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Abstract. A mathematically rigorous relativistic quantum Yang–Mills theory with an arbi-
trary semisimple compact gauge Lie group is set up in the Hamiltonian canonical formalism.
The theory is nonperturbative, without cut-offs, and agrees with the causality and stabil-
ity principles. This paper presents a fully revised, simplified, and corrected version of the
corresponding material in the previous papers Dynin ([11] and [12]). The principal result
is established anew: due to the quartic self-interaction term in the Yang–Mills Lagrangian
along with the semisimplicity of the gauge group, the quantum Yang–Mills energy spectrum
has a positive mass gap. Furthermore, the quantum Yang–Mills Hamiltonian has a countable
orthogonal eigenbasis in a Fock space, so that the quantum Yang–Mills spectrum is point
and countable. In addition, a fine structure of the spectrum is elucidated.
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1. INTRODUCTION

1.1. Context

I address both items of the Clay Mathematics Institute “Quantum Yang–Mills theory” problem
requiring a mathematical proof that,

for any compact semisimple global gauge group, a nontrivial quantum Yang–Mills theory exists
on the four-dimensional Minkowski spacetime and has a positive mass gap. Existence includes
establishing axiomatic properties at least as strong as G̊arding–Whigtman axioms (see Jaffe–

Witten [1]).

As such this is a problem of mathematical existence. It does not require a reconstruction of the
conventional quantum Yang–Mills theory. (Notably the famous LHC experimental discovery of a
“Higgs scalar field” has not verified the hypothetical Higgs mechanism for the origin of a positive
mass of classical Yang–Mills fields.)

The proposed mathematically rigorous quantum Yang–Mills theory is relativistic, nonperturba-
tive, and constructive. It does imply a positive mass gap in the spectrum of quantum Yang–Mills
Hamiltonian. Actually, the whole spectrum is described qualitatively.

Mathematical foundations of quantum mechanics are the von Neumann theory of (unbounded)
Hermitian operators in a Hilbert space and H. Weyl canonical quantization rule. The latter has led
to Wigner’s quantum statistical mechanics and then to the calculus of annihilation and creation
operators in quantum optics (see Agarval–Wolf [2]) on the physics side, and to the theory of pseu-
dodiffefential operators (see Shubin [32, Chap. 4] and Folland [15, Chap. 2]) on the mathematics
side.

The symbolic calculus is a far reaching generalization of the classical Heaviside operational
calculus for ordinary differential equations. The nonlinear Hamiltonian function on the phase space
of a classical mechanical system in an Euclidian space may serve, e.g., as normal, or Weyl, or anti-
normal symbol of the linear Schrödinger partial differential operator for a quantum analogue of
the system. The symbol choice depends on the ordering of annihilation and creation operators or
equivalently of operators of multiplication and partial differentiation in the Schrödinger operator.

In quantum field theory, the first infinite-dimensional functional Schrödinger equation was in-
troduced by P. Jordan and W. Pauli (Zur Quantumelectrodynamik ladungsfreier Felder, Zeitung
für Physik, 47 (1928)). Much later, such operators have been used by Schwinger during the 1950’s.
Yet

19



20 DYNIN

“Mathematically, quantum field theory involves integration, and elliptic operators, on infinite-
dimensional spaces. Naive attempts to formulate such notions in infinite dimensions lead to all
sorts of trouble. To get somewhere, one needs the very delicate constructions considered in physics,
constructions that at first sight look rather specialized to many mathematicians. For this reason,
together with inherent analytical difficulties that the subject presents, rigorous understanding has
tended to lag behind development of physics” (Witten [34, p. 346]).

In 1954, Gelfand–Minlos [16] proposed to solve the Schwinger infinite-dimensional partial dif-
ferential equations via approximations by finite-dimensional ones with large number of independent
variables (see Berezin [5, Preface]). Such approximations drastically differ from the customary lat-
tice approximations. Afterwards, a rigorous mathematics of infinite-dimensional partial differential
operators has been developed along Gelfand–Minlos lines, in particular, by Kree–Raczka [25]
in the cylindrical formalism. Simultaneously, P. Kree found an alternative formalism of Gelfand
nuclear triples (see Kree [24]). It yields a mathematically rigorous symbolic calculus similar to the
heuristic real-analytic Agarwal–Wolf calculus (see Agarwal–Wolf [2]) in quantum optics. An
important difference with the standard symbolic calculus of finite-dimensional pseudo-differential
operators is that it is based on convergent series expansions rather than asymptotic ones. In general
terms, Martineau analytic functionals replace Schwartz distributions. This is a natural framework
for infinite-dimensional generalization of Agarwal–Wolf calculus of creation and annihilation oper-
ators.

1.2. Issues

1.2.1. Conventions. We use natural units in quantum field theory: Planck’s � (relevant for
quantum effects), Einstein’s c (relevant for relativistic effects), and the energy unit GeV, or the
reciprocal length Fermi unit fm (relevant for nuclear physics).

Dimensional homogeneity is maintained carefully. In particular, Fock spaces are built over Hilbert
spaces with dimensionless scalar products.

The scaleless Yang–Mills coupling constant is suppressed.

1.2.2. Classical Yang–Mills fields. In the global Hamiltonian (aka temporal) gauge relativis-
tic Yang–Mills equations are known to form a nonlinear hyperbolic system of the 2nd order partial
differential equations on the Minkowski space R1,3 with the finite propagation speed � 1 prop-
erty of solutions dubbed classical Yang–Mills fields. The relativistic invariance of the Yang–Mills
Lagrangian implies the relativistic covariance of Yang–Mills fields.

In the 1st order formalism, the Yang -Mills equations form an infinite-dimensional Hamilton-
ian system (see Faddeev–Slavnov [14, Sec. III.2]). The Hamiltonian equations have a unique
global solution for the Cauchy problem with given initial data constrained by dynamically invari-
ant nonlinear partial differential equations (see Goganov–Kapitanskii [21]). Because of the finite
propagation speed, global solutions are generated by the solutions with the constrained initial data
restricted to the central balls B = B(r) of the radius 0 < r < ∞ in R

3.

In general, initial Cauchy data may be assigned on any space-like hyperplane in Minkowski
space with Lorentz orthogonal time axis presumed to be future oriented. Since the proper Lorentz
transformations act transitively on the future oriented time-like causal cone, the assigned Cauchy
problems are relativistically equivalent.

1.2.3. Classical Yang–Mills Hamiltonian. The relativistic invariance of the classical Yang–
Mills action functional of solutions with compactly supported initial data yields the Noether energy-
momentum 4-vector P = (Pμ) on Minkowski space. The functional time-component P 0 is the clas-
sical Yang–Mills Hamiltonian and the Euclidean 3-vector (P 1, P 2, P 3) is the Yang–Mills momentum
functional.

Constrained initial data with compact supports generate all solutions of Yang–Mills equations
and the classical Yang–Mills Hamiltonian is completely defined by them. Hence it is uniquely defined
by classical Yang–Mills fields compactly supported by balls B.

By the coordinate scaling invariance of the Yang–Mills action functional, the energy functional
P 0 is inversely proportional to r. The functional H := rP 0 is the scaleless Yang–Mills Hamiltonian.
Since H is invariant under scaling transformation, it is the same on all balls B(r).

The time-independent gauge invariance of Yang–Mills Hamiltonian H in the temporal gauge
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allows to reduce the nonlinear phase space of constrained initial data to infinite-dimensional vector
space of transversal initial data in B. Thus the calculus of operators of creation and annihilation
in a Fock space over a Hilbert space of such transversal data is used for a quantum Yang–Mills
theory.

1.2.4. Canonical quantization. Classical mechanics has provided such a successful framework
in physics that it is natural to rephrase physical systems in terms of fixed time degree of freedom
which evolve in time (see Reed–Simon [30, p. 215]).

Hamiltonian formulation of classical Yang–Mills theory (see Faddeev–Slavnov [14, Chap. III,
Eq. (2.64)]) is such a paraphrase. Its relativistic covariance is implied by the relativistic covariance
of the equivalent Yang–Mills equations.

The Hilbert spaces L2
⊥(B(r)) of transversal initial data with the scaleless inner products are

scaling invariant, and so are the rigged Fock spaces over them.
The scaleless Yang–Mills Hamiltonian functional is considered as the anti-normal symbol of the

scaleless quantum Yang–Mills Hamiltonians in a rigged Fock spaces over transversal initial data
in B(r). The operators are densely defined in the Fock space over L2

⊥(B(r)) and are unitarily
equivalent.

Since scaleless the Yang–Mills Hamiltonian is nonnegative, the proposed quantum Yang–Mills
Hamiltonians have unique nonnegative Friedrichs operator extensions1. By the unitary equivalence,
the operators have the same spectrum, the Yang–Mills spectrum the paper‘s title.

Due to gauge invariance, the Yang–Mills Hamiltonian does not contain a positive quadratic form
term. However, the quartic term of the Hamiltonian functional along with the semisimplicity of
the gauge group entail such a quadratic form in the Weyl symbol of quantum Yang–Mills Hamil-
tonian2. The arising mass quadratic form implies that the Friedrichs Hermitian extension of the
quantum Yang–Mills Hamiltonian has a countable orthonormal eigenbasis in a Fock space, so that
the quantum Yang–Mills spectrum is point and countable.

It is shown that monomial multiparticle eigenstates form a countable eigenbasis in the Fock
Hilbert space, so that the Yang–Mills quantum energy-mass spectrum is a countable set of eigen-
values. Furthermore, there is a positive mass gap at the spectrum‘s bottom.

Since scaleless quantum Yang–Mills Hamiltonian is not relativistically invariant, the Yang–Mills
mass depends on Lorentz coordinate frame (as in classical special relativity). Restoration of the
physical dimension [L]−1 of Yang–Mills Hamiltonian implies that the mass gap is proportional to
the classical energy level.

1.3. Acknowledgements

I am thankful to Clifford Taubes for warning that the Yang–Mills Hamiltonian was oversimplified
in Dynin [11] and Dynin [12]. The error is corrected in the present paper.

I am grateful to L. D. Faddeev for useful discussions and to M. Frasca for moral support.

2. ANALYSIS IN BARGMANN–FOCK SPACE

Basic references are Kree [23], Kree [24], and Kree–Raczka [25].

2.1. Kree Rigging of a Bargmann–Fock Space

The complexification H0 := X ⊕ iX of a separable real Hilbert space X carries the complex
conjugation z := x+ iy �→ z := x− iy, an antilinear isometric involution.

The conjugation converts the Hilbert space H0 into the anti-dual space H0. The Hermitian scalar
product of z and w in H0 is denoted by zw (as in C), a shorthand for Dirac’s 〈z|w〉.

A nuclear Gelfand sesquilinear rigging of the Hilbert space H0 is a triple of dense continuous
embeddings (see Gelfand–Vilenkin [17])

H ⊂ H0 	 H0 ⊂ H∗, (2.1)

1By Glimm–Jaffe [19], the normal quantization of a nonnegative functional is not necessary a nonnegative operator.
2This argument cannot be applied to the photonic Maxwell–Schrödinger operator!
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where

(1) A nuclear countably Hilbert space H is the intersection of a countable nested family of
Hilbert spaces

⋂
Hn, n � 0, Hn+1 ⊂ Hn,

where the embedding are nuclear linear operators with dense ranges (see Gelfand–Vilen-

kin [16]). The topology is defined by the simultaneous convergence in all Hn. In fact, H is
a Frechet nuclear space (see Treves [33]).

(2) The strong anti-dual H∗ of H of continuous antilinear functionals z∗w := z∗(w) on Hn of
continuous antilinear functionals z∗w := z∗(w) is the union of the anti-dual Hilbert spaces
Hn∗ of Hn with the topology defined by convergence in a Hn∗. In fact, H∗ is a nuclear
LF-space (see Treves [33]).

(3) The equivalence H0 	 H0 is defined via the Riesz representation of antilinear functionals
(see Treves [33]). In particular, z∗ = z for z ∈ H0.

The Bargmann–Fock space K(H0) is the Hilbert space of entire analytic functionals Ψ(ζ∗) on H∗

that are square integrable with respect to the Gaussian probability measure dγ on H∗. The latter
is uniquely defined through its pull-offs via finite rank Hermitian projectors p : H∗ → H from the
finite-dimensional Gaussian probability measures on finite-dimensional complex subspaces p(H∗)

dγ(pζ, pζ) = c(p)−1d(pζ)(dpζ)e−pζpζ , c(p) :=

∫

pH∗
dγ(pζ, pζ)e−pζpζ (2.2)

(see Gelfand–Vilenkin [17]).

The complex conjugation in K(H0) is Ψ(ζ) := Ψ(ζ), and the Hermitian scalar product is

〈 Ψ| Φ 〉 :=

∫

H∗
dγ Ψ(ζ)Φ(ζ∗).

In view of the Fernique theorem (see Kuo [26, Chap. 3, Th. 2.4], the functionals are integrable
with respect to the Gaussian measure on H∗.3

TheKree rigging of the Fock spaceK(H0) consists of the dense continuous embeddings of complex
topological vector spaces (see Kree [24] and [25, Subsec. (5.9])

K(H∗) ⊂ K(H0) ⊂ K(H), (2.3)

where

(1) The nuclear countably-Hilbert space K(H∗) is the space of entire holomorphic functionals
Φ(z∗) on H∗ of the first order exponential growth on every Hn∗4.

By Boland [9] and Colombeau [10, Chap. 8, Abstract], the countably Hilbert space
K(H) is nuclear. In particular, it is reflexive.

(2) The space K(H) is the space of all continuous Gateaux holomorphic functionals Ψ(w) on
H with the topology of uniform convergence on compact subsets of H.

By Boland [9], the space K(H) is the strong dual of K(H∗). Furthermore, K(H), is a
nuclear space (see Treves [33, Proposition 50.6]).

3The Fernique theorem per se involves the Wiener space H1∗, a carrier of Gaussian probability measure dγ in the

bigger space H∗.
4A functional on H is holomorphic if it is holomorphic on every finite-dimensional subspace and is continuous on

every Hn∗. Since H∗ is a nuclear Silva space, this property is equivalent to the Silva-analyticity in Colombeau

[10, Chap. 2].
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2.2. Borel Transform

Coherent (aka exponential) states ez(ζ∗) := eζ
∗z, z ∈ H, have the following well known basic

properties5

(1) Any Ψ ∈ K(H∗) where it has a unique coherent states expansion

Φ(ζ) =

∫

K(H∗)

dγ(ζ∗, ζ)ez(ζ∗)Φ(ζ∗). (2.4)

This equation is for Φ(z∗) on the dense subspace H ⊂ H∗ where z∗ = z, which defines
Φ(z∗) uniquely.

(2) Overlap identity

〈 ez | ew 〉 = ezw, z, w ∈ H. (2.5)

Proof. It follows from Folland [15, Chap. 1, Th. (1.63)] that for nonnegative integers
m,n we have 〈zn|wn〉 = n!(zw)n and that 〈zm|wn〉 = 0 if m �= n. Then

〈ez | ew 〉 =

〈 ∞∑

m=0

zm/m! |
∞∑

n=0

wn/n!

〉
= ezw.

(3) Borel transform F (see Colombeau [10, Chap. 7], as well as Treves [33, Chap. 22]) is

Φ(ζ) �→ (FΦ)(z) := 〈 ez | Φ 〉, Ψ(ζ) �→ (FΨ)(z) := 〈 Ψ | ez 〉. (2.6)

By (2.5), the Borel transform F (ew(ζ∗)) = ew(z∗)). Thus Borel transform induces a linear
topological isomorphism of the corresponding riggings of the Fock space (see Kree [24, Th.
(2.15)]).

(4) Borel transform intertwines the directional differentiation ∂z, z ∈ H, and the multiplication
with ζz in K(H).

(5) Sesquilinear Borel transform in the sesquilinear Kree triple

K(H∗ ×H∗) ⊂ K(H0 ×H0) ⊂ KH×H) (2.7)

is the tensor product of Borel transforms defined by sesquiholomorphic coherent states

eη
∗
1z1+η∗

2z2 = ez1(η∗1)e
z1(η∗1).

2.3. Calculus of Creation and Annihilation Operators

Operators of creation and annihilation are continuous operators of multiplication and complex
directional differentiation in K(H∗) and K(H),

ẑ Φ(ζ∗) := (ζ∗z)Φ(ζ∗), ẑ∗Φ(ζ∗) := ∂z∗Φ(ζ∗), (2.8)

ẑ Ψ(ζ) := ∂zΨ(η)), ẑ∗Ψ(η) := (z∗η)Ψ(η). (2.9)

(1) The adjoint of a creation operator ẑ is the annihilation operator ẑ.

(2) Operators ẑ and ẑ are continuous in K(H) and K(H)∗ where they act.

5They are straightforward on cylindrical states pζ∗ and then, by strong limits, are extended to all states. Note also

that the coherent states are cylindrical.
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(3) Canonical bosonic commutation relations (CCR) take the form

[ẑ∗1 , ẑ2] = z∗1z2, [ẑ∗1 , ẑ2] = 0, [ẑ1, ẑ2] = 0. (2.10)

(4) Coherent states ez are the eigenstates of the annihilation operators: ẑ∗ew = (z∗w)ez .
(5) Creators and annihilators generate strongly continuous commutative operator groups in

K(H∗) and K(H)

eẑΦ(ζ∗) = ew
∗z Φ(ζ∗), eẑ

∗
Φ(ζ∗) = Φ(ζ∗ + z∗), (2.11)

eẑΨ(ζ) = Ψ(ζ + z), eẑ
∗
Ψ(ζ) = eζ

∗zΨ(ζ). (2.12)

The operator products eẑeẑ
∗
and eẑ∗eẑ are invertible continuous operators in K(H) and

K(H∗).

By Baker–Campbell–Hausdorff formula and the canonical commutation relations (2.10), we have

eẑeẑ
∗

= eẑ+ẑ∗
ez

∗z/2, eẑ
∗
eẑ = eẑ+ẑ∗

e−z∗z/2. (2.13)

Therefore, the operator eẑ+ẑ∗
is also continuous and invertible in K(H).

The sesquiholomorphic Borel transform of Θ̃ ∈ K(H×H)

Θ(z1, z2) = 〈Θ̃(η1, η2) | eη1(z1)e
η2(z2) 〉 (2.14)

is quantized as the continuous normal, Weyl, and anti-normal operators from K(H∗) to K(H)
defined by the corresponding normal, Weyl, and anti-normal ordering of creators and annihilators

Θ̂ν = Θν(η̂1, η̂2) :=
〈
Θ̃ν(η1, η2)

∣∣eη̂1eη̂2
〉
, (2.15)

Θ̂ω = Θω(η̂1, η̂2) :=
〈
Θ̃ω(η1, η2)

∣∣ eη̂1+η̂2
〉
, (2.16)

Θ̂α = Θα(η̂1, η̂2) :=
〈
Θ̃α(η1, η2)

∣∣ eη̂2eη̂1
〉
. (2.17)

The coherent matrix elements

〈
ez1

∣∣ Θ̂ν

∣∣ez2
〉

=
〈
Θ̃ν(η1, η2)

∣∣ 〈 ez1 | eη̂1eη̂2 |ez2 〉
〉
,

〈
ez1

∣∣ Θ̂ω

∣∣ez2
〉

=
〈
Θ̃ω(η1, η2)

∣∣ 〈 ez1 | eη̂1+η̂2 |ez2 〉
〉
,

〈
ez1

∣∣ Θ̂α

∣∣ez2
〉

=
〈
Θ̃α(η1, η2)

∣∣ 〈 ez1 | eη̂2eη̂1 |ez2 〉
〉

are well defined. For starters

〈 ez1 | eη̂1eη̂2 |ez2 〉 = 〈 eη̂1ez1 | eη̂2ez2 〉 = 〈 eη1z1ez1 | eη2z2ez2 〉 (2.5)
= ez1η1+η2z2ez1z2

imply via (2.14) that

〈
ez1

∣∣ Θ̂ν

∣∣ez2
〉

= 〈Θ̃ν(η1, η2) | eη1(z1)e
η2(z2) e

z1z2 〉 = Θν(z1, z2)e
z1z2 . (2.18)

Since Θν(z1, z2)e
z1z2 is sesquiholomorphic onH×H, it follows that the normal coherent state matrix

〈 ez1 | eη̂1eη̂2 |ez2〉 is the Grothendieck kernel of a continuous linear operator Θ̂ν : K(H∗) → K(H)
(see Treves [33]).
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Vice versa, for any continuous linear operator Q : K(H∗) → K(H), the sesquiholomorphic
functional

ΘQ
ν (z1, z2) := 〈 ez1 | Q | ez2 〉e−z1z2 (2.19)

belongs to K(H ×H) and satisfies

〈 ez1 | Q | ez2 〉 =
〈
Θ̃Q

ν (z1, η2)
∣∣ 〈 ez1 | eη̂1eη̂2 | ez2 〉

〉
. (2.20)

As in (2.13),

eη̂1eη̂2 = eη̂1+η̂2e−η2η1/2, eη̂2eη̂1 = eη̂1+η̂2e−η2η1/2, (2.21)

so that
Θ̃ν(η1, η2) = eη1η2/2Θ̃ω(η1, η2), Θ̃ω(η1, η2) = eη1η2/2Θ̃α(η1, η2). (2.22)

Applying the intertwining property of sesquiholomorphic Borel transform, we obtain

Θν(z1, z2) = e∂z1
∂z2

/2Θω(z1, z2), Θω(z1, z2) = e∂z1
∂z2

/2Θα(z1, z2). (2.23)

These equations define ΘQ
ω (z1, z2) and ΘQ

α (z1, z2) via Θnu
Q(z1, z2) for all continuous linear opera-

tors Q : H → H∗.
A sesquiholomorphic functional Θ(z1, z2) is uniquely defined by its restriction σ(z, z) to the real

diagonal of H×H. The restrictions

σQ
ν (z, z), σQ

ω (z, z), σQ
α (z, z) (2.24)

are the normal, Weyl, anti-normal symbols of an operator Q. The symbols are arbitrary real analytic
functionals on the real diagonal of H × H). Furthermore, under the corresponding ordering of
creators and annihilators,

Q = σQ
ν (ẑ, ẑ) = σQ

ω (ẑ, ẑ) = σQ
α (ẑ, ẑ). (2.25)

Formulas (2.19) and (2.25) reproduce well-known formulas for finite-dimensional pseudo-diffe-
rential operators (see Folland [15, Chap. 3, Sec. 7]).

In terms of their matrix elements, the operators Q : K(H∗) → K(H) are strongly convergent
series

eẑ êz =
∞∑

m,n=1

ẑmẑ
n

m!n!
, eẑ+ẑ =

∞∑

n=1

(ẑ + ẑ)n

n!
, êzeẑ =

∞∑

m,n=1

ẑnẑ
m

m!n!
. (2.26)

Thus any operator Q : K(H∗) → K(H) is a partial differential operator of infinite order with
holomorphic coefficients (see Berezin [5, Chap. 1]).

If a symbol σQ(z, z) is a sesquiholomorphic polynomial (i.e., ΘQ(z1, z2) is polynomial on finite-
dimensional sesquiholomorphic subspaces of H×H), then Q is a differential operator of finite order
and, therefore, a continuous linear operator in K(H∗).

2.3.1. Number operator. Let {ej} ⊂ H be an orthonormal basis in H0, so that any z ∈ H has
a unique orthogonal expansion z =

∑
j zj in H0. This defines a continuous linear number operator

in H
N :=

∑

j

ẑj ẑj : H → H (2.27)

that does not depend on orthonormal basis choice.
Further, the number operator is nonnegative the domain H. Its Friedrichs Hermitian extension

(again denoted N) has an eigenbasis of monomial functionals
∏n

k=1(z
∗zjk) with eigenvalues n =

0, 1, . . . . Thus the spectrum of N is a point spectrum, the fundamental eigenvalue 0 is simple but
all others are infinitely degenerate.

It follows that the diagonal matrix elements satisfy the equality 〈ez|N|ez〉 = (zz)ezz, so that the
symbols of N are

σN
ν

(2.19)
= zz, σN

ω

(2.16)
= zz − 1/2, σN

α

(2.17)
= zz − 1. (2.28)
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2.4. Fock Representations of Canonical Commutation Relations

A Fock representation of canonical commutation relations over a pre-Hilbert space H is a set of
linear annihilation and creation operators ẑ, ẑ, , z ∈ H, in a complex Hilbert space K(H0) defined
on a dense subspace K(H) such that

(1) ẑ, ẑ : K(H) → K(H).
(2) The nonzero canonical commutators relations

[ẑ, ŵ] = zw (2.29)

are satisfied.
(3) There is a unit fiducial Ω ∈ K(H) such that K(H) is the linear span of the monomial vectors

ẑkΩ, k = 0, 1, . . .
(4) ẑΩ = 0.

As is well known (see Glimm–Jaffe [20, Th. 6.3.4.]) for a given H, the Fock representations
are irreducible and unitarily equivalent. Furthermore, unitary operators defining the equivalence
are completely defined by the correspondence between the Ω’s.

By Subsec. 2.3, any Fock representation of canonical commutation relations sets up the corre-
sponding nuclear Gelfand sesquilinear rigging

K(H) ⊂ K(H0) ⊂ K(H∗)

over the nuclear Gelfand sesquilinear rigging H ⊂ H0 ⊂ H∗. Thus, the theory of partial differential
operators is transferred to all Fock representations. By the unitary equivalence, the operator calculus
formulas are the same (though the unitarily equivalent realizations of the operators depend on the
representation).

For a Gelfand sesquilinear rigging H ⊂ H0 ⊂ H∗, the real parts x := (1/
√
2(z∗ + z)) of z ∈ H0

define the real Hilbert spaces X0 := H0 and then the Gaussian real nuclear Gelfand triple

X ⊂ X0 ⊂ X ′. (2.30)

By Glimm–Jaffe [20, Th. 6.3.3]), the creation annihilation operators

ẑ Ψ(w′) :=
(
x · w′ − ∂x

)
Ψ(w′), ẑ∗Ψ(w′) = ∂xΨ(w′) (2.31)

together with Ω(x) = 1 define a irreducible Fock representation of the commutation relations in the
complex Hilbert space K(H0) := L2(H∗, dγ. Then the unitary equivalence with the representation
of the commutation relations in K(H0) := L2(H∗, dγ) produces the equivalent corresponding
Gelfand nuclear triple K ⊂ K(H0) ⊂ K(H∗).

By the fundamental von Neumann-Stone theorem, all irreducible representations of canonical
commutation relations on a finite-dimensional space H = C

n are unitary equivalent, in particular
to Fock representations.

The Schrödinger irreducible representation is defined by the Hermitian unbounded operators
x̂, x ∈ R

n = Cn of the directional multiplications and the operators ŷ, y ∈ R
n = �Cn, of the

directional derivatives in the complex Hilbert space L2(Rn, dw):

x̂f(w) := (x · w)f(w), ŷf(w) := −i(∂e · w)f(w). (2.32)

The nonzero commutation relation
[ŷ, x̂] = −i(y · x)1 (2.33)

leads to the creation and annihilation operators ẑ and ẑ∗ for z := (1/
√
2)(x+iy), z∗ := (1/

√
2)(x−

iy) in L2(Rn, dx) are

ẑ : = (1/
√
2)(x̂+ iŷ), ẑ∗ : = (1/

√
2)(x̂− iŷ). (2.34)

One may choose a Schrödinger unit fiducial state as Ω(w) := (2π)−n/2e−w·w/2.

The fiducial transformation (2π)−n/2e−w·w/2 �→ 1 extends to the unitary isomorphism between
L2(Rn, dγ) and L2(Rn, dγ).
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Lemma 2.1. If the anti-normal symbol σQ
α is nonnegative, then Q is a nonnegative operator.

Proof. It suffices to prove the lemma in the cylindrical formalism. There it is equivalent to
Shubin [32, Proposition 24.1] for the Schrödinger representation of operators on Rn.

Lemma 2.2. If the Weyl symbol σQ
ω = f(z) does not depend on z, then Q is the operator of

multiplication with f ∈ K(H).

Proof. It suffices to prove the lemma in the cylindrical formalism. There it is equivalent to
Folland [15, Proposition (2.8)] for Schrödinger representation of operators on Rn.

2.5. Cylindrical formalism

A Hermitian finite-dimensional projector p : H∗ → H of rank n induces the cylindrical projector

PΦ(z∗) := Φ(pz∗), PΨ(w) := Ψ(pw).

in KH∗ and KH.
The range of a rank n projector p is naturally isomorphic to Cn. Therefore, the cylindrical

nuclear Gelfand triples P (K(H∗) ⊂ PK(H0) ⊂ PK(H) are equivalent to the Kree triples over the

finite-dimensional triples C
n ⊂ Cn 	 C

n ⊂ Cn (see Kree–Raczka [25]).

The compressions of a continuous linear operator Q : K(H∗) → K(H) are cylindrical operators
PQP : PK(H∗) → PK(H). Their coherent matrix elements,

〈ez | PQP | ez〉 = 〈 epz | Q | epz 〉 (2.35)

define continuous linear operators fromK(Cn) to K(C
n
), i.e., partial differential operators of infinite

order on Cn.

Theorem 2.1. Operator Q is the strong limit of the cylindrical differential operators PQP as
the Hermitian projectors p converge strongly to the unit operator in K(H∗).

Proof. The coherent matrix elements 〈Ψ∗|Q|Φ 〉 are separately continuous sesquilinear forms
on the Frechet space K(H∗). By a Banach theorem (see [29, Th. V.7]), the sesquilinear form is
actually continuous on K(H). In particular, the operator Q is the weak limit of PQP in K(H).
The nuclear space K(H∗) is a Montel space (see Treves [33, Proposition 50.2]). Hence the weak
convergence implies the strong one in the topology of K(H∗).

As n → ∞, the matrix elements satisfy the equalities

〈ez | PQP | ew〉 = 〈 epz | Q | epw 〉 → 〈ez∗ | Q | ew〉, (2.36)

so that coherent matrix elements of the cylindrical PQP converge to the coherent matrix elements
of Q.

Agarwal–Wolf [2] have developed a comprehensive calculus of operators of creation and
annihilation in finite dimension. It is quite straightforward to make it mathematically rigorous and
then to extend to quantum field theory via cylindrical approximations. This would be another way
to deduce the results of this section6

3. CLASSICAL YANG–MILLS THEORY

3.1. Yang–Mills Fields

The global gauge group G of a Yang–Mills theory is a connected semisimple compact Lie group
with the Lie algebra g of skew-symmetric matrices X = −X ′.

6Their formulas are somewhat, different, because they use the symplectic Fourier transform on the phase space.

However, the translation of formulas to the language of sesquiholomorphic Borel transform is straightforward (see

Folland [15, p. 7]).
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The Lie algebra carries the adjoint representation Ad (g)X = gXg−1, g ∈ G,X ∈ g, of the group
G and the corresponding selfrepresentation ad(X)Y = [X,Y ], X, Y ∈ g. The adjoint representation
is orthogonal with respect to the positive definite Ad-invariant scalar product

X · Y := trace(adX ′adY ) = −trace(adXadY ), (3.1)

the negative Killing form on g.
There exists an orthonormal basis {Tk} in g such that

[Ti, Tj ] = ckijTk, (3.2)

with the structure constants ckij skew-symmetric with respect to the interchanges of all three indices
i, j, k. (Summation over repeated indices is assumed throughout.)

Let the Minkowski space R1,3 be oriented and time oriented with the Minkowski metric signature
(1,−1,−1,−1). In a Minkowski coordinate system xμ, μ = 0, 1, 2, 3, the metric tensor is diagonal.
In the natural unit system, the time coordinate x0 is t. Thus (xμ) = (t, xi), i = 1, 2, 3.

The local gauge group G̃ is the group of infinitely differentiable G-valued functions g(x) on R
1,3

with the pointwise group multiplication. The local gauge Lie algebra g̃ of g-valued functions on R
1,3

with the pointwise Lie bracket consists of infinitely differentiable g-valued functions on R
1,3 with

the pointwise Lie bracket.

The G̃ acts via the pointwise adjoint action on H̃ and correspondingly on A, the real vector
space of gauge fields A = Aμ(x) ∈ g̃.

The gauge fields A define the covariant partial derivatives

∂AμX := ∂μX − ad(Aμ)X, X ∈ H̃. (3.3)

This definition shows that in, the natural units, gauge connections have the mass dimension 1/[L].

Any g̃ ∈ G̃ defines the affine gauge transformation

Aμ �→ Ag̃
μ : = −Ad (g̃)Aμ − (∂μg̃)g̃

−1, A ∈ A, (3.4)

so that Ag̃1Ag̃2 = Ag̃1g̃2 .

The relativistic Yang–Mills curvature F (A) is the antisymmetric tensor7

F (A)μν := ∂μAν − ∂νAμ − [Aμ, Aν ]. (3.5)

The curvature is gauge invariant:

Ad (g)F (A) = F (Ag), (3.6)

as well as the Yang–Mills Lagrangian

(1/4)F (A)μν · F (A)μν . (3.7)

The corresponding gauge invariant Euler–Lagrange equation is the 2nd order nonlinear partial
differential equation ∂AμF (A)μν = 0, called the Yang–Mills equation

∂μF
μν − [Aμ, F

μν ] = 0. (3.8)

Yang–Mills fields are solutions of the Yang–Mills equation.

7The scaleless Yang–Mills coupling constant is supressed.
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3.2. Yang–Mills Phase Space

In the temporal gauge A0(t, x
k) = 0, the 2nd order Yang–Mills equation (3.8) is equivalent to

the 1st order hyperbolic system for the time-dependent Aj(t, x
k), Ej(t, x

k) := F0,xk on B (see
Goganov–Kapitanskii [21, Eq. (1.3)])

∂tAk = Ek, ∂tEk = ∂jF
j
k − [Aj , F

j
k ], F j

k = ∂jAk − ∂kA
j − [Aj , Ak]. (3.9)

and the constraint equations

[Ak, Ek] = ∂kEk, i.e., ∂k,AEk = 0. (3.10)

By Goganov–Kapitanskii [21], the evolution system is a semilinear first order partial differen-
tial system with finite propagation speed of the initial data, and the initial problem for it with
constrained initial data at t = 0

ak(x) := A(0, xk), ek(x) := E(0, xk), ∂kek = [ak, e,k ] (3.11)

is globally and uniquely solvable in local Sobolev spaces on the whole Minkowski space R
1,3 (with

no restrictions at the space infinity).

This fundamental theorem has been derived via Ladyzhenskaya method (see [21]) by a reduction
to initial data with compact supports. If the constraint equations are satisfied at t = 0, then, by
(3.9), they are satisfied for all t automatically. Thus the 1st order evolution system along with the
constraint equations for initial data is equivalent to the 2nd order Yang–Mills system. Moreover,
the constraint equations are invariant under time independent gauge transformations.

Sobolev-Hilbert spaces As,−∞ < s < ∞, of (generalized) connections a(x) are the completions
of the spaces of smooth connections with compact supports in open balls B of radius r with respect
to the norms

|a|2 :=

∫

B

dx
(
a · (1−�)sa

)
< ∞. (3.12)

They define the real Gelfand nuclear triple (see [16])

A : A :=
⋂

As ⊂ A0 ⊂ A∗ :=
⋃

As, (3.13)

where A is a real nuclear Frechet space with the dual A∗.
Similarly, we define the chain of Sobolev-Hilbert spaces Ss,−∞ < s < ∞, of (generalized) scalar

fields u(x) on B with values in Ad G and the Hilbert norms |u|. Let

S : S :=
⋂

Ss ⊂ S0 ⊂ S∗ :=
⋃

Ss (3.14)

be the corresponding Gelfand rigging.

Let a ∈ As+3, s � 0. Then, by Sobolev embedding theorem, a is continuously s+2-differentiable
on B and, therefore, the following gauged vector calculus operators are continuous:

(1) Gauged gradient grad[a] : Ss+1 → As,

grad
[a]
k u := ∂ku− [ak, u]. (3.15)

(2) Gauged divergence div[a] : As+1 → Ss,

div[a] b := div b− [a ; b], [a ; b] := [ak, bk]. (3.16)

(3) Gauged curl curl[a] : As+1 → As,

curl[a]b := curl b− [a×, b], [a×, b]i := εkij [aj , bk]. (3.17)

(4) Gauged Laplacian �[a] : Ss+2 → Ss,

�[a]u := div[a](grad[a]u). (3.18)

The adjoints of the gauged operators are

grada∗ = −div[a]. (3.19)
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Lemma 3.1. If a ∈ As+3, s � 0, then the operator div[a] : As+1 → As is surjective.

Proof. Let
◦
Ss+2, s � 0, denote the closure in Ss+2 of the space of u’s with compact sup-

port in the interior of B. The conventional Laplacian �0 :
◦
Ss+2 → Ss is an isomorphism (see

Agranovich [3]).

The gauged Laplacian �[a] differs from the usual Laplacian �0 by first order differential opera-

tors, and, therefore, is a Fredholm operator of zero index from
◦
Ss+2 to Ss, s � 0.

If �[a]u = 0, then the ∗-product (�[a]u)∗u is equal to (grad[a] u)∗(grad[a] u) so that gradu =
[a, u]. The computation

(1/2)∂k(u · u) = (∂ku · u) = [ak, u] · u = −trace(akuu− uaku) = 0 (3.20)

shows that the solutions u ∈
◦
Ss+2 are constant. Because they vanish on the ball boundary, they

vanish on the whole ball. Since the index of the Fredholm operator �[a] is zero, its range is a closed
subspace of codimension equal to the dimension of its null space. Thus the operator div[a]grad[a] is
surjective, and so is div[a].

Consider the bundles Hs, s � 0, of constraint initial data with the base A and the null vector
spaces Es+1

a of the operators div[a] : Es+1 → Es as fibers over a ∈ A.
Their intersection H is a vector bundle of nuclear countably Hilbert spaces over the nuclear

countably Hilbert base A. Together with the unions of the dual spaces H−s, they form a bundle of
nuclear Gelfand triples H over the same base.

Proposition 3.1. The bundle H is smoothly8 trivial, so that the total space of H is smoothly
isomorphic to the Hilbert direct product of its base A and transversal fiber E⊥ := div (e) = 0 over
a = 0.

Proof. The equation for (a, e) ∈ H ×H

div[a]e− div[0]e = 0, div[0]e = dive, (3.21)

is satisfied on the vector space (0, e) : = dive = 0.

Furthermore, the mapping φ(a, e) : div[a]e − div0e uniformly satisfies the conditions of the
Nash–Moser implicit function theorem in the form of Raymond [28] in a neighborhood of E⊥ (the
only nonroutine condition of surjectivity of the partial Frechet derivative ∂eφ(a, e) is provided by
Lemma 3.1). Hence there exists a smooth explicit mapping e = e(h) on that neighborhood such
that (a, e(a)) solves equation (3.21).

The mappings e = e(h) are smooth local trivializations of the vector bundle H. It is associated
with the locally trivial bundle of smooth ∗-orthonormal frames in the fibers (with respect to the
scalar product in E0

⊥).

Since the Frechet space A is paracompact, its smooth homothety retraction to the origin a = 0
has a homotopy lifting to the space of frames (see Nash–Sen [27, Sec. 7.6]). Thus the bundle H is
trivial, so that the total set of constraint initial data is converted to the Hilbert space A× Ha=0
with the flat parallel transport preserving e · e.

3.3. Classical Yang–Mills Hamiltonian

The scaleless Yang–Mills Hamiltonian with the concealed coupling constant is (see Glassey–

Strauss [18, Eq. (10)])

H(a, e) := (r/2)

∫

B(r)

d3x
(
(curl a− [a×, a]) · (curl a− [a×, a]) + e · e

)
, (a, e) ∈ A× E , (3.22)

8In this paper, smooth = infinitely differentiable.
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where [a×, a] is the vector field with i-th components εkij [aj , ak], is invariant with respect to the

scaling x → sx, x ∈ R3, 0 < s < ∞. (The factor r makes the functional scaleless.)
The integrand of

H1(a) := (r/2)

∫

B(r)

d3x
(
(curl a− [a×, a]) · (curl a− [a×, a])

)
, (3.23)

is the curvature of the time-independent gauge fields a(x). Thus H(a) is invariant under time-
independent gauge transformations and, therefore, is constant on each orbit of the smooth local
time-independent gauge group.

By Dell’antoniio–Zwanziger [13, Proposition 1], the closure of the local gauge Lie group

G̃
1 in the Sobolev space A1 is an infinite-dimenssional compact group with a continuous action in

the Hilbert space A0. The action orbits are compact, so that the squared continuous Hilbert norm
‖a‖2 has an absolute minimal value on every orbit. The minimal values are attained at transversal
a : div a = 0 (in the distributional sense).

By the Sobolev embedding theorem, A1 ⊂ L6(B). Therefore, the functional H1(a) has a unique

continuation to G̃
1-orbits in A0 and is constant on each of them.

All in all, the following proposition holds.

Proposition 3.2. The constrained Yang–Mills Hamiltonian H(a, e) is completely determined
by its restriction to the countably Hilbert vector space H : A⊥×E⊥ of transversal constrained vector
fields (a, e).

The complex Yang–Mills fields

z := (r/
√
2)(a+ ire), z := (r/

√
2)(a− ire) (3.24)

are scaleless, as well as their Hermitian product

zz := (1/r3)

∫

B(r)

d3xz(x) · z(x). (3.25)

Let
Z := A⊥ + iE⊥ ⊂ Z0 := A0

⊥ + iE0
⊥ ⊂ Z∗ := A∗

⊥ − iE∗
⊥ (3.26)

be the corresponding scaleless Gelfand triple.

4. MATHEMATICAL QUANTUM YANG–MILLS THEORY

4.1. Quantization of Classical Yang–Mills Fields

The Yang–Mills equation (3.9) is equivalent to an infinite-dimensional Hamiltonian system for
a(t) := A(t, x) and e(t)) = ∂tA(t, x) on the reduced phase space (see Faddeev–Slavnov [14,
Chap. III, Eqs. (2.64)])

∂ta(t) = −∂e(t)H(a(t), e(t)), ∂te(t) = ∂a(t)H(a(t), e(t)). (4.1)

By the equivalence, solutions exist for all t and are uniquely defined by the initial data a(0), e(0).
Let

z(t) =
(
a(t) + ie(t)

)
/
√
2, z(t) =

(
a(t)− ie(t)

)
/
√
2. (4.2)

By the Segal quantization (see Reed–Simon [30, Sec. X.7]), the compactly supported classical
fields a(t) and e(t) in B are quantized as the symmetric operators in K(H∗)

â(t) := (ẑ(t) + ẑ(t))/
√
2, ê(t) := −i(ẑ(t)− ẑ(t))/

√
2 (4.3)

understood as local quantum fields on Minkowski space.
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Adapted G̊arding–Wightman axioms.

(1) For a proof of essential self-adjointness of â(t),−iê(t), irreducibility of the set of all local
quantum Yang–Mills fields, uniqueness (up to phase transformations) of the vacuum Fock
state, and bosonic canonical commutations relations, see Reed–Simon [30, Th. X.41]. The
corresponding Hermitian extensions in K(H0) are still denoted â(t),−iê(t).

(2) Each of normal, Weyl, and anti-normal symbols of the operator â(t) is z(t) + z(t) satisfies
Yang–Mills equations on Minkowski space. Therefore, the local Yang–Mills quantum fields
do the same.

(3) Poincaré covariance of local Yang–Mills quantum fields follows from the covariance of their
symbol.

(4) Similarly, the evolution of the symbol has the finite propagation speed property, and so does
the evolution of quantum Yang–Mills fields, as required by Einstein‘s causality principle.

Furthermore, if the compact supports of z(t1) and z(t2) on R
3 are disjoint, then the

commutators

[â(t1), â(t2)] =
[
ẑ(t1) + ẑ(t1)/

√
2, ẑ(t2) + ẑ(t2)/

√
2
]

= i �(z(t1)z(t2)) = 0. (4.4)

(5) The spectral positivity of quantum Yang–Mills Hamiltonian follows from the nonnegativity
of its anti-normal symbol.

4.2. Symbols of the Quantum Yang–Mills Hamiltonian

Since the Yang–Mills Hamiltonian H = rP 0 is scaling invariant, it is sufficient to take r = 1.
The quantum Yang–Mills Hamiltonian is the infinite-dimensional partial differential operator

Ĥ : K(H∗) → K(H) with the classical Yang–Mills Hamiltonian ((3.22), r = 1) as the anti-normal
symbol

σĤ
α := H(z, z) = H(a, e) =: H1(a) +H2(e). (4.5)

The following Proposition is crucial (note that a = (1/
√
2)(z + z), e = (i/

√
2)(z − z)).

Proposition 4.1. The Weyl and normal symbols of the anti-normal quantum Yang–Mills Ham-

iltonian Ĥ are equal to

σĤ
ω = H1(a) + (1/2)‖a‖2 + zz + 9/16, (4.6)

σĤ
ν = H(a, e) + ‖a‖2 + 24/16. (4.7)

Proof. In view of cylindrical approximations, it suffices to verify Eq. (4.6) in the Schrödinger
representation of the canonical commutation relations over finite-dimensional Euclidean spaces.

The operator ∂z∗∂z has the form (1/2)(Δa +Δe), where the Laplacians are defined with respect
to the Killing form on the gauge Lie algebra g.

By (2.23),

σĤ
ω (a, e) =

(
1 +

Δa/2

2
+

(Δa/2)
2

2

)
H1(a) +

(
1 +

Δe/2

2

)
H2(e). (4.8)

Differentiation with respect to x is a continuous linear operator in H∗. It acts naturally in K(H∗),
commuting with Δa and Δe. Hence, by the Leibniz rule for differentiation with respect to a, we
have

Δa(curl a · curla) = Δa(curl a) · curl a+ 2∇acurl a · ∇acurl a+ curl a ·Δacurla

= (curlΔaa) · curl a+ 2curl∇aa · ∇acurl a+ curl a · curlΔaa = 0,
(4.9)

where in the third line the partial differentiations with respect to the variables x and a are inter-
changed and Δaa = 0 and ∇aa is a constant matrix field.
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Similarly,

Δa

(
curl a · [a×, a]

)
= curlΔaa · [a×, a] + 2(curl∇aa) · ∇a[a×, a] + a · curlΔa[a×, a] = 0, (4.10)

since Δaa = 0, curl is a symmetric differential operator, and ∇a[a×, a] is a constant matrix field.

Next, in the orthonormal basis Tk (3.2) of g, the structure constants ckij of the semisimple Lie
algebra are totally anti-symmetric. Thus

[ai, aj ] =
∑

k

cijka
k
i a

k
j , ai = aki Tk. (4.11)

Then, by Simon ([31, p. 217]),

[ai, aj ] · [ai, aj ] =
∑

k

(aki a
k
j c

k
ij)

2. (4.12)

In the Cartesian coordinates αk
i (x), the differential operator Δa is the standard Laplacian with

respect to a independently of x so that, by Simon ([31, page 217]),

ΔaH1(a) =

∫

B

dx (1/2)∂2/∂(αk
i (x))

22
∑

k

(αk
i α

k
j cijk)

2(x). (4.13)

The skew-symmetry of ckij implies that
∑

k α
k
i α

k
j c

k
ij does not contain (αk

i )
2. Then, by the Leibniz

rule,

∂2/∂(αk
i )

2
∑

k

(
αk
i α

k
j cijk

)2

= 2∂2/∂(αk
i )

2
∑

k

(
αk
i α

k
j cijk

)∑

k

(
αk
i α

k
j cijk

)
+ 2

(
∂/∂αk

i

∑

k

αk
i α

k
j c

k
ij

)(
∂/∂αk

i

∑

k

αk
i α

k
j c

k
ij

)

= 2
∑

ijkl

αk
i c

k
ijα

l
jcljk(x) = 2a(x) · a(x) (see Simon [31, p. 217]).

Thus

ΔaH1(a) =

∫

B

dx a · a = ‖a‖2, Δ2
aH1(a) = Δa‖a‖2 = 2. (4.14)

Furthermore,
ΔeH2(e) = Δe‖e‖2 = 2. (4.15)

Equations (4.8), (4.9), (4.10), (4.13), (4.14), (4.15) entail equation (4.6) of the Proposition for the

Weyl symbol σĤ
ω .

Equation (4.7) for the normal symbol σĤ
ω is derived in the same way but, in view of (2.23), with

(1/2)Δa, (1/2)Δe in (4.8) replaced by Δa, Δe.

4.3. Spectrum of the Quantum Yang–Mills Hamiltonian

The anti-normal symbol of the quantum Yang–Mills Hamiltonian Ĥ is nonnegative so that,

by Lemma 2.1, Ĥ is nonnegative and, in particular, symmetric on the dense domain H in the

Hilbert space H0. As such, it has the Friedrichs Hermitian extension Ĥ (by abuse of notation, it is

transferred to the Hermitian operator). Now the spectrum of Ĥ is uniquely defined.
By definition, a positive mass gap means that the lowest eigenvalue is simple and is an isolated

spectral value corresponding to the physical vacuum. Then the lowest boundary value of the rest
of the spectrum represents the physical mass.
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Theorem 4.1. The Yang–Mills Schrödinger spectrum has a positive mass gap � 9/16.

Proof. The lowest spectral value of Ĥ

λ1(Ĥ) � inf σĤ
ν (z, z)

(4.5)
= 24/16, (4.16)

because, by (2.19), the normal symbol σĤ
ν (z, z) is the expectation value of the operator Ĥ on the

coherent states.
On the other hand, by Proposition 2.2, H1(a) + ‖a‖2/2 is the Weyl symbol of the multiplication

operator with H1(a) + ‖a‖2/2 � 0.
Therefore,

σĤ
ω

(2.24)
= (zz − 1/2) + 1/2 + H1(a) + ‖a‖ 2/2 + 9/16 � σN

ω + 17/16, (4.17)

where N is the number operator.
The shifted number operator N + 17/16 has the simple and isolated fundamental eigenvalue

17/16 and no other spectral value in the interval 17/16 < λ < 17/16 + 1− 0.

By the inequality (4.16) and nonnegativity of N, the operator Ĥ has a spectral value in the
same interval.

Finally, the minimax variational principle (see Berezin–Shubin [8, Supplement, Sec. 3, Corol-
lary 1]) implies, with the help of (4.17) that, in the interval 17/16 < λ < 17/16 +1− 0, all spectral

values of Ĥ+17/16 are its eigenvalues and the sum of their multiplicities is not greater than 1, the
sum of multiplicities of the eigenvalues of N+ 17/16.

Thus the quantum Yang–Mills Hamiltonian has a positive mass gap greater or equal to (17/16+
1)− 24/16 = 9/16.

Theorem 4.2. The Yang–Mills energy operator has a countable eigenbasis for F(H0) so that
its spectrum is a countable set of eigenvalues.

Proof. As a complex Hilbert space, the space H0 is isomorphic to L2
⊥(B,Cg3) of transverse

square-integrable vector-valued functions z(x) on B with values in Cg3.

The Fourier series expansions of z(x) =
(
z1(x), z2(x), z3(x)

)
, x ∈ B,

zk(x) =
∑

jk∈Z3

ž(jk) exp(2π ix · jk), ž(jk) ∈ Cg3, (4.18)

define the isomorphism between L2
⊥(B,Cg3) and the Hilbert tensor product l2(Z3)⊗Cg3 of square

summable Cg-valued sequences (with the natural conjugation), subject to the transversality con-
dition

jk · ž(jk) = 0, jk ∈ Z3, k = 1, 2, 3. (4.19)

The isomorphism converts the Gelfand nuclear triple H ⊂ H0 ⊂ H∗ into a Gelfand nuclear triple
of Cg-valued sequences presented as elements of completed topological tensor products

(Z3)⊗Cg ⊂ l2(Z3)⊗Cg ⊂ ∗(Z3)⊗Cg∗, (4.20)

where (Z3) is a nuclear Frechet subspace of l2(Z3).

By the infinite-dimensional version of the Hartogs theorem (see Colombeau [10, Sec. 3.3]),
the corresponding Fock space K(H∗) is isomorphic to the space of all continuous functionals on
∗(Z3)⊗Cg∗ that are exponential entire functions on Cg, and the corresponding Kree space K(H∗)
is isomorphic to the space of all functionals on (Z3)⊗Cg∗ that are holomorphic functions on Cg.
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By the unitarity of the Fourier series expansions, the Weyl symbol σĤ
ω (4.6) is unitarily equivalent

to

σĤj
ω (ǎ, ě) =

1

2

⊕

j∈Z3

∥∥∥
(
j × ǎ(j) − [ǎ(j)×, ǎ(j)]

)∥∥∥
2

+ 9/16 +
1

2

⊕

j∈Z3

(ǎ(j) · ǎ(j) + ě(j) · ě(j)).

At the same time, the transversality equation (4.19) is the direct sum of the transversality equations
over Cg.

The operators Ĥj : K(Cg∗) → K(Cg) over the finite-dimensional space Cg with the Weyl
symbols satisfy

σĤj
ω (a, e) =

1

2

∥∥∥j × ǎ(j)− [ǎ(j)×, ǎ(j)]
)∥∥∥

2

+
1

2

(
ǎ(j) · ǎ(j)

)
+ ě(j) · ě(j) + 9/16. (4.21)

By (4.21), the operators Ĥj and N are hypo-elliptic (see Shubin [32, Definition 25.1]). Hence,
by Shubin [32, Th. 26.3], they have countable orthonormal eigenbases in S(Cg) with positive

eigenvalues λn(Ĥj) and λn(N) converging to +∞ as n → +∞.

Let Bj ⊂ K(H∗) be the eigenbases of Ĥj of the eigenvectors vk,j ∈ Bj . Then the finite monomial

products of vj,k are eigenvectors of the operator Ĥ with the eigenvalue
∑

j,k λj,k(Ĥj) (see Reed–

Simon [29, Th. VIII.33]).
Finally, the finite monomial products together with a constant state form a countable basis in

K(H0).

As the proof shows, the spectrum of Ĥ is the set of finite sums of Ĥj eigenvalues (see Reed–

Simon [29, Chap. VIII]).
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