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Abstract. Compatibility equations are derived for the components of generalized strains
of rank m associated with generalized displacements of rank m − 1 by analogs of Cauchy
kinematic relations in n-dimensional space (multi-dimensional continuous medium) (m � 1,
n � 2). These relations can be written in the form of equating to zero all components of the
incompatibility tensor of rank m(n − 2) or its dual generalized Riemann–Christoffel tensor
of rank 2m. The number of independent components of these tensors is found; this number
coincides with that of compatibility equations in terms of generalized strains or stresses. The
inequivalence of the full system of compatibility equations to any of its weakened subsystems
is discussed, together with diverse formulations of boundary value problems in generalized
stresses in which the number of equations in a domain can exceed the number of unknowns.
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One cannot definitely claim that the theory of compatibility equations, in conformity with appli-
cations to mathematical physics and continuum mechanics, would be nowadays a specific direction
of the general theory of PDEs. In every specific problem, the derivation of compatibility equations
for the components of a tensor field of rank m in n-dimensional space is quite special (see, e.g.,
[1, 2]). The knowledge of these equations is necessary first of all to create a mathematically per-
fect statements of boundary value problems in mechanics and to prove the equivalence of these
statements in terms of some quantities. A class of statements of boundary value problems, which
is well-known and widely discussed in the last decades, is the formulation of problem is stresses in
solid mechanics [3–7].

1. COMPATIBILITY EQUATIONS FOR A VECTOR FIELD

As is well known in vector analysis, if a scalar function, u(x), x ∈ Rn, n � 2, and a vector

function, ε{1}(x) = εi(x)e
{1}
i , satisfy a1;n = n differential relations

εi = u,i ≡
∂u

∂xi
, ε{1} = gradu, (1.1)

then the Cartesian coordinates εi are connected by b1;n = n(n− 1)/2 compatibility equations
εj,i − εi,j = 0, (1.2)

which mean that all b1;n components of the rotor (the curl) (Rot ε{1}){n−2} are zero. Recall [8]
that, in n-dimensional space, the rotor of a vector is the tensor of rank n− 2, antisymmetric with
respect to every pair of indices, with the components

(Rot ε{1})k1...kn−2
= εk1...kn−2ijεj,i, (1.3)

where εk1...kn
is an n-dimensional Levi-Civita symbol1. The object dual to (Rot ε{1}){n−2}, which

is obtained from (Rot ε{1}){n−2} by the complete contraction with respect to n − 2 indices with

1The following notation and agreements are used in formulas (1.1)–(1.3) and below: (a) the superscripts in upper

curly braces used in an index-free notation for a tensor mean their rank; they are omitted for the components of

a tensor, because the rank is always equal to the number of subscripts; (b) the commas in the subscripts mean

partial differentiation with respect to coordinates; (c) the summation from 1 to n with respect to repeating twice

(in a monomial) Latin subscripts; here the symbol of sum is omitted for brevity; (d) there is no summation with

respect to Greek subscripts, independently of the number of their repetition; (e) the Latin subscripts are mutually

independent, while different Greek subscripts always take different values; (f) the notation (−−−−−−−→α1, . . . , αn) means that
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the Levi-Civita symbol, is an antisymmetric tensor of rank two for every n. Up to factor, the
components of this tensor coincide with the left-hand side of (1.2). The number of independent
computations of these two tensors is the same (because they are dual to each other) and is equal
to Cn−2

n = C2
n = b1;n = n(n− 1)/2.

Along with the vector field ε{1}(x), we consider another field σ{1}(x) related to ε{1} by a
nondegenerate algebraic vector-operator Ǧ{1},

ε{1} =
(
Ǧ(σ{1})

){1}
, σ{1} =

(
Ǧ−1(ε{1})

){1}
. (1.4)

Let us single out important special cases of defining an operator Ǧ{1} which is homogeneous
(i.e., without explicit coordinates x), local (i.e., obtaining no derivatives with respect to xi), and
scleronomic (i.e., containing no derivatives with respect to time).

(1) If Ǧ{1} is isotropic, then the most general form of the constraint (1.4) is as follows:

ε{1} = G
(
|σ{1}|

)
σ{1}, σ{1} = F

(
|ε{1}|

)
ε{1}, (1.5)

where G
(
|σ{1}|

)
and F

(
|ε{1}|

)
are two arbitrary functions, satisfying the condition GF = 1, of

independent invariants of the vectors σ{1} and ε{1}, namely, their lengths. In this case, the fields
ε{1} and σ{1} are collinear.

(2) If the operator Ǧ{1} is physically linear (i.e., sustains the superposition principle), then

ε{1} = Λ{2} · σ{1}, σ{1} = (Λ−1){2} · ε{1}, (1.6)

where Λ{2} is a positive-definite tensor independent of x and defining some type of anisotropy.

(3) The intersection of the above two cases corresponds to the spherical tensor Λ{2} = ΛI{2},

Λ = const, I{2} = e
{1}
i ⊗ e

{1}
i , and to the constraints

ε{1} = Λσ{1}, σ{1} =
1

Λ
ε{1}. (1.7)

We refer to the tensors u{m−1}(x), ε{m}(x) and σ{m}(x), m � 1, as the generalized displace-
ments of rank m− 1, the generalized strains of rank m, and generalized stresses of rank m, respec-
tively, and call the constraints (1.4) generalized constitutive relations, which can contain material
functions and constants G, Λ{2}, and Λ.

Let a vector field σ{1} in a bounded domain V ∈ R3 with smooth boundary ∂V each of whose
points is equipped with a unit outward pointing normal n(x) satisfy some physical law or a postulate
of continuum mechanics,

divσ{1} +X = 0, x ∈ V, (1.8)

where X(x) is a given scalar function (external volume force). A static boundary condition holds
on ∂V ,

σ{1} · n = P, x ∈ ∂V, (1.9)

where P (x) is a given external surface force.

Traditionally, in mechanics, two equivalent statements of a boundary value problem are distin-
guished, namely, in terms of displacements and stresses. It follows from (1.1) and (1.4) that problem
(1.8), (1.9) in generalized displacements consists of solving a single equation

div
(
Ǧ−1(grad u)

){1}
+X = 0, x ∈ V, (1.10)

with a single boundary condition
(
Ǧ−1(gradu)

){1} · n = P, x ∈ ∂V. (1.11)

the relation in question is to be amplified to all even permutations of the subscripts α1, . . . , αn; (g) in quantities

am;n and bm;n, the first subscript coincides with the rank of the object ε{m} and the other with the dimension n of

the space n.
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GENERALIZED COMPATIBILITY EQUATIONS FOR TENSORS OF HIGH RANKS 477

In an isotropic physically linear case (1.7), problem (1.10), (1.11) becomes the Neumann problem
for the Poisson equation,

Δu+ ΛX = 0, x ∈ V ;
∂u

∂n
= ΛP, x ∈ ∂V. (1.12)

In terms of generalized stresses, in the domain V , one should solve a single equation (1.8) and
b1;n equations (1.2), where one must substitute the constitutive relations (1.4),

(
Ǧ(σ{1})

)
j,i

−
(
Ǧ(σ{1})

)
i,j

= 0. (1.13)

Moreover, the static boundary condition (1.9) must hold. In the simplest case (1.7), the compati-
bility equations are represented similarly to (1.2),

σj,i − σi,j = 0, x ∈ V. (1.14)

Thus, the n components of σ{1}(x) should satisfy b1,n + 1 = (n2 − n + 2)/2 equations (1.8),
(1.14) in the domain V and one boundary condition (1.9). The number of equations in V coincides
with the number of unknowns only if n = 2, and, for n � 3, the number of equations exceeds
that of unknowns. Certainly, the discrepancy between these two numbers poses the question: Are
there dependent equations among the b1;n compatibility equations? At the “vector level” (Section 1
of the present paper is devoted to the “vector level” to answer this very question), the answer is
obviously negative.

Indeed, the general solution of (1.14) admits a representation

σi = Λu,i, Λ = const, (1.15)

i.e., for every solution σ{1}(x) of system (1.14), there is a scalar field u(x) such that relations
(1.15) hold. Let us now weaken the system (1.14) by removing from it, for example, the equation
σ1,2 − σ2,1 = 0. Then the weakened system obtains a particular solution

σ1 = g1(x2), σ2 = g2(x1), σ3 ≡ 0, . . . , σn ≡ 0, (1.16)

where g1 and g2 are arbitrary functions of their arguments. If we choose these functions in such a way
that dg1/dx2 �= dg2/dx1 then, obviously, there is no scalar field u(x) such that the representation
(1.15) holds. Hence, system (1.14) is not equivalent to any weakened subsystem of the system, and
all b1;n equations (1.14) must enter the statement of the problem in generalized stresses [9].

However, there is a statement equivalent to (1.8), (1.14), (1.9) in which the number of equations
on V coincides with the number of unknowns σi. This system is to solve n unbound Poisson
equations on the domain V ,

Δσi = −X,i, x ∈ V, (1.17)

assuming that the condition (1.9) and

divσ{1} +X = 0, σj,i − σi,j = 0, x ∈ ∂V, (1.18)

are satisfied on the boundary.
Let us establish the equivalence of the statements (1.8), (1.14), (1.9) and (1.17), (1.18), (1.9).

If we adopt the first of them, then, differentiating (1.14) with respect to xj , summing over j, and
taking (1.8) into account, we obtain (1.17). Moreover, the equations (1.8) and (1.14), which are
given on V , hold also on the boundary ∂V due to the assumed continuity of the quantities entering
these equations, which implies (1.18).

Suppose now that the setting (1.17), (1.18), (1.9) is chosen. Let us differentiate (1.17) with
respect to xi, sum over i, and see that the function divσ{1} + X is harmonic on V . Since it
vanishes on ∂V (see (1.18)), we arrive at the desired equation (1.8). Further, let us differentiate
(1.17) with respect to xj , make the alternation operation with respect to the indices i and j, and
arrive at the fact that all b1;n functions σj,i − σi,j are harmonic on V . Since they vanish on ∂V
(see (1.18)), equations (1.14) follow again.
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2. COMPATIBILITY EQUATIONS FOR TENSORS OF RANK
TWO IN n-DIMENSIONAL CONTINUUM MECHANICS

In this section, we omit the adjective “generalized” for the displacements u{1}(x), strains ε{2}(x),
and stresses σ{2}(x), because, for m = 2, their physical meaning corresponds completely to the key
concepts of continuum mechanics, namely, to the vector of displacements, to the symmetric tensor
of small strains, and to the symmetric Cauchy stress tensor.

Instead of (1.1), we now have a2;n = n(n+ 1)/2 differential relations

εij =
1

2
(ui,j + uj,i), ε{2} = Defu{1} ≡ Sym(Gradu{1}){2} (2.1)

which are called Cauchy relations in the geometrically linear theory.

In the n-dimensional continuum mechanics, the Kröner incompatibility tensor η{2(n−2)}(ε{2}) ≡
Inkε{2} of rank 2(n − 2) with the Cartesian components

ηp1...pn−2q1...qn−2
(ε{2}) = εp1...pn−2li εq1...qn−2jk εij,lk (2.2)

is well known [9–12]. It is clear from the definition in (2.2) that, for n � 4, it is antisymmetric with
respect to every pair of both the first n − 2 indices and the n − 2 last ones and, for n � 3, it is
symmetric with respect to the permutation of families of n − 2 first indices and n − 2 last ones.
As is known from differential geometry, the number of independent components η{2(n−2)}(ε{2}) is
equal to b2;n = n2(n2 − 1)/12.

For n = 2, the Kröner tensor is the scalar

η(ε{2}) = εli εjk εli,jk = 2ε12,12 − ε11,22 − ε22,11 (2.3)

and, for n = 3, it is a tensor of rank two with six independent components

ηpq(ε
{2}) = εpli εqjk εij,lk = (εij,ji − εii,jj)δpq + εpq,ii + εii,pq − εpi,iq − εqi,ip, (2.4)

ηαα(ε
{2}) = 2εβγ,γβ − εββ,γγ − εγγ,ββ , (

−−−→
α, β, γ), (2.5)

ηαβ(ε
{2}) = εαβ,γγ + εγγ,αβ − εαγ,γβ − εβγ,γα, (

−−−→
α, β, γ). (2.6)

If an n-dimensional continuous medium belongs to an Euclidean space, then all components of
the Kröner tensor vanish, i.e., the following compatibility equations for deformations hold:

η{2(n−2)}(ε{2}) = 0. (2.7)

The fact that the strain tensor satisfies b2;n equations (2.7) is a sufficient condition for the inte-
grability of system (2.1) with respect to n unknown functions ui on an n-dimensional domain in
which every closed contour contained in the domain can be contracted to a point by a continuous
deformation.

Mathematically, systems (2.1) and (2.7) are quite related. Along with the above considerations
concerning compatibility, expressions (2.1) are a parametrization of a general solution of system
(2.7). Here one can regard ui(x) as arbitrary three times differentiable functions of coordinates,
without equipping them with the meaning of displacements in advance.

A wide class of continuous media is described by the constitutive relations

ε{2} =
(
Ǧ(σ{2})

){2}
, σ{2} =

(
Ǧ−1(ε{2})

){2}
(2.8)

with nondegenerate tensor-operator Ǧ{2}. As in Section 1, we concentrate our attention at impor-
tant special cases of defining a homogeneous local scleronomic operator Ǧ{2}.

(1) Isotropy. The most general form of isotropic constraint (2.8) is as follows:

ε{2} = G0I
{2} +G1σ

{2} + · · · +Gn−1(σ
{2})n−1,

σ{2} = F0I
{2} + F1ε

{2} + · · ·+ Fn−1(ε
{2})n−1,

(2.9)

where the families of material functions G0, . . . , Gn−1 and F0, . . . , Fn−1 depend on the families of n
independent invariants Iσk and Iεk, k = 1, . . . , n, of the corresponding tensors. For these invariants,
one can take, for example, the traces of the first n powers of the tensors σ{2} and ε{2}:
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GENERALIZED COMPATIBILITY EQUATIONS FOR TENSORS OF HIGH RANKS 479

Iσk =
k

√
tr

(
σ{2}

)k
, Iεk =

k

√
tr

(
ε{2}

)k
. (2.10)

(2) Physical linearity. We have the Hooke law for an anisotropic n-dimensional elastic solid,

ε{2} = J{4} · σ{2}, σ{2} = (J−1){4} · ε{2} (2.11)

with the material tensor of elastic pliability J{4} defining the type of anisotropy.
(3) The intersection of the previous two cases leads to the Hooke law for an isotropic n-

dimensional elastic solid (G0 = (−ν/E)Iσ1, G1 ≡ (1 + ν)/E, G2 = · · · = Gn−1 ≡ 0):

ε{2} = − ν

E
Iσ1I

{2} +
1 + ν

E
σ{2},

σ{2} =
Eν

(1− (n− 1)ν)(1 + ν)
Iε1I

{2} +
E

1 + ν
ε{2},

(2.12)

where E is the Young modulus and ν is the Poisson coefficient, which have, for every n, the same
mechanical meaning as in the three-dimensional space.

Let, on a bounded domain V ∈ Rn satisfying the same assumptions as in Section 1, there be
n equations of equilibrium which are differential consequences of the integral postulate on the
conservation of momentum,

Divσ{2} +X{1} = 0, x ∈ V, (2.13)

where X{1}(x) are known volume forces. On the boundary ∂V , n static boundary conditions hold:

σ{2} · n = P{1}, x ∈ ∂V, (2.14)

with known distribution of surface loadings P{1}(x).
Without dwelling, in this section, on the statement of a boundary value problem in terms of

displacements, we pass immediately to a more nontrivial statement in stresses. On a domain V ,
there are n equations (2.13) and b2;n = n2(n2 − 1)/12 equations (2.7) into which one should
substitute the constitutive relations (2.8):

η{2(n−2)}
((

Ǧ(σ{2})
){2})

= 0. (2.15)

Moreover, n static boundary conditions (2.14) must also hold.

For the case in which tensors ε{2} and σ{2} are connected by the linear isotropic law (2.12), the
compatibility equations in stresses are represented as follows [13]:

σrs,mt +σmt,rs−σms,rt−σrt,ms+
ν

1 + ν
(Iσ1,rtδms + Iσ1,msδrt − Iσ1,mtδrs − Iσ1,rsδmt) = 0. (2.16)

Thus, a2;n = n(n+1)/2 components of the symmetric tensor σ{2} on the domain V must satisfy
b2;n + n equations (2.7) and (2.13) and, on the domain ∂V , only n boundary conditions (2.14).
As above in Section 1, the numbers a2;n and b2;n + n coincide only for n = 2 and, for n � 3, the
inequality a2;n < b2;n + n holds, and the discrepancy increases as n increases significantly more
rapidly than in the “vector case” m = 1.

3. POBEDRYA SETTING OF THE PROBLEM IN STRESSES

The independence problem for some equations in the statement of the problem in stresses for a
three-dimensional solid (a2;3 = 6, b2;3 + 3 = 9) has a long history (see a survey of this problem,
for example, in [14–16]). The seeming discrepancy among the number of unknowns, the equations
on a domain, and the boundary conditions is eliminated by the setting, which is equivalent to the
classical one, of the problem in stresses in mechanics of deformable solid which was suggested by
Pobedrya [5, 14] at the end of the 1970s. It is in solving, on the domain of the solid, six generalized
compatibility equations assuming the validity of six equations on the boundary, namely, three
equilibrium equations (2.13) and three boundary conditions (2.14). In the isotropic elasticity theory
(2.12), these compatibility equations are given by the Beltrami–Michell equations

Δσms +
1

1 + ν
Iσ1,ms +

ν divX

1− ν
δms +Xm,s +Xs,m = 0. (3.1)
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Pobedrya’s statement is better suited for the application of numerical methods. It is difficult
to use the classical Castigliano variational principle to construct difference schemes of some level,
because, in this principle, one speaks of a conditional extremum of the Castiglianian. Therefore,
a new variational principle was formulated. During four decades, this statement obtained a wide
international fame [17–19]. Using this statement, two- and three-dimensional quasi-static boundary
value problems of elasticity theory, plasticity theory, viscoelasticity theory, contact problems, heat
problems, and problems of computer mechanics of composites were studied numerically-analytically.

Is it possible to present, using Beltrami–Michell equations generalized for an n-dimensional
isotropic elastic solid, an analog of the statement in R3 in which the number of equations on
V ∈ Rn, n � 4, would coincide with the number of unknowns? In [13], these generalized equations
were obtained using diverse convolutions of the original b2;n equations (2.16):

Δσms +
1 + (3− n)ν

1 + ν
Iσ1,ms +

ν divX

1 + (2− n)ν
δms +Xm,s +Xs,m = 0. (3.2)

There are a2;n equations of this kind, which coincides with the number of components of the

symmetric tensor σ{2}; for n = 3, the left-hand sides of (3.2) and (3.1) coincide.

The equation b2;3 = a2;3 enables us to replace six equations (2.16) by an arbitrary system of their
six independent linear combinations; in particular, by the system of six equations (3.2). Beginning
with n = 4, the inequality b2;n > a2;n holds, and therefore, no system of a2;n linear combinations
of b2;n equations, including the system of generalized Beltrami–Michell equations (3.2), can be
equivalent to (2.16). A counterexample of their inequivalence, for n = 4, is presented in [13].

4. GENERALIZATION OF CAUCHY RELATIONS TO TENSORS OF HIGH RANKS

The following relations for u{m−1}(x) and ε{m}(x) are a natural generalization for m � 3 of
relations (1.1) and (2.1) written out for m = 1 and m = 2, respectively:

u(i1...im−1,im) ≡ ui1...im−1,im + ui2...im,i1 + · · ·+ uimi1...im−2,im−1
= mεi1...im ; (4.1)

they were called in [12] generalized Cauchy kinematic relations. Let us consider extensives ui1...im−1

symmetric with respect to the transposition of every two indices. Taking into account this symme-
try condition, among the total number of nm−1 components u{m−1}, there are Cm−1

m+n−2 = (m+
n− 2)!/[(m − 1)!(n − 1)!] independent ones.

By the constraints (4.1), including the operation of multidimensional cyclic symmetrization,
one can readily conclude that the generalized deformations ε{m} of rank m, as well as u{m−1},
form an absolutely symmetric tensor which is the symmetric part of the gradient u{m−1}. Let us
pose the problem concerning the integrability conditions for the system Cm

m+n−1 of equations (4.1),
or the compatibility equations imposed on Cm

m+n−1 independent components εi1...im for unique

determining the Cm−1
m+n−2 independent components ui1...im−1

.

Introduce the generalized tensor of rotations ω{m} with the components ωi1...im ,

ui1...im−1,im = εi1...im + ωi1...im . (4.2)

Naturally, for m = 1, one should set ωi = 0. It follows from (4.1) that ω{m} is antisymmetric with
respect to the cyclic permutations of the indices,

ω(i1...im) = 0. (4.3)

It follows immediately from (4.1) and (4.2) that ωi1...im is connected with the components of the
gradient of the tensor u{m−1},

ωi1...im = ui1...im−1,im − 1

m
u(i1...im−1,im). (4.4)

To derive differential relations between the components of the tensors ω{m} and ε{m}, we take
partial derivatives of order m− 1 of the equation (4.4):

ωi1...im,j1...jm−1
= ui1...im−1,imj1...jm−1

− 1

m
u(i1...im−1,im),j1...jm−1

. (4.5)
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Let us represent the right-hand side of (4.5) as a linear combination of Cm−1
2m−1 summands of the form

AIεk1...km,l1...lm−1
, I = 1, . . . , Cm−1

2m−1. The summation is ranges over all Cm−1
2m−1 permutations of the

2m− 1 subscripts of ε{m} (taking into account the absolute symmetry with respect to the first m
and the last m−1 indices). After this, we substitute the expressions for ε{m} (using u{m−1}) given
by (4.1) and equate the sum to the right-hand side of (4.5). The solution of the system of linear
algebraic equations with respect to Cm−1

2m−1 coefficients AI gives the desired differential relations
between the components of ωi1...im and εi1...im .

Due to combinatorial complications, it is rather difficult to present the algorithm described above
formally in a closed form for every m. For an illustration, we dwell on the special cases m = 2 and
m = 3 in more detail.

(1) m = 2, n � 1; i1 = p, i2 = q, j1 = s. For the Cauchy classical relations (2.1) u(p,q) ≡
up,q + uq,p = 2εpq , we have ωpq = (up,q − uq,p)/2 from (4.4). By the algorithm described above,
write

ωpq,s =
1

2
(up,qs − uq,ps) = A1εpq,s +A2εqs,p +A3εsp,q . (4.6)

Substituting the expressions εpq using the gradients of displacements into (4.6), we arrive at the

system of three (Cm−1
2m−1 = C1

3 = 3) equations with respect to A1, A2, and A3:

A1 +A3 = 1, A1 +A2 = −1, A2 +A3 = 0.

The solution A1 = 0, A2 = −1, A3 = 1 of this system leads to differential constraints, known in
kinematics of continuous medium, for components of the tensor of revolutions and the tensor of
small deformations,

ωpq,s = εsp,q − εqs,p. (4.7)

(2) m = 2, n � 1. Relations (4.1), (4.3), and (4.4) are represented in the following form:

u(pq,s) ≡ upq,s + uqs,p + usp,q = 3εpqs, (4.8)

ωpqs + ωqsp + ωspq = 0, ωpqs =
2

3
upq,s −

1

3

(
uqs,p − usp,q

)
.

On the other hand, the second derivatives ωpqs,rt are representable by a sum of ten (Cm−1
2m−1 =

C2
5 = 10) summands,

ωpqs,rt =A1εpqs,rt +A2εpqr,st +A3εpqt,rs +A4εsrt,pq +A5εprs,qt

+A6εrqs,pt +A7εpst,qr +A8εqst,pr +A9εprt,qs +A10εqrt,ps.

Substituting expressions (4.8) into the right-hand side of the last equation and solving the system
of ten equations thus obtained for A1, . . . , A10, we find

A1 = 0, A2 = A3 = A4 = 1, A5 = · · · = A10 = −1

2
.

Note that, in both the above equations,

Cm−1
2m−1∑

I=1

AI = 0.

Thus, in the case of every m, the differential relations between the symmetric and antisymmetric
parts of the gradient u{m−1} include partial derivatives with respect to coordinates of order m−1.
They can be represented as follows (using a conditional character to some extent):

ωi1...im,j1...jm−1
=

Cm−1
2m−1∑

I=1

AIεk1...km,l1...lm−1
, (4.9)

where I is the index of the combination {l1 . . . lm−1}.
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The compatibility equations in terms of εi1...im follow immediately from (4.9) and from the
requirements that the mixed derivatives of order m are equal,

ωi1...im,j1...jm−2jm−1jm

(
ε{m}) = ωi1...im,j1...jm−2jmjm−1

(
ε{m}). (4.10)

For example, for m = 2 and m = 3, using (4.7) and (4.9), we have

ωpq,st = ωpq,ts ⇐⇒ εps,qt − εqs,pt = εpt,qs − εqt,ps, (4.11)

ωpqs,rtu = ωpqs,rut ⇐⇒ εpqt,sru + εsrt,pqu

− 1

2
(εpst,qru + εqst,pru + εprt,qsu + εqrt,psu)

= εpqu,srt + εsru,pqt −
1

2
(εpsu,qrt + εqsu,prt + εpru,qst + εqru,pst).

(4.12)

5. THE RANK AND THE NUMBER OF INDEPENDENT
COMPONENTS OF THE INCOMPATIBILITY TENSOR

The tensor η{m(n−2)}(ε{m}) of rank m(n− 2) with the components

ηi11...i1;n−2 . . . im1...im;n−2
= εi11...i1n . . . εim1...imn

εi1ni2;n−1i3n...iml, i1;n−1i2ni3;n−1...imk
, (5.1)

l =

{
n if m odd

n− 1 if m even
, k =

{
n if m even
n− 1 if m odd

,

is a generalization of the Kröner incompatibility tensor η{2(n−2)}(ε{2}) of rank 2(n − 2) with
Cartesian components (2.2) to every value of m. Thus, the array of indices of this tensor is two-
dimensional.

Comparing the definition (5.1) with (1.3), we see that, in the case ofm = 1, i.e., in vector analysis,
we have η{n−2}(ε{1}) = (Rot ε{1}){n−2}. The number of independent components of η{m(n−2)}

coincides with the number of independent components of the tensor R{2m} dual to η{m(n−2)}, i.e.,
constructed from η{m(n−2)} by contractions with m Levi-Civita symbols,

Rp1q1...pmqm = εp1q1i11...i1;n−2
. . . εpmqmim1...im;n−2

ηi11...i1;n−2 . . . im1...im;n−2
. (5.2)

Let us use the property of summation with respect to n− 2 indices,
εp1q1i11...i1;n−2

εi11...i1n = (n− 2)!(δp1i1;n−1
δq1i1n − δp1i1nδq1i1;n−1

) (5.3)

and, after the substitution of (5.1) into (5.2), obtain

Rp1q1...pmqm = [(n− 2)!]m(δp1i1;n−1
δq1i1n − δp1i1nδq1i1;n−1

) · . . . ·
·(δpmim;n−1

δqmimn
− δpmimn

δqmim;n−1
)εi1ni2;n−1i3n...iml, i1;n−1i2ni3;n−1...imk

(5.4)

In the case of m = 2 the tensor R{2m}, up to constant factor, coincides with the Riemann–
Christoffel tensor R{4} whose rank is equal to four in the space of any dimension. The assumption
that all components of this tensor vanish, which means that the space Rn (in which the deformed
medium is contained) is Euclidean, leads to the b2;n = n2(n2 − 1)/12 independent compatibility
equations (2.7) mentioned above.

It is natural to interpret the object with the components (5.4) of rank 2m as a generalization
of the Riemann–Christoffel tensor to an arbitrary m. By definition, this tensor is antisymmetric
with respect to the transpositions of indices inside every pair {pi, qi}, i = 1, . . . ,m, and, moreover,
is symmetric with respect to the transpositions of the pairs themselves, {pi, qi} and {pj , qj}. Since
the number of different nonzero contributions in each of these pairs is equal to b1;n = n(n−1)/2, it

follows that the symmetry indicated above keeps Cm
m−1+b1;n

components of the tensor R{2m}, and

hence, also of the tensor η{m(n−2)}. However, the family of these components cannot be independent
due to the Ricci identities, which, for example, for m = 2, are represented in the way well known
in differential geometry,

Rp1q1p2q2 +Rp1p2q2q1 +Rp1q2q1p2
= 0. (5.5)
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The analogs of the Ricci identities (5.5) for the generalized Riemann–Christoffel tensor R{2m}

reduce the number if the independent components of the tensor by C2m
n . Certainly, this reduction

is nontrivial only if the dimension n of the space is not less than 2m.
Taking into account what was said above, we finally write

bm;n = Cm
m−1+b1;n

− C2m
n , m � 2, n � 2. (5.6)
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