),K∗(B)) → KK(B,B) → HomΛ(K(B),K(B)) → 0,

where K(B) = ⊕∞
m=0K∗(B;Zm). Assume that K∗(B;Zm) = K∗(B) for m = 0. Let us denote by

HomΛ(K(B),K(B))) the set of all sequences of homomorphisms γm
j : Kj(B;Zm) → Kj(B;Zm)

that commute with the natural Bockstein operations, i.e., γm
j ◦ ρjm = ρjm ◦ γ0

j , γ
0
j+1 ◦ βj

m = βj
m ◦ γm

j

and γnm
j ◦ κj

nm,m = κj
nm,m ◦ γm

j , where ρjm : Kj(B) → Kj(B;Zm), βj
m : Kj(B;Zm) → Kj+1(B),

and κj
nm,m : Kj(B;Zm) → Kj(B;Znm) are given by the Kasparov product with the KK-classes of

obvious homomorphisms Im → C, SMm ↪→ Im, and Im ↪→ Inm, respectively, where Im = {f ∈
C[0, 1] ⊗ Mm : f(0) = 0, f(1) ∈ C} (see [3] for details). Since K∗(B) is finitely generated by
Proposition 53.4 of [10], we have Pext(K∗(B),K∗(B)) = 0, i.e.,

KK(B,B) = HomΛ(K(B),K(B)).

By definition, K∗(B;Zm) = KK∗(Im, B), where Im = {f ∈ C[0, 1]⊗Mm : f(0) = 0, f(1) ∈ C}. By
the naturalness of UCT-theorem, for every m, the diagram

0 −−−−→ H
φ←−−−− KK(Im, B)

δ−−−−→ L −−−−→ 0�⏐⏐id

�⏐⏐σ∗

�⏐⏐id

0 −−−−→ H
φ←−−−− KK(Im, B)

δ−−−−→ L −−−−→ 0

is commutative. Here H = Ext(K∗+1(Im),K∗(B)) and L = Hom(K∗(Im),K∗(B)). Note that φ
is defined only on kerδ and is bijective on it. The right and the left vertical arrows are equal
to id, because σ∗ = id : K∗(B) → K∗(B). Assume that there is an x ∈ KK(Im, B) such that
σ∗(x) �= x. Since the diagram is commutative, we have δ(x) = δ(σ∗(x)), i.e., x − σ∗(x) ∈ kerδ.
Write y = x − σ∗(x). Then σ∗(y) = σ∗(x − σ∗(x)) = σ∗(x) − x = −y, because σ2 = id. By the
commutativity, φ(y) = φ(σ∗(y)) = −φ(y), i.e., φ(2y) = 0. Since φ is an isomorphism, 2y = 0. As is
known, Ext(K∗+1(Im),K∗(B)) = (Ext(Zm,Zn), 0) = Z〈m,n〉, where 〈m,n〉 stands for the greatest
common divisor of m and n. Since n is odd, 〈m,n〉 is also odd. Since 2y = 0 in an odd-order
cyclic group, we see that y = 0, i.e., σ∗ = id : K∗(B;Zm) → K∗(B;Zm). By the UMCT-theorem,
[σ] = 1 ∈ KK(B,B). The Bott periodicity readily implies that [Sσ] = [σ] = 1 ∈ KK(SB,SB) =
KK(B,B).

Finally, we have ω = ω[Sσ] = (Sσ)∗(〈Cβ,Cα〉) = 〈C(σ ◦ β), C(σ ◦α)〉 = 〈Cα,Cβ〉 = −ω, where
ω[Sσ] is the Kasparov product of ω and [Sσ]. Thus, 2ω = 0. However, since KK(CA,SB) = Zn is
of odd order, we have ω = 0. This means that α is homotopic to β, and TC(On+1) = 1.

It is proved in [11] that TC(C(S1) ⊗ O2) = 1. Similarly, using Lemma 2 and an isomorphism
O2

∼= O2⊗O2, we can show that TC(C(Tn)⊗O2) = 1. In the same way, we can prove the following
proposition, where C∗(F2) is the full group C∗-algebra of the free group F2 on two generators.

Proposition 19. TC(C∗(F2)⊗O2) = 1.

Proof. Since TC(O2) = 1 by Lemma 2, it is sufficient to construct a homotopy between
α0, α1 : C

∗(F2) → C∗(F2) ⊗ C∗(F2) ⊗ O2, where α0(x) = x ⊗ 1 ⊗ 1 and α1(x) = 1 ⊗ x ⊗ 1.
Let u, v be generators of F2 (they are also generators of C∗(F2)). By the Künneth theorem (see
Theorem 4.1 of [15]), K1(C

∗(F2)⊗C∗(F2)⊗O2) = 0, and hence there is a path ut (vt) connecting
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α0(u) with α1(u) (α0(v) with α1(v), respectively). Then the desired homotopy can be defined on
the generators by αt(u) = ut, αt(v) = vt. Because of the universal property of C∗(F2), we can
extend the mapping αt to a well-defined *-homomorphism of C∗(F2). Moreover, αt is continuous,
because, for every x ∈ C∗(F2), we can find an approximation in the group algebra, y ∈ C[F2], and
‖αt(x)−αs(x)‖ � ‖αt(x)−αt(y)‖+‖αt(y)−αs(y)‖+‖αs(y)−αs(x)‖ � 2‖x−y‖+‖αt(y)−αs(y)‖.
The function αt(y) is continuous for every y, since ut and vt are continuous paths.

In view of the previous statements, we would like to conclude with the following conjecture:

Conjecture 20. Let X be a finite CW complex. Then TC(C(X)⊗O2) = 1.

This conjecture is not clear even in the case X = S2.
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