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Abstract. It is proved that, for every rational function of two variables P (x, y) of analytic
complexity one, there is either a representation of the form f(a(x) + b(y)) or a representa-
tion of the form f(a(x)b(y)), where f(x), a(x), b(x) are nonconstant rational functions of a
single variable. Here, if P (x, y) is a polynomial, then f(x), a(x), and b(x) are nonconstant
polynomials of a single variable.
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The complexity problem for functions of several variables was studied by many authors (see, e.g.,
[1–7]). In the paper [5], Beloshapka suggested the following viewpoint on the complexity of analytic
functions of two variables. An increasing sequence of complexity classes Cl0 ⊂ Cl1 ⊂ · · · ⊂ Cln ⊂
· · · is constructed by induction: Cl0 is the class of analytic functions of one variable (x or y), Cl1 is
the class of functions of the form c(a(x) + b(y)), where a(x), b(x), and c(x) are analytic functions,
and, further, Cln+1 consists of the functions of the form C(An(x, y) + Bn(x, y)), where C is a
function of one variable and An and Bn are functions in Cln. The representability in the form of
superposition is treated as the local representability in a neighborhood of a point in general position.
The number n is regarded as the complexity of a function if the function belongs to Cln\Cln−1.
Thus, the analytic functions of complexity one are the functions of the form c(a(x) + b(y)), where
a(x), b(x), and c(x) are analytic functions which are not identically equal to a constant. In the case
of first-class complexity, for rational functions, it turns out that the functions f(x), a(x), and b(x)
can be described.

Theorem 1. Let a local representation of the form

f(a(x) + b(y)) = P (x, y) (1)

be valid, where P (x, y) is a rational function of first-class complexity and f(x), a(x), and b(x) are
analytic. Then there are rational functions F (x), A(x), and B(x) such that either f(x) = F (x),
a(x) = A(x), and b(x) = B(x) or f(x) = F (ex), a(x) = ln(A(x)), and b(x) = ln(B(x)).

In other words, there is either an additive representation F (A(x) +B(y)) = P (x, y) or a multi-
plicative representation F (A(x)B(y)) = P (x, y) with rational F (x), A(x), and B(x).

Proof. Let us take the partial derivatives with respect to x and y of both the sides of (1) and
divide them by the other (we may assume that the derivative with respect to y is not identically
equal to 0, because, otherwise, the function depends on x only, and hence, is a function of complexity
class 0). We obtain

Px(x, y)

Py(x, y)
=

f(a(x) + b(y))x
f(a(x) + b(y))y

=
f ′(a(x) + b(y))a′(x)

f ′(a(x) + b(y))b′(y)
=

a′(x)

b′(y)
,

where Px(x, y)/Py(x, y) is a rational function if P (x, y) is. Therefore, integrating the equation
Px(x, y)/Py(x, y) = a′(x)/b′(y) for a chosen y, we obtain a(x); integrating for a chosen x, we obtain
b(y):

a(x) = A(x) +
k∑

n=1

αn ln(x− an), b(y) = B(y) +
l∑

n=1

βn ln(y − bn),

where A(x) and B(y) are rational and αi and βi are constants.
The following cases are possible:
(1) all αi and βi vanish, i.e., a(x) = A(x) and b(y) = B(y);

(2) A(x) and B(y) are nonconstant, and there are nonzero coefficients among αi and βi;
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(3) A(x) is constant, B(y) is nonconstant, and there are nonzero coefficients among αi and βi;

(3’) A(x) is nonconstant, B(y) is constant, and there are nonzero coefficients among αi and βi;

(4) A(x), B(y) are constant and there are incommensurable coefficients among αi and βi;

(5) A(x), B(y) are constant and there are no incommensurable coefficients among αi and βi.

We claim that cases (2), (3), (3’), and (4) cannot be realized.

Consider case 2). Substitute the values a(x) and b(y) into (1). Making the change of variable
y = y(x) = B−1(−A(x)) in (1), we obtain

f

(
ln

(
k∏

n=1

(x− an)
αn

l∏
n=1

(y(x)− bn)
βn

))
= P (x, y(x)). (2)

Without loss of generality we may assume that P (x, y(x)) is not everywhere infinite (otherwise we
add a constant to y = y(x) and obtain a rational function P (x, y(x) + const); it is clear from the
consideration below that this constant plays no role in the proof). The same stipulation holds in
all similar situations below.

Making in (1) the change y = y0 and writing c = eb(y0) = const, we obtain

f

(
ln

(
ceA(x)

k∏
n=1

(x− an)
αn

))
= P (x, y0). (3)

Note that the functions P (x, y(x)) = Φ(x) and P (x, y0) = Ψ(x) are algebraic. Two cases are
possible:

(2.1) P (x, y(x)) = Φ(x) �= const,

(2.2) P (x, y(x)) = Φ(x) = const.

Consider case (2.1). Make the change x = Φ−1(y) in (2) and the change x = Ψ−1(y) in (3). Then
(2) and (3) are represented in the form

k∏
n=1

qαn
n (y)

l∏
n=1

rβn
n (y) = ef

−1(y), (2’)

ces(y)
k∏

n=1

pαn
n (y) = ef

−1(y), (3’)

where pi(y), qi(y), ri(y), and s(y) are algebraic functions obtained after the change (we can assign
the constant c to any of these functions). The left-hand sides of (2′) and (3′) have finitely many

singular points only, and therefore the function ef
−1(y) admits a continuation along all paths not

passing through these points. One can choose equal analytic functions in the full analytic functions
obtained by extending the left-hand sides of (2′) and (3′) (one should take the corresponding germs
of f−1(y) on the right-hand sides of (2′) and (3′)). Thus, for an appropriate choice of germs, the
left-hand sides are equal. Equate the left-hand sides of (2’) and (3’). Move all products to the left
and include all functions into a single product by redenoting the functions 1/pi(y), qi(y), ri(y) by
ui(y) and the exponents by γn. We obtain

m∏
n=1

uγn
n (y) = es(y). (4)

However, equation (4) can hold only if s(y) = const. Indeed, otherwise, if all γn are rational, then
the left-hand side of (4) is algebraic and the right-hand side is not. If there are irrational numbers
among γn, then the left-hand side of (4) can take infinitely many values when going around the
singular point, while the right-hand side can take finitely many values only. Therefore, s(y) = const,
and hence, A(y) = const, which contradicts the initial assumption A(y) �= const. Thus, case (2.1)
is impossible.
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Consider case (2.2). In this case, (2) becomes

f

(
ln

(
k∏

n=1

(x− an)
αn

l∏
n=1

(y(x)− bn)
βn

))
= P (x, y(x)) = const,

which implies that
k∏

n=1

(x− an)
αn

l∏
n=1

(y(x)− bn)
βn = const. (5)

Let us keep (y(x)− b1)
β1 in the left-hand side of (5), move all other factors to the right-hand side,

and take the equation thus obtained to the power 1/β1. We see that

(y(x)− b1) = const

k∏
n=1

(x− an)
−αn

β1

l∏
n=2

(y(x)− bn)
− βn

β1 . (5’)

It is clear from (5’) that either (y(x)−b1) = const (which is impossible, because y(x) = B−1(−A(x)),
where A(x) and B(y) are nonconstant) or all numbers αi, βi must be commensurable with β1 (and
hence, with one another). Thus, αi = piβ1, βi = qiβ1 with rational pi and qi. Then the expressions
for a(x) and b(y) can be represented in the form

a(x) = A(x) + β1

k∑
n=1

ln(x− an)
pn = β1

(
A(x)

β1
+ ln

k∏
n=1

(x− an)
pn

)
, (6)

b(y) = B(y) + β1

l∑
n=1

ln(y − bn)
qn = β1

(
B(y)

β1
+ ln

l∏
n=1

(y − bn)
qn

)
. (7)

Let us substitute the values of a(x) and b(y) into (1). We have

f

(
β1

(
A(x)

β1
+ ln

k∏
n=1

(x− an)
pn

)
+ β1

(
B(y)

β1
+ ln

l∏
n=1

(y − bn)
qn

))
= P (x, y). (8)

For the convenience of the forthcoming considerations, we introduce the notation A(x)
β1

= Q(x),∏k
n=1(x−an)

pn = R(x), B(y)
β1

= S(y),
∏l

n=1(y− bn)
qn = T (y), f(β1x) = V (x). Below we need only

the fact that Q(x), R(x), S(y), and T (y) are algebraic. In the new notation, (8) becomes

V (Q(x) + S(y) + ln(R(x)T (y))) = P (x, y). (9)

We claim that the only realizable cases are

(2.2.1) Q(x), S(y) �= const; R(x), T (y) = const
and
(2.2.2) Q(x), S(y) = const; R(x), T (y) �= const.

Returning to the previous notation, one can readily see that cases (2.2.1) and (2.2.2) are related
to cases (1) and (5), respectively. (We shall see below that only cases (1) and (5) can be realized
indeed, and they are studied below.)

Suppose that a case which differs from (2.2.1) and (2.2.2) is possible. Make the change

p = Q(x) + S(y), q = R(x)T (y).

If p and q are dependent (i.e., their image is an algebraic curve in C
2), then, by the implicit function

theorem, the left-hand side of (9) can be reduced to the form g(p) = g(Q(x) + S(y)), i.e., case (1)
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holds. If p and q are independent, then x and y are algebraic and can be expressed using p and
q, x = X(p, q), y = Y (p, q). Therefore, successively (a) q = q0 and (b) p = p0 and assuming here,
without loss of generality, that (a) ln(q0) = 0 and (b) p0 = 0, respectively, we obtain

(a) V (p+ln(q0)) = P (X(p, q0), Y (p, q0)) = P̃ (p), (b) V (p0+ln(q)) = P (X(p0, q), Y (p0, q)) =
˜̃
P (q).

It follows from (a) that V (p) algebraic, which then implies that ln(q) = V −1(
˜̃
P (q)) is algebraic.

A contradiction. Thus, case (2.2) is impossible. Therefore, case (2) is impossible.

Consider case (3) (case (3’) is similar). Substitute the values of a(x) and b(y) into (1). Making
the change y = x in (1) and writing c1 = eA(x) = const, we obtain

f

(
ln

(
c1e

B(x)
k∏

n=1

(x− an)
αn

l∏
n=1

(x− bn)
βn

))
= P (x, x). (10)

Making in (1) the change y = y0 and writing c2 = eb(y0) = const, we obtain

f

(
ln

(
c1c2

k∏
n=1

(x− an)
αn

))
= P (x, y0). (11)

Thus, we arrive at a situation which is completely analogous to that considered in case (2.1). Thus,
case (3) is impossible.

Consider case (4). Here a(x) and b(y) are of the form

a(x) =

k∑
n=1

αn ln(x− an) + const, b(y) =

l∑
n=1

βn ln(y − bn) + const.

Let us group the summands with commensurable coefficients (the summands can be assigned to
any term) and redenote the coefficients by An and Bn. We obtain the sum of logarithms of algebraic
functions with incommensurable coefficients,

a(x) =

k′∑
n=1

An ln(an(x)), b(y) =

l′∑
n=1

Bn ln(bn(y)).

Substitute the values of a(x) and b(y) into (1). Making in (1) the change x = y, we see that

f

⎛⎝A1

⎛⎝ln

⎛⎝a1(y)

k′∏
n=2

a
An
A1
n (y)

l′∏
n=1

b
Bn
A1
n (y)

⎞⎠⎞⎠⎞⎠ = P (y, y). (12)

Making the substitution x = x0 in (1) and writing c3 = e
a(x0)

A1 = const, we obtain

f

⎛⎝A1

⎛⎝ln

⎛⎝c3

l′∏
n=1

b
Bn
A1
n (y)

⎞⎠⎞⎠⎞⎠ = P (x0, y). (13)

Let us now proceed in the same way as in the consideration of case (2). Writing P (y, y) = Θ(y)
and P (x0, y) = Ω(y), we note that Θ−1(y) and Ω−1(y) are algebraic. Make the change y = Θ−1(x)
in (12) and the change y = Ω−1(x) in (13). Then (12) and (13) acquire the form

g1(x)

k′∏
n=2

g
An
A1
n (x)

l′∏
n=1

h
Bn
A1
n (x) = ef

−1(x)/A1 , (12’)

c3

l′∏
n=1

t
Bn
A1
n (x) = ef

−1(x)/A1 , (13’)
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where gi(x), hi(x), and ti(x) are algebraic functions obtained after the change (we assign the
constant c3 to any of them). Let us equate the left-hand sides of (12’) and (13’). Let us move all
products to the left-hand side and include all functions into a single product. Redenoting Ai/A1

and Bi/A1 by Ci and the functions 1/gi(x), 1/hi(x), and ti(x) by vi(x), we obtain

j∏
n=1

vCi
n (x) = g1(x). (14)

However, if there are irrational exponents Ci, then equation (14) is impossible, because the left-
hand side of (14) takes infinitely many values when going around the singular point and the right-
hand side only finitely many values, because g1(x) is algebraic. Thus, case (4) is impossible; however,
if all exponents Ci are rational, then we arrive at case (5).

Thus, only cases (1) and (5) are possible. Consider case 1). For the rational function P (x, y),
by (1), we have f(A(x) +B(y)) = P (x, y), where A(x) and B(y) are rational functions and f(x) is
an algebraic function. Let

f(z) =

∞∑
n=−N

cnz
n/k. (15)

Then, for k = 1, the function f(x) is rational, and everything is proved, and, for k �= 1, we have
the equation

(A(x) +B(y))1/k = R(x, y), (16)

where R(x, y) is a rational function, because, otherwise, the left-hand side of f(A(x) + B(y)) =
P (x, y) has branching points and the right-hand side does not have any. Take (16) to the power
k and differentiate the result with respect to x and to y. We obtain 0 = (R(x, y)k)xy, which is
impossible for k �= 1. Thus, k = 1, and this completes the proof of the theorem in case (1).

Consider case (5). Due to the commensurability, the coefficients are of the form δhi with rational

hi. Let LCM be the least common multiple of the denominators hi and let c4 = e
LCM

δ (A(x)+B(y)) =
const. Then P (x, y) can be represented in the form

f

(
δ

LCM
ln(c4C(x)D(y))

)
= P (x, y),

where C(x) and D(y) are rational functions and f( δ
LCM ln(c4x)) is an algebraic function. Setting

H(x) = f( δ
LCM

ln(c4x)), let us prove the rationality of H(x), which will imply the desired assertion.

Thus, we have the equation H(C(x)D(y)) = P (x, y). Let deg = {maxn : (C(x)D(y))
1
n is rational}.

Let H(xdeg) = H̃(x), C(x)
1

deg = C̃(x), and D(y)
1

deg = D̃(y). Arguing as in the consideration of

case (1), we represent H̃(x) by a series of the form (15) and obtain an equation similar to (16),

(C̃(x)D̃(y))1/k = Q(x, y), (16’)

where Q(x, y) is a rational function. However, then we have k = 1 by the choice of deg and by the

construction of C̃(x) and D̃(y). This completes the proof of the theorem.

Theorem 2. Let P (x, y) be a polynomial of analytic complexity one. Then there is either an
additive representation F (A(x)+B(y)) = P (x, y) or a multiplicative representation F (A(x)B(y)) =
P (x, y), where F (x), A(x), and B(x) are polynomials.

Proof. By Theorem 1, we have either an additive or a multiplicative representation with rational
functions F (x), A(x), and B(x). Consider the case of additive representation (the multiplicative
case can be treated in a similar way). Thus, in the case of a polynomial, we have f(A(x)+B(y)) =
P (x, y), where A(x), B(y), and f(x) are rational functions.

Let A(x) have a pole. Then, varying y, we obtain infinitely many poles A(x) + B(y). However,
f(x) has only finitely many poles, and hence, P (x, y) has a pole, which is impossible, because P (x, y)
is a polynomial. Therefore, A(x) is a polynomial. We similarly see that B(y) is a polynomial. This
implies clearly that f(x) is a polynomial, because (A(x) + B(y)) and P (x, y) have no poles. This
completes the proof of the theorem.
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Proposition 3. An additive and a multiplicative representations cannot be realized simulta-
neously, i.e., if there are simultaneously two representations of a rational function P (x, y) =
F (A(x) + B(y)) = G(C(x)D(y)) with rational A(x), B(x), C(x), D(x), F (x), and G(x), then
the complexity of the function P is equal to zero. In particular, this holds if P (x, y) and A(x),
B(x), C(x), D(x), F (x), and G(x) are polynomials.

Proof. Let P (x, y) be a rational function admitting representations of both types,

F (A(x) +B(y)) = G(C(x)D(y)) = P (x, y). (17)

Differentiate (17) with respect to x and to y and divide one equation by the other (the derivatives
with respect to y are not identically zero, because, otherwise, (17) depends only on x and therefore
belongs to Cl0). We have

Px(x, y)

Py(x, y)
=

F (A(x) +B(y))x
F (A(x) +B(y))y

=
F ′(A(x) +B(y))A′(x)

F ′(A(x) +B(y))B′(y)
=

A′(x)

B′(y)
,

Px(x, y)

Py(x, y)
=

G(C(x)D(y))x
G(C(x)D(y))y

=
G′(C(x)D(y))C ′(x)D(y)

G′(C(x)D(y))C(x)D′(y)
=

(ln(C(x)))′

(ln(D(y)))′
,

and hence, choosing some y = y0 and integrating with respect to x, we obtain

A(x)

B′(y0)
=

ln(C(x))

ln(D(y0))′
+ const. (18)

The left-hand side of (18) is rational, and therefore, the right-hand side must also be rational, which
is possible only if C(x) is constant. However, in this case, P (x, y) depends only on y, and therefore,
belongs to Cl0. If P (x, y) is a polynomial, then we arrive at the same conclusion. This completes
the proof of the proposition.

Several questions remain open.
(1) Does a similar theorem hold for algebraic functions?

(2) Let P (x, y) be a rational or an algebraic function of complexity two, i.e., P (x, y) = F (f(a(x)+
b(y)) + g(c(x) + d(y))). What can be said about the seven analytic functions entering the compo-
sition?

Using the opportunity, I express my gratitude to my research supervisor V. K. Beloshapka for
the statement of the problem and permanent interest in the research.
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