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Abstract. We introduce a special nonlinear differential operator and, using its properties,
reduce higher-order Frobenius–Euler Apostol-type polynomials to a finite series of first-order
Apostol-type Frobenius–Euler polynomials and Stirling numbers. Interesting identities are
established.
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1. INTRODUCTION

For any complex numbers λ, u, where u differs from λ and 1, the Apostol type Frobenius–Euler
polynomials Hn(x;λ | u), in the variable x, are defined by the equation

F (t, x;λ|u) = 1− u

λet − u
ext =

∞∑
n=0

Hn(x;λ | u) t
n

n!
. (1.1)

The nth Apostol-type Frobenius–Euler number is given by

Hn(λ | u) := Hn(0;λ | u).

Note that

H0(λ | u) =

⎧⎨
⎩

1 for λ = 1,

1−u
λ−u

for λ �= 1.
(1.2)

The ordinary Frobenius–Euler polynomials Hn(x | u) correspond to the special case λ = 1, so that
Hn(x | u) = Hn(x; 1 | u). Considering the following three relations,

1− u

λet − u
ext =

( ∞∑
n=0

Hm(λ | u) t
m

m!

)( ∞∑
k=0

xktk

k!

)
, λ

1− u

λet − u
ext − u

1− u

λet − u
ext = (1− u)ext,

1− u

λet − u
e(x+y)t =

( ∞∑
n=0

Hm(x;λ | u) t
m

m!

)( ∞∑
k=0

yktk

k!

)
,

(1.3)
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by equations (1.1) and (1.3), we obtain the following interesting identities satisfied by the polyno-
mials Hn(x;λ | u) and numbers Hn(λ | u):

Hn(x;λ | u) =
n∑

l=0

(
n

l

)
Hl(λ | u)xn−1, (1.4)

λ
(
H(λ | u) + 1

)n − uHn(λ | u) =

⎧⎨
⎩

1− u for n = 0,

0 for n > 0,

(1.5)

Hn(x+ y;λ | u) =
n∑

l=0

(
n

l

)
Hl(x;λ | u)Hn−l(y;λ | u), (1.6)

λ
(
H(λ | u) + x

)n − uHn(x;λ | u) =

⎧⎨
⎩

(1− u)xn for n = 0,

0 for n > 0,

(1.7)

with the usual convention about replacing H(λ | u)n by Hn(λ | u).
The Apostol–Bernoulli polynomials Bn(x;λ) and Apostol–Euler polynomials En(x;λ) are given

by the series

t

λet − 1
ext =

∞∑
n=0

Bn(x;λ)
tn

n!
(|t| < | log(λ)| if λ �= 1, and |t| < 2π if λ = 1), (1.8)

2

λet + 1
ext =

∞∑
n=0

En(x;λ)
tn

n!
for λ �= −1, and |t| < | log(−λ)|. (1.9)

Throughout the paper, for the complex logarithm, we consider the principal branch.
In the special case λ = 1, Bn(x; 1) = Bn(x) is the well-known nth Bernoulli polynomial and

En(x; 1) = En(x) is the nth Euler polynomial.
On the other hand, the interpretation of the Apostol–Bernoulli and Apostol–Euler polynomials

in terms of Apostol type Frobenius–Euler polynomials is given as follows.

Lemma 1.1. For any positive integer n,

En(x;λ) = Hn(x;λ| − 1) for λ �= −1, (1.10)

and there are three equivalent ways to obtain the Apostol–Bernoulli polynomials Bn(x;λ)

Bn(x;λ) = lim
u→1

H ′
n(x;λ|u)
1− u

for any λ, (1.11)

where H ′
n(x;λ|u) = ∂

∂x
Hn(x;λ|u), or

Bn(x;λ) = n lim
u→1

Hn−1(x;λ|u)
1− u

for any λ, (1.12)

or

Bn+1(x;λ) = −n+ 1

2
Hn(x;−λ| − 1) for λ �= 1. (1.13)

The polynomials Bn(x;λ) and En(x;λ) are related by the formula

Bn+1(x;λ) = −n+ 1

2
En(x;−λ) for λ �= 1. (1.14)
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The Bernoulli polynomials and Euler polynomials play fundamental roles in various branches
of mathematics including combinatorics, number theory, special functions, and analysis, see for
example [5, 8, 11]. One of the most important formulas satisfied by the Bernoulli polynomials
is Carlitz’s relation for the product of two Bernoulli polynomials [1, 3],

Bm(x)Bn(x) =
∞∑
r=0

((
m

2r

)
n+

(
n

2r

)
m

)
B2rBm+n−2r(x)

m+ n− 2r
+ (−1)m+1 m!n!

(m+ n)!
Bm+n, (1.15)

where m+ n � 2. In [9], Nielson established similar formulas for En(x)Em(x) and Em(x)Bn(x).

Moreover, in view of (1.15), Carlitz considered the following identities for the Frobenius–Euler
polynomials:

Hm(x | u)Hn(x | v) =Hm+n(x | uv) (1 − u)(1− v)

1− uv

+
u(1− v)

1− uv

m∑
k=0

(
m

k

)
Hk(u)Hm+n−k(x | uv)

+
v(1− v)

1− uv

n∑
k=0

(
n

k

)
Hk(v)Hm+n−k(x | uv),

where u, v ∈ C with u �= 1, v �= 1, and uv �= 1 (see [2]). In particular, if u �= 1 and uv = 1, then

Hm(x | u)Hn(x | u−1) = − (1− u)

m∑
k=1

(
m

k

)
Hk(u)

Bm+n−k+1(x)

m+ n− k + 1

− (1− u−1)

n∑
k=1

(
n

k

)
Hk(u

−1)
Bm+n−k+1(x)

m+ n− k + 1

+ (−1)n+1 m!n!

(m+ n+ 1)!
(1− u)Hm+n+1(u).

(1.16)

From Lemma 1.1 and equation (1.16), we obtain Carlitz identity for Euler polynomials

Em(x)En(x) =− 2

m∑
k=1

(
m

k

)
Ek

Bm+n−k+1(x)

m+ n− k + 1
− 2

n∑
k=1

(
n

k

)
Ek

Bm+n−k+1(x)

m+ n− k + 1

+ 2(−1)n+1 m!n!

(m+ n+ 1)!
Em+n+1.

In this paper, we are interested in studying the sum of products of Apostol type Frobenius–
Euler polynomials and in expressing them as linear combination of Apostol type Frobenius–Euler
polynomials with simple coefficients. Our study is motivated by the following famous Euler formula.
Namely, Euler proved the following identity on Bernoulli numbers.

n∑
k=0

(
n

k

)
BkBn−k = −nBn−1 − (n− 1)Bn (n � 1), (1.17)

and its polynomial version

n∑
k=0

(
n

k

)
Bk(x)Bn−k(y) = −n(1− x)Bn−1(x+ y)− (n− 1)Bn(x+ y) (n � 1) (1.18)

this was found by many authors, see [6].
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For N ∈ N, the nth Apostol type Frobenius–Euler polynomials of order N are defined by the
generating function

FN (t, x;λ|u) = F (t, x;λ|u) × F (t, x;λ|u) × · · · × F (t, x;λ|u)︸ ︷︷ ︸
N− times

=
( 1− u

λet − u

)
×

( 1− u

λet − u

)
× · · · ×

( 1− u

λet − u

)
︸ ︷︷ ︸

r− times

ext

=
∞∑

n=0

H(N)
n (x;λ | u) t

n

n!
for u ∈ C with u �= λ, 1.

(1.19)

In the special case, when x = 0, the polynomials H
(N)
n (λ | u) := H

(N)
n (0;λ | u) are called the nth

Apostol type Frobenius–Euler numbers of order N . Besides, the Apostol-Bernoulli B
(N)
n (x;λ) and

Apostol-Euler polynomials E
(N)
n (x;λ) of higher order N are defined as follows:(

t

λet − 1

)N

ext =
∞∑

n=0

B(N)
n (x;λ)

tn

n!
,

for λ = 1, |t| < 2π, and if λ �= 1, |t| < |log(λ)|,
(1.20)

and (
2

λet + 1

)N

ext =

∞∑
n=0

E(N)
n (x;λ)

tn

n!
, |t| < | log(−λ)|, λ �= −1. (1.21)

The purpose of this paper is to study Euler type formulas for Apostol type Frobenius–Euler
numbers and polynomials. Our results can be wieved as a reformulation of Euler’s identities in
the framework of Apostol type of Frobenius–Euler numbers and polynomials. Naturally, from our
results, we deduce easily the Euler’s formulae (1.17) and (1.18). This gives a new way of proving it.
To state and prove the main result of this paper, we introduce and investigate some special non-
linear differential operators. In particular, we express them as a finite series of ordinary differential
operators and Stirling numbers. From this study, we derive nonlinear differential equations. Then,
we obtain some new and interesting identities for Apostol type Frobenius–Euler polynomials of
higher order.

2. MAIN RESULTS AND THEIR PROOFS

We consider the function

f(t) := f(t, u) =
1− u

λet − u
.

Theorem 2.1. Let n,N be any positive integers. The function f is a solution to the following
differential equation of order N

yN+1(t) =

(
u− 1

u

)N
1

N !

N∑
k=0

| s(N + 1, k + 1) | y(k)(t),

where f (k)(t) =
∂k

∂kt
f(t, u) and | s(N + 1, k + 1) | are the unsigned Stirling numbers of the second

kind.

Proof. We prove this theorem by induction on N . For N = 1, we have the relation

∂f

∂t
= −f +

u

u− 1
f2, (2.1)
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thus,

f2 =
u− 1

u
(f + f ′) , (2.2)

and it is well-known that |s(2, 1)| = |s(2, 1)| = 1, see [4]. Thus theorem holds for N = 1. Let N � 1,
we recall that the unsigned Stirling numbers |s(N, k)| of second kind are given by

〈x〉N =

N∑
k=0

|s(N, k)|xk, where 〈x〉N = x(x+ 1) · · · (x+N − 1). (2.3)

By the identity (2.3) and the relation x〈1+x〉N = 〈x〉N+1, the differential operator ∂/∂t satisfies
the following equation 〈

1 +
∂

∂t

〉
N

=
N∑

k=0

|s(N + 1, k + 1)| ∂
k

∂tk
. (2.4)

Moreover, it is well known that the Stirling numbers |s(n, k)| satisfy the following nice recursion
formula

|s(N + 1, k + 1)| = |s(N, k)|+N |s(N, k + 1)| if N � k � 0, (2.5)

|s(N,N)| = 1, |s(N, 0)| = |s(0, k)| = 0 except |s(0, 0)| = 1. (2.6)

One can consult [4] for the properties of Stirling numbers. Now equations (2.1), (2.3), (2.4), (2.5),
and (2.6) imply that the Theorem 2.1 holds.

Let us define

yk(t, x) = y(t)ketx, y(k)(t, x) =
∂k

∂tk
(
y(t)etx

)
.

Then, by Leibnitz formula, we obtain

y(k)(t, x) =

k∑
m=0

(
k

m

)
xk−my(m)(t)ext.

Moreover, we can inverse this identity as follows

y(k)(t) =
∂k

∂tk
(
y(t, x)e−tx

)
again, we use the Leibnitz formula, obtaining

y(k)(t)ext =

k∑
m=0

(
k

m

)
(−x)k−my(m)(t, x). (2.7)

Hence, from equation (2.7), we can write

yN+1(t, x) = yN+1(t)ext

=

(
u− 1

u

)N
1

N !

N∑
k=0

| s(N + 1, k + 1) | y(k)(t)ext

=

(
u− 1

u

)N
1

N !

N∑
k=0

| s(N + 1, k + 1) |
k∑

m=0

(
k

m

)
(−x)k−my(m)(t, x)

=

(
u− 1

u

)N
1

N !

N∑
m=0

(
N∑

k=m

(
k

m

)
(−x)k−m|s(N + 1, k + 1)|

)
y(m)(t, x).

Thus, we obtain the following theorem.
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Theorem 2.2. Let n,N be any positive integers. The function y(t, x) =
1− u

λet − u
ext satisfies the

differential equation

yN+1(t, x) =

(
u− 1

u

)N
1

N !

N∑
m=0

(
N∑

k=m

(
k

m

)
(−x)k−m|s(N + 1, k + 1)|

)
y(m)(t, x).

From (1.1) and (1.19), we see that

f(t) =
1− u

λet − u
=

∞∑
n=0

Hn(λ|u)
tn

n!
, (2.8)

and

fN (t) =
( 1− u

λet − u

)
×
( 1− u

λet − u

)
× · · · ×

( 1− u

λet − u

)
︸ ︷︷ ︸

N− times

=

∞∑
n=0

H(N)
n (λ|u) t

n

n!
, (2.9)

where H
(N)
n (λ|u) are called the nth Apostol-type Frobenius–Euler numbers of order N .

From (2.8), we have

f (k)(t) =
∞∑
l=0

Hl+k(u)
tl

l!
.

Therefore, by Theorem 2.1, (2.8), and (2), we obtain the following theorem.

Theorem 2.3. For any positive integers n and N and any complex number λ, the following
identity holds

H(N+1)
n (λ | u) =

(
u− 1

u

)N
1

N !

N∑
k=0

| s(N + 1, k + 1) | Hn+k(λ | u).

For Apostol–Euler numbers, we have a reduction formula.

Corollary 2.4. Let n,N be a positive integers and λ a complex number, λ �= −1. Then, the
following identity holds

E(N+1)
n (0;λ) =

2N

N !

N∑
k=0

| s(N + 1, k + 1) | En+k(0;λ).

Using Lemma 1.1, for any nonnegative integer N , we obtain

E(N+1)
n (x;−λ) = (−1)N+1 n!

(n+N + 1)!
B

(N+1)
n+N+1(x;λ) for λ �= 1. (2.10)

Now Theorem 2.3 and Corollary 2.4 yield

Corollary 2.5. Let n and N be positive integers. Then

B
(N+1)
n+N+1(0;λ) = (−1)N (n+N + 1)

(
n+N

N

) N∑
k=0

|s(N + 1, k + 1)|Bn+k+1(0;λ)

n+ k + 1
. (2.11)
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From (2.8), we can derive the following equation:

∞∑
n=0

H(N)
n (λ|u) t

n

n!
=

( 1− u

λet − u

)
×
( 1− u

λet − u

)
× · · · ×

( 1− u

λet − u

)
︸ ︷︷ ︸

N− times

=

( ∞∑
l1=0

Hl1(λ|u)
tl1
l1!

)
× · · · ×

( ∞∑
lN=0

HlN (λ|u)
tlN

lN !

)

=

∞∑
n=0

( ∑
l1+···+lN=0

Hl1(λ|u)Hl2(u) · · ·HlN (λ|u)n!
l1!l1! · · · lN !

)
tn

n!

=

∞∑
n=0

( ∑
l1+···+lN=0

(
n

l1, . . . , lN !

)
Hl1(λ|u) · · ·HlN (λ|u)

)
tn

n!
.

(2.12)

Therefore, by (2.12), we obtain the following corollary.

Corollary 2.6. For N ∈ N and n ∈ Z+,

∑
l1+···+lN=n

(
n

l1, . . . , lN !

)
Hl1(λ|u)Hl2(λ|u) · · ·HlN (λ|u)

=

(
u− 1

u

)N−1
1

(N − 1)!

N−1∑
k=0

| s(N, k + 1) | Hn+k(λ | u).

By Corollary 2.2, we obtain the next result.

Theorem 2.7. Let n be a positive integer. Then

H(N+1)
n (x;λ | u) =

(
u− 1

u

)N
1

N !

N∑
j=0

⎛
⎝ N∑

k=j

(−x)k−j | s(N + 1, k + 1) |
(
k

j

)⎞⎠Hn+j(x;λ | u).

Therefore, from the above theorem, we obtain a recurrence formula for the Apostol–Euler poly-
nomials of higher order.

Corollary 2.8. Let n be a positive integer. Then

E(N+1)
n (x;λ) =

2N

N !

N∑
j=0

⎛
⎝ N∑

k=j

(
k

j

)
(−x)k−j | s(N + 1, k + 1) |

⎞
⎠En+j(x;λ).

From relation (2.10) and Corollary 2.8, we have also similar recurrence formula for the Apostol–
Bernoulli polynomials of higher order.

Corollary 2.9.

B
(N+1)
n+N+1(x;λ) =

(−1)N (n+N + 1)

(
n+N

N

) N∑
j=0

⎛
⎝ N∑

k=j

(−x)k−j |s(N + 1, k + 1)|

⎞
⎠ Bn+j+1(x;λ)

n+ j + 1
.

(2.13)

From Theorem 2.8, we deduce the following corollaries. For λ = 1 and x = 0, we have the
following.
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Corollary 2.10. Let n be a positive integer. Then

H(N+1)
n (u) =

(
u− 1

u

)N
1

N !

N∑
k=0

| s(N + 1, k + 1) | Hn+k(u).

For λ = 1, we obtain a polynomial version.

Corollary 2.11. Let n be a positive integer. Then

H(N+1)
n (x | u) =

(
u− 1

u

)N
1

N !

N∑
j=0

⎛
⎝ N∑

k=j

(
k

j

)
(−x)k−j | s(N + 1, k + 1) |

⎞
⎠Hn+j(x | u).

From the above corollaries, we also obtain the following nonlinear recurrence formulas for the
Euler numbers and polynomials:

Corollary 2.12. Let n be a positive integer. Then

E(N+1)
n (0) =

(
u− 1

u

)N
1

N !

N∑
k=0

| s(N + 1, k + 1) | En+k(0),

E(N+1)
n (x) =

2N

N !

N∑
j=0

⎛
⎝ N∑

k=j

(
k

j

)
(−x)k−j | s(N + 1, k + 1) |

⎞
⎠En+k(x).

We also deduce the following nonlinear recurrence formulas for the Bernoulli numbers and poly-
nomials.

Corollary 2.13. Let n be a positive integer. Then

B
(N+1)
n+N+1 = (−1)N (n+N + 1)

(
n+N

N

) N∑
k=0

|s(N + 1, k + 1)| Bn+k+1

n+ k + 1
.

The polynomial version of this corollary is given by

Corollary 2.14. Let n be a positive integer. Then

B
(N+1)
n+N+1(x) = (−1)N (n+N + 1)

(
n+N

N

) N∑
j=0

⎛
⎝ N∑

k=j

(−x)k−j|s(N + 1, k + 1)|

⎞
⎠ Bn+j+1(x)

n+ j + 1
.
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