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Abstract. A linear problem for propagation of gravity waves in the basin having the bottom
of a form of a smooth background with added rapid oscillations is considered. The formulas
derived below are asymptotic ones; they are quite formal, and we do not discuss the problem
concerning their uniformness with respect to these parameters.
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1. INTRODUCTION

In this paper, we consider a linear problem for propagation of gravity waves in a basin having
the bottom of a form of a smooth background with added rapid oscillations. Namely, we assume
that the function D describing the depth in the basin with characteristic size L in the physical
variables is

D(x) = d
(
D0

( x

L

)
+

d1
d
D1

( x

L
,
Θ(x/L)

l1/L

))
.

Here x is a 2D vector column with components (x1, x2), d is the characteristic basin depth, d1 is
the characteristic height of short oscillations, and l1 is the characteristic horizontal size of short
oscillations. The scalar positive functions D0(x) and D1(x, y) and the vector column function Θ
with components Θ1(x),Θ2(x) are assumed to be smooth, and D1(x, y) is 2π-periodic with zero
average with respect to each variable y1, y2 of vector y. We assume also that ∇Θ1 and ∇Θ2 are not
parallel at each point x. In the simplest case Θj(x) = xj (in which D1 = D1(

x
L ,

x
l1
)), a nonlinear

dependence Θj(x) of x means that the bottom oscillation could be different at different places of
the bottom. Assume that, for |x| large enough, the function D becomes a constant, although our
future consideration are more or less formal, and we do not use this assumption.

In terms of physical variables, the linearized system for the gravity waves is written for the
potential Φ (see, e.g., [4, 5]) as follows:
ΔΦ+Φzz = 0, −D � z � 0, Φz + 〈∇D,∇Φ〉 = 0 for z = −D, Φtt + gΦz = 0 for z = 0.

The function η describing the free surface elevation can be easily found from the formula η =
−(1/g)Φt for z = 0, where g is the gravity acceleration. In the nonstationary case, we consider
the Cauchy–Poisson problem at t = 0 for this system, Φ|t=0 = φ(x/l), ∂Φ/∂t|t=0 = φ1(x/l) ≡
−gη0(x/l), where Φ0(y) and η(y) are smooth functions decaying at infinity more rapidly than
1/|y|1+β ; β > 0 and l characterize the size of the initial perturbation.

In addition to the characteristic values L, d, d1, l1, introduce the characteristic time T during
which the wave passes the distance L, and let a be the characteristic amplitude of the wave. Now
we introduce the parameters
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Fig. 1. The initial perturbation (on the left-hand side over the water surface) and the part
of the ocean bottom in the form of slow varying underwater bank with a domain of rapid
oscillations.

h =
d

L
, ε =

l1
L
, δ =

d1
d
, λ =

d

l1
=

h

ε
, δλ =

δh

ε
=

d1
l1
, μ =

l

L
, (1.1)

and pass to the new dimensionless variables z = dz′, x = Lx′, t = L√
gd
t′, D′ = 1

dD(x), Φ′ = Φ

a
√

gd
,

η′ = η/a. Rewrite the above system in the new variables, omitting the superscript (the prime) to
simplify the notation,

h2ΔΦ+Φzz = 0, −D � z � 0, (1.2)

Φz + h2〈∇D,∇Φ〉 = 0, for z = −D, (1.3)

h2Φtt +Φz = 0, for z = 0, (1.4)

D = D0 + δD1

(
x,

θ(x)

ε

)
, (1.5)

Φ
∣∣∣
z=0,t=0

= φ

(
x

μ

)
, h

∂Φ

∂t

∣∣∣
z=0,t=0

= −η
∣∣∣
t=0

= −η0
(
x

μ

)
. (1.6)

For the free elevation, we have η = −hΦt|z=0. Let us make some assumptions about the param-
eters. Assume that h, ε, and δ and, as a rule, μ are small. It does not mean that we study waves on
a shallow water only. The smallness of h means that the background D0 of the depth function D
is a quite smooth (slow varying) function. On the contrary, the smallness of ε means that there are
fast oscillations on the bottom, and we assume that the space-frequency of these oscillations is not
bigger than the wavelength of the wave under consideration, λ � 1. The smallness of μ means that
we consider waves which are short with respect to the size of the basin. Considering of long waves
means that waves are long with respect to the depth, 1 � μ � h. The parameter δ characterizes
the amplitude of the depth oscillation. The formulas which we derive below are asymptotic ones,
they are quite formal and we do not discuss the question about their uniformness with respect
to these parameters. Below we shall use the assumption μ = O(hα), and we shall analyze it at
an appropriate place. We want to say that, in real situation, the parameters listed above are just
numbers, and assumptions of our type are more or less artificial.

Our main aim is to study solutions to Eqs. (1.2)–(1.6). It is impossible to obtain exact formu-
las for these solutions in the general situation suitable for real applications; one can speak only
about some asymptotics with respect to (small) parameters h, ε, δ, and μ. Needless to say, these
asymptotics could depend on the relationship between these parameters. Our strategy is as follows.
Like in [8], we split our consideration into two steps: (1) using the operator version of adiabatic
approximation [8, 9, 11], we derive the reduced (homogenized) pseudodifferential equation, elimi-
nating the vertical variable z and fast oscillations in the coefficients; (2) we show that, choosing the
small parameters in an appropriate form, we can simplify this equation, presenting it in the form
of a generalized Boussinesq equation with variable velocity and dispersion and reduce the original
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problem to this one, which was studied in [10]. The step (1) is technically complicated, and the most
part of this paper is devoted to it. We split it into two steps: (1a) we eliminate the vertical variable
z and (1b) we eliminate the fast oscillations. In spite of complicated calculations, the final formulas
and physical conclusions are quite simple and understandable. Thus, we present and discuss these
final formulas before the long calculations. To make our considerations clear, along with condition
(1.6), we consider the initial condition of WKB-type functions with the small parameter μ,

Φ
∣∣∣
z=0,t=0

= A0
1(x)e

i
μS0(x), h

∂Φ

∂t

∣∣∣
z=0,t=0

= −η
∣∣∣
t=0

= −A0
2(x)e

i
μS0(x), (1.7)

where S0, A1, A2 are smooth functions, ∇S0 �= 0, and A1, A2 are compactly supported.
The paper is organized as follows. First, in Section 2, we present the reduced equation in general

form, briefly describe its properties, and present the main qualitative result concerning the long
wave, the Boussinesq type equation, discuss the influence of dispersion of various type, and estimate
its influence in the case of tsunami wave. In Section 3, we describe general ideas of constructing a
pseudodifferential equation on the surface. In Section 4, we discuss the expansion of the symbols of
operators with respect to the small parameters. We use the theory of functions of noncommuting
operators to eliminate the vertical variable in Section 5 and to eliminate the fast phase in Section 6.

2. REDUCED HOMOGENIZED AND LINEARIZED
BOUSSINESQ TYPE EQUATIONS AND THEIR SOLUTIONS

As was mentioned above, one of our main objectives is the construction of an asymptotic solution
to (1.2)–(1.4) with initial conditions in the form of (1.6) and (1.7). From the point of view of
applications, the most interesting object here is the function η(x, t) describing the free elevation.

Assume for a moment that the bottom function D is constant. Denote by η̃(p, t) the Fourier
transform of the function η:

η̃ =
1

2πμ

∫

R2

e−
i
μ 〈p,y〉η(y, t)dy.

Here p = (p1, p2) are the momenta conjugate to (x1, x2). As is well known (and easy to show), the
function η̃ satisfies the following equation:

μ2η̃tt =
μ

h
|p| tanh

(h
μ
|p|D

)
η̃, η̃|t=0 = u0(p), μη̃t|t=0 = u1(p),

h

μ
=

d

l
, (2.1)

where the initial functions u0(p), u1(p) are reconstructed from the functions η0(y) and φ(y). Assume
that these functions decay as |p| → ∞. The solution of the ODE (2.1) is

η̃ = eit
ω(p)
μ A0

+(p) + e−it
ω(p)
μ A0

−(p), ω(p) =

√
μ

h
|p| tanh

(
h

μ
|p|D

)
, A0

±(p) =
(u0(p)± iu1(p))

2
.

(2.2)
Using the inverse Fourier transform, one can construct exact solutions in an integral form and then
study their asymptotics for μ � 1, which is actually the asymptotics for large x with respect to the
dimensional variables. It is good to take into account the ratio h

μ
= d

l
for the parameters h and μ.

If h
μ is small, then we can use the Taylor expansion for ω2 and write

ω2 = p2D − h2

3μ2
p4D4 +O

(
h4

μ4

)
,

ω

μ
=

|p|
√
D

μ
− γ

6
|p|3D3/2 +

1

μ
O

(
h4

μ4

)
. (2.3)

where γ = h2

μ3 . If t is bounded and h2 � constμ3, then

e±it
ω(p)
μ A0(p) = e±it p2D

μ

(
A±(p, t) +

t

μ
O

(
h4

μ4

))
, A±(p, t) = A0

±(p)e
∓it γ

6 |p|
3D3/2

. (2.4)

Of course, if h2 = o(μ3) (or γ = o(1)), then one can write A±(p, t) = A0
±(p) + O(h

2

μ3 ). Under

the assumption that A0
±(p) are rapidly decaying functions as |p| → ∞, one can use (2.2) and this

elementary consideration to obtain various asymptotic formulas for the solutions of the original
Cauchy–Poisson problem. Needless to say that these formulas are not uniform with respect to
parameters μ, h, and are trivial like the expansions (2.3) and (2.4).

Let us discuss (2.1)–(2.4) from the point of view of differential equations. First, we come back
to the variable (x1, x2); then equation (2.1) takes a form of the pseudodifferential equation
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μ2ηtt +H ′(−iμ∇, μ, h)η = 0, H ′ =
μ

h
|p| tanh

(h
μ
|p|D

)
. (2.5)

The function H ′ is the symbol of this μ-pseudodifferential operator. Using the Taylor expansion of

H ′ and replacing it by Dp2 − γμ
3
D4p4, γ = h2

μ3 , means the approximation of the pseudodifferential

equation by the differential (linearized Boussinesq) equation

ηtt −D2ηxx − D4h2

3
ηxxxx = 0 (a) ⇐⇒ μ2ηtt − μ2D2ηxx − γμ5D

4

3
ηxxxx = 0 (b). (2.6)

We want to stress the following important facts. First, there are two parameters in the problem: h
and μ, and the asymptotic formulas crucially depend on their relationship. Second, operations with
operators could be replaced by the operations with their symbols. The parameter μ comes from the
initial data, and the parameter h comes from the equation. Both of them play an important role.
Of course, equations (a) and (b) in (2.6) are equivalent; however, from the asymptotic point of view,
the form (b) is more informative than (a). For instance, if γ = o(1), then we can omit the term with
the fourth derivatives and replace the Boussinesq equation by the wave equation ηtt −D2ηxx = 0.

The term with the fourth derivatives γμ5D4

3
ηxxxx is known as the weak dispersion. We want to

note that one may view equations (2.5) and (2.6) as h-pseudodifferential equations

h2ηtt +H(−ih∇)η = 0 (2.7)

with the symbols H = |p| tan(D|p|) and H = Dp2 − D3

3 p4; a passage from the h-pseudodifferential
equation with the symbol H to μ-pseudodifferential equations (2.5), (2.6) (b), with the symbols H ′

is

H ′(p, h, μ) =
μ

h
H

(h
μ
p
)
. (2.8)

Note that this “play” with the parameters and the passage from h-pseudodifferential equations to
μ-pseudodifferential make sense just in the construction of asymptotic solutions.

Consider now the case in which the bottom is slowly varying and can be described by a smooth
function D = D0(x). Using the technique of pseudodifferential operators, one can derive the pseu-
dodifferential equation for the free elevation similar to (2.7),

μ2ηtt = H ′(x,−iμ∇, μ, h)η; (2.9)

however, now with the symbol H ′(x, p, μ, h) determined by some asymptotic expansion. It is
more reasonable to construct at first the symbol of h-pseudodifferential operator, because the
h-pseudodifferential equation occurs in the original system (without the initial data and param-
eter μ), and then pass to the μ-pseudodifferential equation by a formula similar to (2.8). The
operators −iμ ∂

∂xj
and xj do not commute, and it is necessary to agree about their ordering. There

exist many reasons to suppose that the differential operators −ih ∂
∂xj

act first, and the operators xj

act after them. Using the Feynman–Maslov notation [16, 18], we can now write H(
2
x,

1

−iμ∇, μ, h).
We shall use this ordering as a rule below. From the point of view of further asymptotic construc-
tion with respect to parameters μ and h, it is sufficient to find an explicit expression for the leading
term first, and probably, a part of the second correction. As was shown in [18–20],

H(x, p, h) = H0(x, p) + hH1(x, p) +O(h2), H0 = |p| tanh(D0(x)|p|), (2.10)

H1 = − i

2
tr
∂2H0

∂x∂p
= i

D0|p| tanh(D0|p|)− 1

cosh2(D0|p|)
〈∇D0, p〉.

Replacing H(p, x, h) by H ′(p, x, h, μ) and reexpanding H ′(p, x, h, μ) with respect to the parameter
μ, we obtain a linearized Boussinesq-type equation with variable coefficients.

Now let us consider the case in which some parts of the bottom include fast oscillations and
the function D is of the form (1.5), and introduce new parameters δ and ε characterizing the
size and the height of these oscillations. We want to derive pseudodifferential (or differential)
equations describing the leading term of the free elevation with coefficients smoothly depending
on x. Generally speaking, the asymptotic solution should be presented like a series of different
modes (similar, e.g., to interior modes in a stratified liquid).
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Important remark. Moreover, these modes can intersect, and one faces the effect of the so-
called mode conversion, or intersection of characteristics (see, e.g., [7]). Fortunately, these effects are
not crucial for “long waves” under some physically reasonable assumptions about the relationship
between the parameters μ, h, δ, ε, etc. (or about the relationship between the dimensional values
l, L, l1, d, d1).

In this case, one can use the Boussinesq-type equation with variable coefficients and take into
account two types of weak dispersion: the standard dispersion coming from the water wave theory
and another one implying the rapidly oscillating parts of the bottom.

We want to present below final simple formulas; however, we are to mention some points in
advance. The problem with fast oscillations is a problem of homogenization. In the case in question,
we cannot use standard methods of homogenization (see, e.g., [1–3]) because the actual wave is
small. For this reason, classical methods are not applicable here, and we consider the averaging in
the frame of adiabatic approximation combined with operator methods and use the Maslov theory
of functions of noncommuting operators [8, 9, 15].

An analogous computation gives us a pseudodifferential equation of the type (2.9); however, the
fact that we have a series of parameters in our problem and consider long waves (as compared with
the depth) enables us to make an expansion and obtain a linearized Boussinesq-type equation with
variable coefficients and fourth derivatives showing the effects of fast oscillations. Note that the
influence of fast bottom oscillations is similar to that obtained from changing of the full system by
the Boussinesq-type equation ηtt(x, t) = (g〈∇, D(x)∇〉+(g/3)D3(x)Δ2)η(x, t). From the physical
point of view, this means that the propagating long wave induces all kinds of waves, but only the
long wave approximation affects the main part of the asymptotic solution.

Now let us introduce the main formulas.

Theorem 1. Denote by D1k(x) the Fourier coefficients of the function D1(x, y) on the torus
T
2 = {y1 ∈ [0, 2π], y2 ∈ [0, 2π]}. Thus,

D1(x, y) =
∑

k∈Z2,k �=0

D1k(x)e
ik·y. (2.11)

Then the symbol of the reduced equation (2.9) for the free surface elevation has the following
form:

H ′(x, p) ≈D0|p|2 − δ2D0

∑
|k|�=0

|D1k|2
D2

0|Θxk|2
〈Θxk, p〉2

− h2

3μ2
D3

0 |p|4 −
ε2δ2

μ2

∑
|k|�=0

|D1k|2
D2

0 |Θxk|2
(
p2 − 2

〈Θxk, p〉2
|Θxk|2

)2

− iμ〈∇D0, p〉.
(2.12)

In the physical variables, the Cauchy problem for this linearized Boussinesq-type equation is

∂2

∂t2
η(x, t) =

[
−gD0(x)Δ + igD0(x)

∑
|k|�=0

|D1k|2
D2

0(x)|Θxk|2
〈Θxk, ∇〉2 − g

3
D3

0(x)Δ
2

− gdl21L
2
∑
|k|�=0

|D1k|2
D2

0(x)|Θxk|2

(
Δ− 2

〈Θxk, ∇〉2
|Θxk|2

)2

− g

L
〈∇D0, ∇〉

]
η(x, t),

η|t=0 = η0(x/l), ηt|t=0 = 0.

(2.13)

Remark. If we eliminate the terms including the forth degree with respect to pj in (2.12)
(and the corresponding derivatives in (2.13)), which is possible for a sufficiently long wave, then we
obtain a wave equation [9].

As was shown in [10], the asymptotic solution for problem (2.13) is given by the formula

η(x, t) =

√
l

|Xψ(ψ, t)|

√
D0(0)

D0(X(ψ, t))
Re

[
e−iπm(ψ, t)/2aF

(
S(t, x, ψ)

l
, ψ, q(ψ, t)

)]
. (2.14)

The function q(ψ, t) describes the dispersion effects and can be presented as a combination of
two functions q(ψ, t) = q1(ψ, t)+ q2(ψ, t). The first function is connected with the standard water
dispersion and is defined by the formula
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Fig. 2. Trajectories for variable depth.

q1(ψ, t) =
D3/2(0)

6l3
√
g

∫ t

0

D(X(ψ, τ))dτ. (2.15)

The other function describes the influence of fast oscillations of the bottom on the wave profile.
This function is given by the following expression:

q2(ψ, t) =
l21d

2
1

2l3

√
g

D0(0)

∑
|k|�=0

∫ t

0

(
P 2 − 2

〈P,Θx(X)k〉2
〈Θx(X)k,Θx(X)k〉

)2 |D1k(x)|2
D2

0(X)〈Θx(X)k,Θx(X)k〉 d τ.

(2.16)
If we choose the initial function η0(x/l) in the special case of “the simple piston model” given

by the formula

η0(x/l) =
a(

1 +
(
x1

lb1

)2
+

(
x2

lb2

)2)3/2
, (2.17)

then the function F (y, ψ, q) can be represented in the simple form via a combination of Airy
function and its derivatives,

F (y, ψ, q) = −πb1b2√
6q

d

dz

(
Ai2(z) + iAi(z)Bi(z)

)∣∣∣
z=

y+iβ(ψ)

(12q)1/3

, (2.18)

where β(ψ) =
√

b21 cos
2 ψ + b22 sin

2 ψ. Otherwise, the form of the function F can be much more

complicated. Here S(t, x, ψ) is the action function which can be evaluated by the formula

S(t, x, ψ) =

(
D0(0)

D(X(ψ, t))

)1/4

y(x),

where y(x) is the distance to the wave front. If the point x lies outside the wave front area, then
we take positive sign for y(x), and otherwise, the negative sign.

Here X(ψ, t) and P (ψ, t) are the solutions of the Hamilton system

Ẋ = Hp(X, P ), Ṗ = −Hx(X, P ), H(x, p) = |p|
√

D0(x), X|t=0 = 0, P |t=0 = (cosψ, sinψ).

The trajectories X(ψ, t) and wave fronts for different instants of time are shown on the Fig. 2.

The function m(ψ, t) is the Morse index of the trajectory X(ψ, t), and it counts the focal points
on this trajectory till the time moment t.

We express the coefficients h2

3μ2 ,
h2δ2

μ2λ2 in (2.12) in terms of the original variables of the problem.

Using formulas (1.1), we find
h2

3μ2
=

1

3

(d
l

)2

,
ε2δ2

μ2
=

h2δ2

μ2λ2
=

d21
d2

l21
l2
. (2.19)

We want to discuss the influence of “dispersion” terms (the coefficients of the fourth degrees of pj).

These terms began to play role during a dimensionless time t ∼ 1
(
the real time is T = L√

gd

)
if

they are proportional to μ = l
L
. During the time T , the initial perturbation passes the distance

∼ L. Thus, consider the equations μ ≈ h2

3μ2 = 1
3

(
d
l

)2
and μ ≈ 2h2δ2

μ2λ2 = 2
d2
1

d2

l21
l2 . It is easy to see that

they are equivalent to
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Fig. 3. Graphs of q1(π/3, t) (thick line), and the function q2(π/3, t) (dashed line).

Fig. 4. Graphs of the wave profiles for the angle ψ = π/3 and the times 2.5 hr (left) and 5.5 hr
(right). The short dashed line corresponds to the water oscillation, and the long dashed line to
the bottom oscillations. The solid line corresponds to a combination of these dispersion effects.

Lwat ≈ 3l3

d2
, Losc ≈ d2l3

2d21l
2
1

. (2.20)

Let us point out the scales when the standard water dispersion and the dispersion implied by rapid
oscillations of the bottom are comparable. Write Lwat ≈ Losc ⇐⇒ d ≈ (6)1/4

√
l1d1 ≈ 1.56

√
l1d1.

If one takes d1 = 0.1 km, l1 = 50km, then d ≈ 1.56
√
5 = 3.5 km.

As an example, we consider a basin with constant depth of D0 = 4km and the area L = 4000.
The initial source is symmetric (b1 = b2 = 1) with l = 50km, and is located at the point with
coordinates (−1000 km, −1000 km). The fast oscillations are described by the following formulas:

D1

(
x,

Θ(x)

ε

)
= A(x)

(
cos

x1

ε
+ cos

x2

ε

)
, A(x) = e−4|x|2 . (2.21)

The dispersion is described by the formulas

q1(ψ, t) =
1

3

D
5/2
0

√
g

l3
t, q2(ψ, t) =

d21l
2
1

l3

√
g√
D0

∫ t

0

(P 2
1 (ψ, τ)− P 2

2 (ψ, τ))
2dτ. (2.22)

In Fig. 3, we have presented two graphs of dispersion coefficients for given ψ = π/3 and with
dependance of time.

The wave profiles given by (2.14), (2.18) at the time moments of 2.5 and 5.5 hours are shown
on Fig. 4

3. THE PSEUDODIFFERENTIAL EQUATION ON THE FREE SURFACE

First, we regularize the problem and remove the dependence on the small parameter ε in the
coefficients. Following [12–14, 8], we seek the potential Φ in the form

Φ = Ψ(x, θ(x)/ε, z, t), (3.1)

where Ψ(x, y, z, t) is a 2π-periodic function, of the variables y1, y2, depending on parameters ε, δ,
etc., which are omitted to simplify the notation. The substitution of this function into (1.2)–(1.4)
gives the equations
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(h∇ + λ∇θ
y)

2Ψ+Ψzz = 0, −D � z � 0, (3.2)

Ψz + 〈h∇D + δλ∇θ
yD1, (h∇ + λ∇θ

y)〉Ψ = 0, for z = −(D0 + δD1), (3.3)

h2Ψtt +Ψz = 0, η = −hΨt for z = 0, (3.4)

D = D0 + δD1(x, y). (3.5)

Here ∇θ
y = Θx∇y, Θx is the 2× 2 matrix consisting of the vector columns ∇Θ1, and ∇Θ2. Recall

that λ = h
ε
. Write also p̂ = −ih ∂

∂x
. To begin with, assume that λ ∼ 1.

The main aim of this section is to express the solution Ψ(x, y, z, t) using a certain function v(x, t)
which does not depend on the variables z and y and satisfies a simpler equation.

Introduce the function
φ(x, y, t) = Ψ(x, y, z, t)|z=0. (3.6)

Assume that one had constructed a solution Ψ(x, y, z, t) to problem (3.2)–(3.4). Then the derivative
∂Ψ
∂z (x, y, z, t)|z=0 defines a linear operator L̂,

∂Ψ

∂z
(x, y, z, t)|z=0 = L̂φ,

known as Dirichlet-to-Neumann mapping. As soon as the operator L̂ is constructed, one can reduce
the original system (3.2)–(3.4) to a 2D equation on the plane z = 0 for the function φ(x, t),

h2φtt + L̂φ = 0. (3.7)

Lemma 1. The operator L̂ acting on the space L2[R
2
x × T

2
y], where T

2 is the 2D torus {y1 ∈
[0, 2π], y2 ∈ [0, 2π]}, is at least symmetric.

Proof. Let us fix two functions φ1(x, y) and φ2(x, y) and, solving system (3.2), (3.3), (3.6), con-
struct two functions Ψ1(x, y, z) and Ψ2(x, y, z). Multiply the Laplace equation (3.3) for Ψ1(x, y, z)
by Ψ2(x, y, z), the Laplace equation (3.3) for Ψ2(x, y, z) by Ψ1(x, y, z), subtract the second product
from the first one, and integrate the result over x, y, z in the space x ∈ R

2
x, y ∈ T

2
y, z ∈ [−D(x, y), 0].

Using the Green formula, we obtain

∫

R2
x

∫

T2
y

(∂Ψ1

∂z
(x, y, 0)Ψ2(x, y, 0) −

∂Ψ2

∂z
(x, y, 0)Ψ1(x, y, 0)

)
dx dy

=

∫

R2
x

∫

T2
y

(L̂φ1(x, y)φ2(x, y)− L̂φ2(x, y)φ1(x, y))dx dy = 0.

We want to show that L̂ is a pseudodifferential operator, and it could be presented in the form

L̂ = L(
2
x,

1

p̂,
2
y,

1

−i∇y, δ, h). (3.8)

Here p̂ = −ih ∂
∂x = −ih∇, and we use the Feynman–Maslov notation (see [15, 9]) for ordering

operators. The symbol L(x, p, y, ξ, δ, h) (as well as other symbols) also depends on ε; however,
to simplify the notation, we do not mention this dependence. Following [18, 19, 12], we seek a

solution Ψ in a form of a pseudodifferential operator R̂ = R(
2
x,

1

p̂, z,
2
y,

1

−i ∂
∂y

, δ, h), with the symbol

R(x, p, z, y, ξ, δ, h), acting on the function φ(x, y, t):

Ψ(x, z, y, t) = R̂φ(x, y, t). (3.9)

Then
∂Ψ

∂z
(x, y, t)|z=0 =

∂R̂

∂z

∣∣∣
z=0

φ(x, y, t) and L̂ =
∂R̂

∂z

∣∣∣
z=0

⇔ L =
∂R

∂z

∣∣∣
z=0

. (3.10)

If one finds a solution φ to Eq. (3.7), then one can construct a solution Φ to original system
(1.2)–(1.5) by formulas (3.9) and (3.1).

Equation (3.7) is still not absolutely standard for the semiclassical analysis, because the operator
∇ has the factor h (e.g., we have p̂ = −ih∇) and the operator ∇y has not. This type of equations is
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known as equations with operator-valued symbol, which are considered using the adiabatic approx-
imation, which we use in an operator form again (see [9, 8, 11]). Namely, we seek some asymptotic
solutions to (3.7) in the form

φ = χ̂v(x, t), χ̂ = χ(
2
x,

1

p̂, y, δ, h), (3.11)

and assume that the function v(x, t) satisfies the reduced equation (the so-called Peierls substitu-
tion)

h2 ∂
2v

∂t2
+ Ĥv(x, t) = 0, Ĥ = H(

2
x,

1

p̂, δ, h). (3.12)

Here the symbols χ(x, p, y, δ, h) and H(x, p, δ, h) are smooth functions depending regularly on the

parameters h and δ (see below). It is reasonable to think that the operator Ĥ is at least symmetric.

If one finds a solution v to (3.12), then

Ψ = R

⎛
⎝2
x,

1

p̂, z,
2
y,

1

−i
∂

∂y
, δ, h

⎞
⎠ χ(

2
x,

1

p̂, y, δ, h)
∣∣∣
y=θ/ε

v (3.13)

is a solution to system (1.2)–(1.5). Of course, one can try to construct the operator R̂χ̂ (or its
symbol) directly, but it seems to be more convenient technically and pragmatic to use the above
type of factorization. We must also say that, actually, there are infinitely many operators χ̂ and
corresponding equations (3.12) (which correspond to the so-called modes or terms). Thus, generally
speaking, the solution to the Cauchy–Poisson problem is a sum over all modes; however, a nice fact
is that the principal part of the solution with initial data (1.6), (1.7) uses only the single “main”
mode. We shall discuss this question below and first focus on providing formulas for symbols
R,L, χ,H.

4. PERTURBATION THEORY FOR THE OPERATORS Ĥ AND L̂

One cannot obtain effective formulas for the symbols of the operators R, L, χ, and H, and it
is possible to speak about finding coefficients of the expansion of these operators with respect to
small parameters h, ε, and δ. There is a regular procedure (an algorithm) of such calculations
using perturbation theory (needless to say, it is a nontrivial technical problem even to find explicit
formulas for the first coefficients). Thus, it is better to analyze at first equation (3.12) to understand
how many terms of the expansion of R,L, χ,H one should find to obtain a reasonable asymptotic
result.

Let us first discuss the question about a reasonable number of terms in expansions χ(x, p, y, δ, h)

and H(x, p, δ, h). Assume that Ĥ is at least a symmetric operator in L2(R2) and that H has the
following expansions:

H = H0(x, p, δ) + hH1(x, p, δ) + h2H2(x, p, δ) + · · · , (4.1)

Hj(x, p, δ) = Hj
0(x, p) + δHj

1 (x, p) + δ2Hj
2(x, p) + · · · , (4.2)

H0(x, p, δ) = H̃(p, x, δ) +Hcorr(p, x, δ) +O(p6), (4.3)

here H̃(p, x, δ) = 〈p,Q(x)p〉 is a homogeneous polynomial of second degree with smooth coefficients
which are entries of 2× 2 symmetric real matrix function ‖Qkn(x)‖, and Hcorr = O(|p|4).

Here we present some arguments close to [8, 9, 21]. Suppose that we want to construct an

asymptotic solution of WKB wave packets type A(x, t)ei
S(x,t)

μ . This type of asymptotic solutions
occurs if one considers the Cauchy problem with WKB-type initial data

v|t=0 = A0(x)ei
S0(x)

μ , vt|t=0 = A1(x)ei
S0(x)

μ , (4.4)

where S0(x), A0, A1 are smooth real functions and μ is a new small parameter. The family of
several (small) parameters in the original problem makes it not “standard” from the mathematical
point of view, but these parameters exist in real physical problems and, fortunately, their presence
gives opportunity to find some constructive asymptotic formulas; without them, all formulas are
just “mathematical hocks,” useless for applications. We do not want to discuss the question about
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uniform expansions of asymptotic solutions of original equation with respect to all parameters
h, δ, μ and assume that there are connections among them and that μ and δ are connected with
h by equations μ = hα, δ = hβ , 0 � α � 1, β � 0. The main difference between the parameters
μ and δ is that μ is singular and δ is regular. Note also that all these parameters h, μ, δ in real
applications are just numbers.

Substituting the WKB asymptotic solution

v = A(x, t, h)ei
S(x,t)

μ (4.5)

into (3.12) and following the WKB-method (or the ray method), one obtains [16]

ρ ≡
(
h2 ∂2

∂t2
+ Ĥ

)
(A(x, t)ei

S(x,t)
μ ) = ei

S(x,t)
μ

[
−

(
h

μ
St − ih

∂

∂t

)2

A+H

(
h

μ
∇S, x, δ, h

)
A(x, t)

−ih
((〈

∇pH(
h

μ
∇S, x, δ, h

)
,∇

〉
A+

h

2μ
tr
(∂2H

∂p2

(h
μ
∇S, x, δ, h

)∂2S

∂x2

))
A+ h2ĜA

]
.

(4.6)

Here Ĝ = G(hμ
2

∇S,
2
x,

2
t,

1

∇, δ, h) is a pseudodifferential operator such that its action on a smooth

function A gives a smooth bounded function if h/μ � const, and G(p, x, t, ς, μ)|p=0 = 0. Using the
relation μ = O(hα), we separate out the main terms with respect to parameters μ and μ/h on the
right-hand side of (4.6). We distinguish three cases.

(1)“Short waves.” In this case, μ ∼ h; to simplify the notation, we put μ = h. To derive the
equations for the phase S and amplitude A, according to WKB, method we preserve terms up to
h0 = 1 and h and then put them separately to zero. These two terms are

−
(
S2
t −H0(∇S, x, δ)

)
A,

ih
(
2St

∂A

∂t
−

〈
∇pH

0
(h
μ
∇S, x, δ

)
,∇

〉
A− 1

2
tr
(∂2H0

∂p2
(∇S, x, δ)

∂2S

∂x2

))
A− iH1(∇S, x, δ)

)
A.

The first term gives the Hamilton–Jacobi equation for the phase S (more precisely, two equations,
because of the square of St), and the other one gives the transport equation for the amplitude A.
However, there is a small parameter δ and, assuming a relationship δ = O(hβ), one can split

H0(∇S, x, δ) into two parts: the “main part” H̃0(∇S, x, δ) and the correction H0
corr(∇S, x, δ); sup-

pose that H0
corr(∇S, x, δ) = O(h). The main part defines the Hamilton–Jacobi equations

St ±
√

H̃0(∇S, x, δ) = 0. (4.7)

Include the correctionH0
corr(∇S, x, δ)/h into the transport equation, replaceH0(∇S, x, δ) by H̃0(∇S, x, δ)

in (4.2), and put δ = 0 in H1. The transport equation becomes

(
2St

∂

∂t
−

〈
∇pH̃

0
(h
μ
∇S, x, δ

)
,∇

〉
− 1

2
tr

(
∂2H̃0

∂p2
(∇S, x, t, δ)

∂2S

∂x2

)

− i

h
H0

corr(∇S, x, δ) − iH1(∇S, x, 0)
)
A = 0.

(4.8)

If S and A satisfy to (4.7) and (4.8), then ρ ≡ (h2 ∂2

∂t2 + Ĥ)(A(x, t)ei
S(x,t)

h ) = O(hmin(δ, hδ)). This

enables one to prove the asymptotic formula v = A(x, t)ei
S(x,t)

h + O(min(δ, hδ)) for the solution v
to (3.12),(4.4).

The important conclusion for this case is: to construct the leading term of the WKB-solution,
one needs H0(x, p, δ) and H1(x, p, 0).

(2)“Middle waves.” If h/μ is a small parameter, we can take off the factor (h/μ)2 in (4.6) and,
using (4.3), write
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[
−

(h
μ
St − ih

∂

∂t

)2

A+H
(h
μ
∇S, x, δ, h

)
A

−ih
(〈

∇pH
(h
μ
∇S, x, δ, h

)
,∇

〉
A+

h

2μ

1

2
tr
(∂2H0

∂p2

(h
μ
∇S, x, δ, h

)))
A+ h2ĜA

]

=
h2

μ2

[
−

(
St − iμ

∂

∂t

)2

A+ H̃(∇S, x, δ)A +
μ2

h2
Hcorr

(h
μ
∇S, x, δ

)
A+ μ〈∇pH

1(0, x, δ),∇S〉A

−iμ
(
〈∇pH̃(∇S, x, δ),∇〉A +

1

2
tr
(∂2H̃
∂p2

(∇S, x, δ)
∂2S

∂x2

))
A+O

(
μmax

(
μ,

h

μ
,
h3

μ4

))]
.

Now we recall the smallness of the parameter δ; then we can continue the equation

h2

μ2

[
−

(
S2
t − H̃2(∇S, x, δ)

)
A+ iμ

(
2St

∂

∂t
− 〈∇pH̃(∇S, x, δ),∇〉 − 1

2
tr
(∂2H̃
∂p2

(∇S, x, δ)
∂2S

∂x2

)

− iμ

h2
Hcorr

(h
μ
∇S, x, t, δ

)
− i〈∇pH

1(0, x, t, 0),∇S〉
)
A+O

(
μmax

(
μ,

h

μ
, δ,

h3

μ4

))]
.

Note that at least μ
h2Hcorr(

h
μ∇S, x, δ) = O(h

2

μ3 ). Thus, if we assume that this term is O(1), then we

can write the Hamilton–Jacobi and the transport equations in the form

St ±
√

H̃(∇S, x, δ) = 0, (4.9)

(
2St

∂

∂t
−

〈
∇pH̃

(h
μ
∇S, x, δ

)
,∇

〉
− 1

2
tr
(∂2H̃
∂p2

(∇S, x, δ)
∂2S

∂x2

)

− iμ

h2
Hcorr

(h
μ
∇S, x, δ

)
− i〈∇pH

1(0, x, 0),∇S〉
)
A = 0. (4.10)

If the phase S and the amplitude A are the solutions to these equations, then it is possible to prove

that v = A(x, t)ei
S(x,t)

μ + O(max(μ, h
μ , δ,

h3

μ4 )) for the solution to (3.12), (4.4). We see that, as in

the short-wave case, to construct the leading term of an asymptotic solution, we need H0 and H1
0

again; moreover, in this case, we can expand these terms with respect to momentum p and replace
H0 and H1

0 by their Taylor polynomials. We shall return to this problem below, when we shall
present explicit formulas for H0(x, p, δ) and H1

0 (x, p).

(3)“Long waves.” In this case, μ = 1. We have the standard homogenization theory, and there
are no fast oscillations in the solution v. Thus, since H|p=0 = 0, we can represent (3.12) in the form

h2
(
vtt + H̃

(
2
x,−i

1

∂

∂x
, δ

)
v − i〈∇pH

1(x, 0, δ),∇〉v +O(h)v
)
= 0. (4.11)

Now we can divide this equation by h2, and assuming that the limit v0 = limh→0 v exists, obtain
the equation for v0,

v0tt + H̃(
2
x,−i

1

∇, δ)v0 − i〈∇pH
1(x, 0, δ),∇〉v0 = 0, (4.12)

or

v0tt −
2∑

j,k=1

Qj,k(x, δ)
∂2

∂xj∂xk
v0 −

2∑
j=1

bj(x)
∂

∂xj
v0 = 0, b = i∇pH

1(x, 0, δ). (4.13)

We see that, in this case, one needs to found∇pH
1(x, 0, δ) with the same accuracy as H̃(x, p, δ). It is

nontrivial to find this term by a direct calculation, but this can be avoided using the symmetricity
(or even self-adjointness) in L2(R2) of the operator in (4.13). Obviously, there exists only one
possibility with the prescribed term with second derivatives, namely, this equation is

v0tt −
2∑

j,k=1

∂

∂xj

(
Qj,k(x, δ)

∂v0
∂xk

)
= 0 ⇐⇒ v0tt − div

(
Q(x, δ)gradv0

)
= 0. (4.14)

The conclusion of this section is as follows: to construct the leading term of the asymptotic
solution of reduced equation, one should found H0(x, p, δ) and H1(x, p, 0). Taking into account
this fact and analyzing the construction of the symbols L,R, χ, one can easy formulate the same
conclusion for the symbols L,R, χ.
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5. ELIMINATING THE VERTICAL VARIABLES AND
A PSEUDODIFFERENTIAL EQUATION FOR THE SURFACE WAVES

Substituting the function (3.9) into (3.2)–(3.4) and passing from the operators to their symbols,
we obtain the following system for the function R(x, p, z, y, ξ, δ, h):

−(P − ih∇− iλ∇θ
y)

2R+
∂2R

∂z2
= 0, −D � z � 0, (5.1)

∂R

∂z
+ i〈q, P − ih∇− iλ∇θ

y〉R = 0 for z = −(D0 + δD1), (5.2)

R = 1 for z = 0. (5.3)

Here
P = P (p, x, ξ) ≡ p+ λθx(x)ξ, q = h∇D + λ∇Θ

y D ≡ h∇D + δλ∇Θ
y D1

are just vector functions. Write A2 = A2
0 + ha− h2Δ = (P − ih∇− iλ∇θ

y)
2, where

A2
0 = (P − iλ∇θ

y)
2, (5.4)

a = −2i〈P − iλΘx∇y, ∇〉 − λ〈ΔΘ,∇y〉 − iλ〈ΔΘ, ξ〉, ΔΘ =

(
ΔΘ1
ΔΘ2

)
. (5.5)

We need also the commutator C = [a,A2
0]. We have

C = aA2
0 −A2

0a = −2i〈P, ∇〉(P − iλ∇θ
y)

2 = −4i〈(P − iλ∇θ
y), 〈P,∇〉(P − iλ∇θ

y)〉. (5.6)

One can also give another formula for C introducing the function g = 〈P, x〉+λ〈Θ, ξ− i∇y〉. Then
C = −2i〈∇g, ∇|∇g|2〉. (5.7)

Now we can formally present the solution of (5.1), (5.3) in the form

R = cosh(zA)1 +
sinh(zA)

A
L, (5.8)

which contains a still unknown symbol L(x, p, y, ξ) of the operator L̂ in the form

L = ∂R/∂z
∣∣∣
z=0

, (5.9)

where cosh(zA)1 and sinh(zA)
A L mean that the operator cosh(zA) acts on the function f = 1 and

the operator sinh(zA)
A

acts on the function L(x, p, y, ξ). Recall that, if one finds the function (symbol)

L, then it is possible to recover the operator R̂ and, in turn, the function Ψ(x, y, z, t) using the
function φ(x, y, t) = Ψ(x, y, z, t)|z=0, which should satisfy (3.7) on the free surface z = 0.

As was said above, it is impossible to find effective formulas for L, and one can speak only on
an asymptotic expansion L with respect to small parameters h and δ. The aim of this section is to
find the first coefficients of this expansion.

Substituting the anzatz (5.8) into the boundary condition (5.2) gives

(A sin(zA) + i〈q, P − ih∇− iλ∇Θ
y 〉 cosh(zA))|z=−D1

+
(
cosh(zA) + i〈q, P − ih∇− iλ∇Θ

y 〉
sinh(zA)

A

)∣∣∣∣
z=−D

L = 0.

We replace here z by D after acting by the operator A. Write

U = (−
1

A sinh(
2

D
1

A) + i

2︷ ︸︸ ︷
〈q, P − ih∇− iλ∇Θ

y 〉 cosh(
3

D
1

A))1, (5.10)

V̂ =

(
cosh(

2

D
1

A)− i

2︷ ︸︸ ︷
〈q, P − ih∇− iλ∇Θ

y 〉
sinh(

3

D
1

A)
1

A

)
(5.11)

Using this notation, we can present the equation for the symbol L in a more compact form
U + V̂ L = 0 and write

L = −(V̂ )−1U. (5.12)
This is a formal formula, and it is not useful in specific problems; thus, we use the perturbation
theory taking into account the presence of parameters h and δ.
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Lemma 2. Assume that the operator V̂ and the function U have the following expansions:

V̂ = V̂0 + δV̂1 + δ2V̂2 + hV̂ 1
0 +O(δ3) +O(δh) +O(h2),

U = U0 + δU1 + δ2U2 + hU1
0 +O(δ3) +O(δh) +O(h2);

(5.13)

then the following expansion holds:
L(x, p, y, ξ) = L0 + δL1 + δ2L2 + hL1

0 + · · · , (5.14)
where

L0 = −V̂ −1
0 U0, L1 = −V̂ −1

0 (U1 + V̂1L0), L2 = −V̂ −1
0 (U2 + V̂1L1 + V̂2L0),

(5.15)

L1
0 = −V̂ −1

0 (U1
0 + V̂ 1

0 L0). (5.16)

Proof. This is standard. Substituting the expansions for U , V̂ , and L into the equation for L
gives U0+δU1+δ2U2+hU1

0 +(V̂0+δV̂1+δ2V̂2+hV̂ 1
0 )(L0+δL1+δ2L2+hL1

0)+O(δ3+h2+hδ) = 0.
Equating the coefficients at 1, δ, δ2 , and h to 0, we obtain (5.15) and (5.16).

Let us find the coefficients U0, V̂0, etc.

Lemma 3. The following equations hold :

V̂0 =cosh(D0A0), (5.17)

V̂1 =D1A0 sinh(D0A0)− i〈λ∇Θ
y D1, P − iλ∇Θ

y 〉
sinh(D0A0)

A0
, (5.18)

V̂2 =
D2

1A
2
0

2
cosh(D0A0)− iλD1〈∇Θ

y D1, P − iλ∇Θ
y 〉 cosh(D0A0), (5.19)

V̂ 1
0 =

D0 sinh(D0A0)

2A0
a+

D2
0A0 cosh(D0A0)−D0 sinh(D0A0)

8A3
0

C

− i〈∇D0, P − iλ∇Θ
y 〉

sinh(D0A0)

A0
, (5.20)

U0 =− |P | sinh(D0|P |), (5.21)

U1 =
(
i〈λ∇Θ

y D1, P 〉 −D1|P |2
)
cosh(D0|P |), (5.22)

U2 =i〈λ∇Θ
y D1, P 〉D1|P | sinh(D0|P |)− D2

1|P |3
2

sinh(D0|P |), (5.23)

U1
0 =i〈∇D0, P 〉 cosh(D0|P |) + iλ〈ΔΘ, ξ〉sinh(D0|P |) +D0|P | cosh(D0|P |)

2|P |

+ i
D0|P | cosh(D0|P |)− λ2 sinh(D0|P |) +D2

0|P |2 sinh(D0|P |)
4|P |3 (〈P, ∇〉(θxξ)2);

(5.24)

here the operator C is defined in (5.6).

Proof. (1) Consider the family of operators

V̂(z) =
( ∂

∂z
+ i〈h∇D + δλ∇Θ

y D1, P − ih∇− iλ∇Θ
y 〉

)sinh(zA)

A
. (5.25)

Here and below, the operators act from the right to left in the last expression. It is easy to see that

V̂ = V̂(z)
∣∣∣
z=−D

and U = (∂V̂∂z (z)1)
∣∣∣
z=−D

. It is sufficient to find an expansion of V̂(z) and then

use the last formulas.
We have

V̂(z) =
( ∂

∂z
+ iδλ〈∇Θ

y D1, P − iλ∇Θ
y 〉

+ ih
[
〈∇D, P − iλ∇Θ

y 〉 − δλ〈∇Θ
y D1, ∇〉

]
+ h2〈∇D, ∇〉

)sinh(zA)

A
.

(5.26)
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Recall that A2 = A2
0+ha−h2Δ and V̂(z) depend only on A2. Here the operators A2

0 and ha−h2Δ
act simultaneously, and we are to reorder them, namely, A2

0 acts first, and then ha − h2Δ acts.
This can be done with the following general formula (see [15, 17]) for noncommuting operators A
and B and arbitrary smooth function f(z):

f(
1

A+B) = f(
1

A+
2

B) +
1

2

2

[A, B]f ′′(
1

A+
3

B) +R(A, B). (5.27)

Here [A, B] is the commutator of the operators A,B, and R(A, B) is the correction which can be
evaluated via the commutators [A, [A, B]] of second order. In our problem, we choose A = ha−h2Δ
and B = A2

0. The operator A is proportional to h, and we use the standard Taylor expansion for

the smooth functions f(
1

A+
2

B) at the point
2

B. Thus, the last formula gives

f(
1

A+B) = f(A2
0) + h

(
f ′(A2

0)a+
1

2
f ′′(A2

0)[a, A
2
0]
)
+O(h2). (5.28)

Using this formula, we obtain

sinh(zA)

A
=
sinh(zA0)

A0
+ h

(
zA0 cosh(zA0)− sinh(zA0)

2A3
0

a

+
(3 + z2A2

0) sinh(zA0)− 3zA0 cosh(zA0)

8A5
0

C

)
+O(h2).

(5.29)

We want to construct the coefficients at h0 and h of the expansion of the last operator with respect
to h; thus, in (5.26), we can omit the last term and replace the operator A by A0, according
to (5.28). Therefore, we can write

V̂(z) =
( ∂

∂z
+ iδλ〈∇Θ

y D1, P − iλ∇Θ
y 〉+ ih

[
〈∇D, P + iλ∇Θ

y 〉+ δλ〈∇Θ
y D1, ∇〉

])

×
(
sinh(zA0)

A0
+ h

(zA0 cosh(zA0)− sinh(zA0)

2A3
0

a

+
(3 + z2A2

0) sinh(zA0)− 3zA0 cosh(zA0)

8A5
0

C
))

+O(h2),

(5.30)

and, using this formula, we find the coefficients V̂0, V̂1, U0, U1, etc.

(2) To find the coefficients U0, U1, U2, V̂0, V̂1, V̂2, we study V̂ |h=0 and U |h=0. We have

V̂ |h=0 = cosh(
2

D
1

A0)− iδλ〈∇Θ
y D1, P − iλ

1

∇Θ
y 〉

sinh(
2

D
1

A0)
1

A0

,

U |h=0 =
(
−

1

A0sinh(
2

D
1

A0) + iδλ〈∇Θ
y D1, P − iλ

1

∇Θ
y 〉 cosh(

2

D
1

A0)
)
1

= −|P |sinh(D|P |) + iδλ〈∇Θ
y D1, P 〉 cosh(D|P |).

The operators A0 and ∇Θ
y act before D, and thus, we can put D = D0 + δD1 and use the Taylor

expansion with respect to δ. This gives (5.17)–(5.19) and (5.21)–(5.23). In the last formula, we also
use the equations ∇Θ

y 1 = 0 and A01 = |P |.
(3) To find the coefficients V̂ 1

0 and U1
0 , we study V̂ |δ=0 and U |δ=0. By (5.30), we have

V̂ |δ=0 =cosh(
2

D0

1

A0)− ih

2︷ ︸︸ ︷
〈∇D0, P − iλ∇Θ

y 〉
sinh(

3

D0

1

A0)
1

A0

+ h
( 3

D0 sinh(
3

D0

2

A0)

2
2

A0

1
a+

(
3

D0)
2

2

A0 cosh(
3

D0

2

A0)−
3

D0 sinh(
3

D0

2

A0)

8(
2

A0)3

1

C
)
+O(h2),

(5.31)
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U |δ=0 =

(
−

1

A0 sinh(
2

D0

1

A0) + ih

2︷ ︸︸ ︷
〈∇D0, P − iλ∇Θ

y 〉 cosh(
3

D0

1

A0)

)
1

− h
( 3

D0 cosh(
3

D0

2

A0) + sinh(
3

D0

2

A0)

2
2

A0

1
a+

(
(

3

D0

2

A0)
2 − 1

)
sinh(

3

D0

2

A0) +
3

D0

2

A0 cosh(
3

D0

2

A0)

8(
2

A0)3

1

C
)
1

+O(h2).

(5.32)
The operators A0 and D0 (a function) commute. Thus, we can omit the indices over operators

in the last formulas and get (5.20). Taking into account the equations ∇y1 = 0 and A01 = |P |, we
obtain (5.20) and (5.24).

Using formulas (5.17)–(5.24), we can find the coefficients L0, L1, L2, L
1
0, which are given in the

following theorem.

Theorem 2. The following formulas hold for the coefficients L0, L1, L2, L
1
0 of (5.14):

L0 =|P | tanh(D0|P |), (5.33)

L1 =
1

cosh(D0A0)
(D1|P |2 − i〈λ∇Θ

y D1, P 〉) 1

cosh(D0|P |) , (5.34)

L2 =− 1

cosh(D0A0)
(D1A

2
0 − i〈λ∇Θ

y D1, P − iλ∇Θ
y 〉)

tanh(D0A0)

A0

× (D1|P |2 − i〈λ∇Θ
y D1, P 〉) 1

cosh(D0|P |) , (5.35)

L1
0 =i

D0|P | tanh(D0|P |)− 1

cosh2(D0|P |)
〈∇D0, P 〉 − iλ〈ΔΘ, ξ〉sinh(D0|P |) cosh(D0|P |) +D0|P |

2|P | cosh2(D0|P |)

− i〈P, ∇P 2〉D0|P | − sinh(D0|P |) cosh(D0|P |)− 2D2
0 |P |2 tanh(D0|P |)

2|P |3 cosh2(D0|P |)
. (5.36)

Here, recall that A2
0 = (p + λθx(ξ − i∇y))

2 and P 2 = (p+ λθxξ)
2.

Proof. Formulas (5.33), (5.34) easily follow from (5.17), (5.18), (5.21), and (5.22). To get for-

mula (5.35), it is useful to note that U2 + V̂2L0 = 0 in our case, and hence, L2 = −V̂ −1
0 V̂1L1.

Substituting V̂0, V̂1, and L1 into this equality gives (5.35). To prove (5.36), we note that U1
0 does

not depend on D1, and hence, does not depend on y. This means that one should replace the
operator A0 in the definitions of V̂0 and V̂ 1

0 by the function |P | = |p + θxξ|. Hence, here we have
just a product of ordinary functions, and manipulations give (5.36).

Let us note finally in this section that the symbol R of the operator R̂ is equal to 1 for z = 0,
and this means that R̂|z=0 = 1̂ is the identical operator, and

Ψ|z=0 = χ(
2
x,

1

p̂, y, δ, h)
∣∣∣
y=θ/ε

v. (5.37)

6. ELIMINATING FAST VARIABLES Y AND THE CALCULATION
OF EFFECTIVE HAMILTONIANS H. PROOF OF THEOREM 1

The above calculations (approximately) reduce our problem given in a 3D strip to problem (3.7)
given on a 2D plane (the unperturbed 2D free surface) with

L̂ = L̂(
2
x,

1

p̂,
2
y,

1

−i∇y, δ, h) = L0(
2
x,

1

p̂,
2
y,

1

−i∇y, δ) + hL1(
2
x,

1

p̂,
2
y,

1

−i∇y, δ) +O(h2). (6.1)

As was mentioned above, the fast variables y (corresponding to fast oscillating coefficients in the
original problem) still present in this equation, and the derivatives ∂

∂x
and ∂

∂y
are included into
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(3.7) in different way, namely, ∂
∂x enters with a small parameter h, and ∂

∂y without any small

parameter. So, to find some solution, one can make the “second” reduction, using a variant of the
adiabatic approximation in operator form [8, 9, 12]. We follow the scheme presented in these papers.
We seek a solution of this equation in the form (3.11) with a new unknown function v satisfying

the “second” reduced equation (3.12). Assume that χ̂ and Ĥ are pseudodifferential operators with
symbols χ(x, p, y, h, δ) and H(x, p, h, δ) having asymptotic expansions

χ(x, p, y, h, δ) = χ0(x, p, y, δ) + hχ1(x, p, y, δ) + · · · , (6.2)

H(x, p, h, δ) = H0(x, p, δ) + hH1(x, p, δ) + · · · (6.3)

Our aim now is to find some coefficients of expansions of χ(x, p, y, h, δ) and H(x, p, h, δ) which

give a proof of Theorem 1. In some sense, χ̂ and Ĥ are similar to an eigenfunction and eigenvalue,
and thus, there exist infinitely many functions χ and H suitable for the “second” reduction; so we
fix one of them by the conditions

χ|p→0 = 1 +O(|h| + |δ|), H|p→0 = O(|h|+ |δ|). (6.4)

According to [9, 8], we are to find first the eigenvalues H and eigenfunctions χ0 of the (family) of

self-adjoint operators L0(
2
x,

1

p̂,
2
y,

1

−i∇y, δ) defined on the L2(T)-space on the 2D torus T2 = [0, 2π]2

with the standard inner product

(f(y), g(y))T� =
1

(2π)2

∫

T2

f(y)g(y)dy.

Of course, we can speak only on (asymptotic) expansions of H and χ0 with respect to the param-
eter δ. To find the first terms of this expansions, we use the following lemma from a more general
assertion in [11] (see Lemma 1 in this paper).

Lemma 4. Let a self-adjoint operator B have an expansion B = A + δB1 + δ2B2 + δ3B̃3(δ),

where δ is a small parameter, and let A, B1, B2, B̃3(δ) be self-adjoint operators. Consider the
spectral problem

(A+ δB1 + δ2B2 + δ3B̃3(δ))ϕ = λϕ, ‖ϕ‖ = 1.

Assume that λ0 is a simple eigenvalue of the operator A. Then λ = λ0 + δλ1 + δ2λ2 + · · · and ϕ =
ϕ0+δϕ1+δ2ϕ2+· · · , where Aϕ0 = λ0ϕ0, ‖ϕ0‖ = 1, λ1 = (ϕ0, B1ϕ0), ϕ1 = −(A−λ0)

−1
(
B1−λ1

)
ϕ0,

λ2 = (ϕ0, B2ϕ0)−
(
(A−λ0)

−1(B1−λ1)ϕ0, (B1−λ1)ϕ0

)
, and (ϕ0, ϕ1)+(ϕ1, ϕ0) = 0. In particular,

if λ1 = 0, then
ϕ1 = −(A− λ0)

−1B1ϕ0, λ2 = (ϕ0, B2ϕ0)−
(
(A− λ0)

−1B1ϕ0, B1ϕ0

)
. (6.5)

Equations (6.5) hold for every isolated eigenvalue. However, if we assume that functions ϕk
0 form

a normalized base for the operator A, (ϕk
0 , ϕ

m
0 ) = δk,m, δk,m is the Kronecker symbol, then the last

formulas could be expressed using ϕk
0 . Namely, introduce the coefficients gk,mj = (ϕm

0 , Bjϕ
k
0). Then

λk
2 = gk,k2 −

∑
m �=k

|gk,m1 |2
λm − λk

. (6.6)

In our problem,

A = L0(x, p, −i
1

∇y,
2
y) = |P̂ | tanh(D0P̂ |)

∣∣
P̂=p−iλΘx

∂
∂y

.

Lemma 5. The eigenfunctions χ0
(m)(x, p, y) and eigenvalues H0

(m)(x, p) of this operator are

H0
(m) = |p+ λΘxm| tanh(D0(x)|p + λΘxk|), χ0

(m)(x, p, y) = eim·y,m = (m1,m2) ∈ Z
2. (6.7)

Obviously, the functions eim·y form a base in L2(T2). Choose a compact set K in R
2 and assume

that |p| < (λ/2)minx∈K ||Θ−1
x ||−1. Then the eigenvalue H0

(0) = |p| tanh(D0(x)|p|) is simple for

x ∈ K, and
H0

(m) −H0
(0) = |p + λΘxm| tanh(D0(x)|p + λΘxk|)− |p| tanh(D0(x)|p|) > C > 0. (6.8)
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Proof. We are going to prove (6.8). For any chosen x, (6.8) equals to zero on the straight line
|p+λΘxm| = |p| in the plane (p1, p2) which is orthogonal to the interval (0,−λΘxm) and intersects
it at the middle of this interval. All these straight lines for m �= 0 divide the plane into separate
domains having the form of convex polygons. The domain Bx, which includes the origin, is known as
the Brillouin zone, and we use formula (6.8) only inside the domain Bx. If one needs to use (6.8) for
each x from some compact set K, then one has to take the intersection of all Bx for x in K, which
we denote by B. Moreover, to have a uniform expansion of (6.8), one needs to take p in some closed

set B̃ in the interior of B. One can always take B̃ as a disk whose center coincides with the origin.
Obviously, the strip between the straight lines |p+ λΘxm| = |p| and |p− λΘxm| = |p| includes the
disk of radius λ|Θxm|/2 centered at the origin (λ > 0), the Brillouin zone Bx is the intersection
of all such strips, and Bx includes the disk of radius rx = λ

2 minm �=0 |Θxm|. Since 1 � |m| =

|Θ−1
x θxm| � ‖Θ−1

x ‖|Θxm|, we have minm �=0 |Θxm| � ‖Θ−1
x ‖−1, and hence, rx � λ

2
‖Θ−1

x ‖−1. Taking

the minimum over all x in K, we see that one can choose the set B̃, where one can use the expansion
(6.8), in the form of any disk centered at the origin and of radius less than λ

2 minx∈K ‖Θ−1
x ‖−1.

Taking into account condition (6.4), we restrict ourselves to the case of m = 0 and, to simplify the
notation, omit the subscript (m) in the symbols H0

(m)(x, p) and χ0
(m)(x, p, y). Thus, we have the

following correspondence with the symbols λj and the operators A,B1, B2, etc., of the lemma:

A = L0(x, p, −i
1

∇y,
2
y), B1 = L1(x, p, −i

1

∇y,
2
y), B2 = L2(x, p, −i

1

∇y,
2
y), ϕ0 = χ0(x, p, y) = 1,

λ0 = H0 = |p| tanh(D0(x)|p|). It is easy to see that

B1ϕ0 = L1(x, p, −i
1

∇y,
2
y)1 =

1

cosh(D0A0)
(D1|p|2 − i〈λ∇Θ

y D1, p〉)
1

cosh(D0|p|)

=
1

cosh(D0|p|)
1

cosh(D0A0)
(|p|2 − iλ〈p, ∇Θ

y 〉)D1.

Here A2
0 = (p− iλθx∇y))

2, and it acts on the function D1. Recall the Fourier series (2.11) for D1;
we have

(ϕk, B1ϕ0) =
1

cosh(D0|p|)

(
eik·y,

1

cosh(D0A0)
(|p|2 − iλ〈p, ∇Θ

y 〉)D1

)

=
1

cosh(D0|p|)

(
(|p|2 − iλ〈p, ∇Θ

y 〉)
1

cosh(D0A0)
eik·y,D1

)

=
(|p|2 + λ〈Θxk, p〉)D1k

cosh(D0|p|) cosh(D0|p+ λΘxk|)
D1k.

(6.9)

We have also

B2ϕ0 = L2(x, p, −i
1

∇y,
2
y)1 = L2(x, p, 0, y)

= − 1

cosh(D0A0)
(D1A

2
0 − i〈λ∇Θ

y D1, p− iλ∇Θ
y 〉)

tanh(D0A0)

A0
(D1|p|2 − i〈λ∇Θ

y D1, p〉)
1

cosh(D0|p|)
.

Here the operator A0 = |p − iλ∇θ
y| and the operator iλ∇θ

y act only on the function D1 again.

Note also that the operator (D1A
2
0 − i〈λ∇Θ

y D1, p − iλ∇Θ
y 〉) is symmetric on L2(T). Using these

properties, we get

(ϕ0, B2ϕ0)

=− 1

cosh(D0|p|)

(
(D1A

2
0−i〈λ∇Θ

y D1, p−iλ∇Θ
y 〉)

1

cosh(D0A0)
1,
tanh(D0A0)

A0
(D1|p|2−i〈λ∇Θ

y D1, p〉)
)

= − 1

cosh2(D0|p|)

(
(D1|p|2−i〈λ∇Θ

y D1, p〉),
tanh(D0A0)

A0
(D1|p|2−i〈λ∇Θ

y D1, p〉)
)
.

Using the equation
tanh(D0A0)

A0
eik·y = eik·y

tanh(D0|p+ λΘxk|)
|p+ λΘxk|

,
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after the integration with respect to the variables y, we obtain

(ϕ0, B2ϕ0) = −
∑
k �=0

|D1k|2
(|p|2 + λ〈Θxk, p〉)2

cosh2(D0|p|)
tanh(D0|p + λΘxk|)

|p + λΘxk|
. (6.10)

Proof of formula (2.12) for the symbol H. For the symbol H(p, x, δ, h) of the operator, we
have the following expansion:

H(x, p, δ, h) = H0
0 (x, p) + δ2H0

2 (x, p) + hH1
0 (x, p) +O(δ3) +O(h2) +O(hδ).

The formulas for H0 and H1 were presented above in (2.10).

To find H1, we use the general formula given in [9] (see (3.16)),

H1 =
(
χ0, L1

0χ
0
)
− i

(
χ0,

dχ0

dt

)
− i

(
χ0,

2∑
j=1

[∂L0

∂pj
− ∂H

∂pj

]∂χ0

∂xj

)
,

d

dt
= −

2∑
s=1

∂H

∂xs

∂

∂ps
+

2∑
s=1

∂H

∂ps

∂

∂xs
.

Due to the equation χ0 = 1 +O(δ), the two last terms in this formula are equal to O(δ), and

H1 =
(
1, L̂1

01
)
+O(δ). (6.11)

Now we replace ξ in formula (5.36) by −i ∂
∂y

and act by the operator thus obtained on 1. A simple

analysis of (5.36) shows that the second and third terms in (5.36) include the factor ξ; thus, after
replacing ξ by −i ∂

∂y and acting on 1, these terms disappear; we also have P = p, and finally obtain

H1.

To prove that H|p=0 = 0, we return to (5.10)–(5.12). Consider the operator L(x, p,
2
y,−i

1

∇y)|p=0

and show that

L(x, p,
2
y,−i

1

∇y)1|p=0 = 0.

Indeed, as soon as ∇y acts before any other operators, we can put ξ = 0 as well as p = 0, in
formulas (5.10)–(5.12). Thus, we can put P = 0 and A2 = (ih∇− iλ∇θ

y)
2 in (5.10), and so

U |p=0,ξ=0 = (−
1

A sinh(
2

D
1

A) + i

2︷ ︸︸ ︷
〈q, −ih∇− iλ∇Θ

y 〉 cosh(
3

D
1

A))1 = 0.

Hence,

(V −1U)(x, p,
2
y,−i

1

∇y)|p=01 = 0.

This means that χ = 1 is an eigenfunction of the operator L(x, p,
2
y,−i

1

∇y)|p=0 with the eigenvalue
H|p=0 = 0. As was shown above, the eigenvalue and eigenfunction satisfying condition (6.4) are
unique. Thus, H|p=0 = 0 for any sufficiently small h and δ.

Now we need an appropriate representation for H0
2 . It is given by λ2 in (6.5). Consider the Taylor

expansion near the point p = 0,

1

D0|p+ λΘxk| tanh(D0|p + λΘxk|)
=g(σk) + λ〈Θxk, p〉D2

0

g′(σk)

σk

+
D4

0

2
λ2〈Θxk, p〉2

(g′′(σk)

σ2
k

− g′(σk)

σ3
k

)
+ p2

D2
0

2

g′(σk)

σk
+O(p3),

where
g(σk) =

1

σk tanh(σk)
, σk = λD0|Θxk|. (6.12)

Write β = D2
0〈p,Θxk〉, and α2 = D2

0p
2; then
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D0|p+ λΘxk| =
√

D2
0p

2 + 2D2
0〈p,Θxk〉+ (D0λΘxk)2 =

√
α2 + 2β + σ2

k

and

g(D0|p+ λΘxk|) = g
(√

α2 + 2β + σ2
k

)

= g(|σk|) +
g′(σk)

σk
β +

(g′′(σk)

2σ2
k

− g′(σk)

2σ3
k

)
β2 +

g′(σk)

σk
α2 +O(|α|+ |β|3).

These equations, together with formulas (6.9) and (6.10), after equating the terms at p2, |p|4,
p2〈Θxk, p〉2, and 〈Θxk, p〉4, give the following representation for H2:

H0
2 =

∑
|k|�=0

Gk = −
∑
|k|�=0

|D1k|2D0

(
λ2〈Θxk, p〉2g(σ) +

(D0λ)
4

2
〈Θxk, p〉4

(g′′(σ)
σ2

− g′(σ)

σ3

)

+ p4g(σ) + p2〈Θxk, p〉2(D0λ)
2
(5
2

g′(σ)

σ
+

1

σ2 sinh2 σ
− g(σ)

))∣∣∣
σ=σk

+O(p6).

(6.13)

Remark. (1) Both the functions H0 and H2 are even with respect to p. To prove this, one
should make the change p → −p, k → −k and take into account the equations D1,k = D1,−k,
because D1(x, y) is a real valued function.

(2) The zero denominators disappear in this expansion due to (weak) resonance effects con-
nected with the so-called intersection of terms or changing of multiplicity of characteristics (as was
mentioned above) which take place for big momenta p.

Let us study the behavior of Gk for small and big λ (and proceed similarly for σ). For σ � 2, one
can put g(σ) ≈ 1/σ and omit the terms 1− tanhσ < 0.0359724 and 1

σ2 sinh2 σ
< 0.0190055 if σ > 2.

Then

Gk=−|D1k|2
(D0

σ
λ2〈Θxk, p〉2−

D5
0

2
λ4〈Θxk, p〉4

1

σ5
+
D0

σ
p4−p2λ2〈Θxk, p〉2D3

0

(
− 5

2σ3
− 1

σ

))
+O(p6).

For small λ (this means that σk is small), with the equation

σ tanhσ = σ2 +O(σ4),

we get

Gk = −|D1k|2
D0

(〈 Θxk

|Θxk|
, p

〉2

+
1

λ2|Θxk|2
(
2
〈 Θxk

|Θxk|
, p

〉2

− p2
)2

)
+O(λ0) +O(p6). (6.14)

Dropping the small corrections, we can write the desired formula (2.12) for symbol of operator for
small λ. This ends the proof of Theorem 1.

CONCLUSION

In this paper, we have developed a scheme of research of fast changing solutions in the linear
theory of water waves in a basin with rapidly oscillating depth. In particular, we have derived
Boussinesq type equations for the long waves occurring for this type of the bottom oscillations
and show that they imply effects similar to dispersion ones and depending on the depth, height,
and width. We compared the influence of two different type of (weak) dispersions on the wave
profile: the standard water dispersion and dispersion implied by fast oscillations of the bottom.

We show also that the effects of mode conversion (or intersection of characteristics) arise in this
problem, which, however, do not play any role in the case of long waves. Nevertheless, the study of
such “resonance” effects for short waves seems to be very interesting and remains open.

Finally we say that the class of possible depth function mentioned in the very beginning of the
paper is natural to generalize for more wide class similar to one introduced in [23].

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 23 No. 4 2016



474 DOBROKHOTOV et al.

REFERENCES

1. A. Bensoussan and J.-L. Lions, Papanicolaou G, Asymptotic Analysis for Periodic Structures. Studies
in Mathematics and Its Applications. Vol. 5 (North-Holland Publ. Company, Amsterdam–New York–
Oxford, XXIV).

2. V. V. Zhikov, S. M. Kozlov, and O. A. Olejnik, Homogenization of Differential Operators (Moscow,
Fizmatlit, 1993).

3. N. S. Bakhvalov and G. P. Panasenko, Averaging Processes in Periodic Media. Mathematical Problems
of the Mechanics of Composite Materials (Nauka, Moscow, 1984).

4. J. J. Stoker, Water Waves (Interscience, New York, 1957).

5. C. C. Mei, The Applied Dynamics of Ocean Surface Waves (World Scientific, Singapore, 1989).

6. E. N. Pelinovski, Hydrodynamics of Tsunami Waves (Nizhnii Novgorod, 1996).

7. V. V. Kucherenko, “Asymptotics of the Solution of the System A(x,−ih∂/∂x)u = 0 as h → 0 in the
Case of Characteristics of Variable Multiplicity,” Izv. Math. 8 (3), 631 (1974).

8. J. Bruening, V. V. Grushin, and S. Yu. Dobrokhotov, “Averaging of Linear Operators, Adiabatic
Approximation, and Pseudodifferential Operators,” Math. Notes 92 (2), 151–165 (2012).

9. V. V. Grushin and S. Yu. Dobrokhotov, “Homogenization in the Problem of Long Water Waves over
Bottom Site with Fast Oscillations,” Math. Notes 95 (3), 324–337 (2014).

10. V. V. Belov, S. Yu. Dobrokhotov, and T. Ya. Tudorovskiy, “Operator Separation of Variables for
Adiabatic Problems in Quantum and Wave Mechanics,” J. Engry. Math. 55 (1–4), 183–237 (2016).

11. S. Yu. Dobrokhotov, S. A. Sergeev, and B. Tirozzi, “Asymptotic Solutions of the Cauchy Problem with
Localized Initial Conditions for Linearized Two-Dimensional Boussinesq-Type Equations with Variable
Coefficients,” Russ. J. Math. Phys. 20 (2), 155–171 (2013).

12. J. Bruening, V. V. Grushin, and S. Yu. Dobrokhotov, “Approximate Formulas for the Eigenvalues of a
Laplace Operator, on a Torus, Which Arises in Linear Problems with Oscillating Coefficients,” Russ.
J. Math. Phys. 19 (3), 1–10 (2012).

13. V. V. Grushin, S. Yu. Dobrokhotov, and S. A. Sergeev, “Homogenization and Dispersion Effects in the
Problem of Propagation of Waves Generated by a Localized Source,” Proc. Steklov Inst. Math. 281,
161–178 (2013).

14. S. Yu. Dobrokhotov, “Application of the Maslov Theory to Two Problems for Equations with Operator-
Valued Symbol: Electron–Phonon Interaction and the Schrodinger Equation with Rapidly Oscillating
Potential,” Uspekhi Mat. Nauk 39 (4), 125 (1984).

15. V. S. Buslaev, “Semiclassical Approximation for Equations with Periodic Coefficients,” Uspekhi Mat.
Nauk 42 (6), 77–98 (1987) [Russ. Math. Surv. 42 (6), 97–125 (1987)].

16. V. P. Maslov, Operational Methods (Mir, Moscow, 1973).

17. V. P. Maslov and M. V. Fedoryuk, Semiclassical Approximaion for Equations of Quantum Mechanics
(Nauka, Moscow, 1978).

18. V. P. Maslov and M. V. Karasev, Nonlinear Poisson Brakets. Geometry and Quantization (Nauka,
Moscow, 1991).

19. S. Yu. Dobrokhotov, “Maslov’s Methods in Linearized Theory of Gravitational Waves on the Liquid
Surface,” Dokl. AN SSSR 269 (1), 76–80 (1983) [Sov. Phys. Doklady 28, 229–231 (1983)].

20. S. Yu. Dobrokhotov and P. N. Zhevandrov, “Asymptotic Expansions and the Maslov Canonical Oper-
ator in the Linear Theory of Water Waves, I,” Russ. J. Math. Phys. 10 (1), 1–31 (2003).

21. S. Yu. Dobrokhotov and P. N. Zhevandrov, “Maslov’s Operational Method in Problems of Water Waves
Generated by a Source Moving Over Uneven Bottom,” Izv. AN SSSR, Fiz. Atmos. Okeana 21 (7), 744–
751 (1985) [Atmos. Ocean. Phys. 21 (7), 572–577 (1985)].

22. J. Bruening, V. Grushin, S. Yu. Dobrokhotov, and T. Tudorovskii, “Generalized Foldy–Wouthuysen
Transformation and Pseudodifferential Operators,” Teoret. Mat. Fiz. 167 (2), 171–192 (2011) [Theoret.
and Math. Phys. 167 (2), 2011].

23. S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirozzi, “On a Homogenization Method for Differential
Operators with Oscillating Coefficients,” Doklady Mathematics 91 (2), 227–231 (2015).

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 23 No. 4 2016


		2016-11-29T10:54:11+0300
	Preflight Ticket Signature




