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Abstract. We consider the index problem for a wide class of nonlocal elliptic operators on
a smooth closed manifold, namely, differential operators with shifts induced by the action of
a (not necessarily periodic) isometric diffeomorphism. The key to the solution is the method
of uniformization. To the nonlocal problem we assign a pseudodifferential operator, with the
same index, acting on the sections of an infinite-dimensional vector bundle on a compact
manifold. We then determine the index in terms of topological invariants of the symbol,
using the Atiyah–Singer index theorem.
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INTRODUCTION
Let M be a closed smooth Riemannian manifold and g : M → M a smooth isometric diffeo-

morphism. The powers of g generate an action of the group Z of integers on M . In this paper, we
consider differential operators with shifts, i.e., operators of the form

D =
∑

k

DkT
k : C∞(M) −→ C∞(M), (0.1)

where the sum is finite, the Dk are differential operators, and T ku(x) = u(gk(x)).
We introduce an ellipticity condition, which implies the Fredholm property for operators of this

type, and compute the index. The method we use is pseudodifferential (actually even differential)
uniformization. The idea is to study, instead of D, an elliptic differential operator with the same
index on a suitably chosen manifold.

This procedure consists of two steps. We first replace the original manifold M by M×R endowed
with the diagonal action of Z, which is free and proper (cf. [4] for ideas similar in spirit). On M ×R

we define an elliptic operator as the external product of D with a special operator A of index one
on the real line (actually, A is the annihilation operator of quantum mechanics).

In the second step, we interpret this operator on M × R as a differential operator on sections
of a Hilbert space bundle with fiber l2(Z) over the smooth quotient (M × R)/Z. The point of
this construction is that the index is preserved while, for the resulting operator, which we call
the differential uniformization of D, the action of g is simply a shift in the fiber, which is much
easier to treat. We compute the symbol of the resulting operator, establish the Fredholm property
(finiteness theorem), and express the index in terms of the symbol of D and topological invariants
of the manifold.

Note that the index problem in a related situation (even for the case when, instead of Z, we take
an arbitrary discrete group of polynomial growth) was studied in [10]. The solution given there did
not use the idea of uniformization and was rather complicated, while the method presented here is
quite simple and natural.

One more remark. Of course, most of our constructions and proofs could be done at the sym-
bolic level in the framework of noncommutative geometry [5, 4, 7]. For example, the differential
uniformization, which we carry out for operators (see Theorem 1.3), corresponds in terms of symbols
exactly to the product in KK-theory of Kasparov [7, 16]. However, in this paper, we give direct
constructions and proofs in terms of operators, which, in our opinion, enhances the clarity of the
constructions.

The work of the first and the third author was partially supported by RFBR grants nos. 12-01-
00577 and 15-01-08392. The first author was supported in part by the Simons Foundation.
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UNIFORMIZATION AND INDEX OF ELLIPTIC OPERATORS 411

1. STATEMENT OF THE MAIN RESULTS

1. Elliptic operators

Let M be a smooth Riemannian manifold and g : M → M a metric preserving diffeomorphism.
We consider an operator of the form

D =
∑

k

DkT
k : C∞(M) −→ C∞(M) (1.1)

with differential operators Dk and the shift operator T defined by Tu(x) = u(g(x)). While the
operators Dk can have any order a priori, our construction is simplified if the order is equal to one.
Hence, from now on, we assume that the Dk are first-order differential operators. The modifications
for higher-order operators and for operators acting on vector bundles are left to the reader.

Definition 1.1. The symbol σ(D) of D is the function on T ∗M \ 0 taking values in operators
on l2(Z) and defined by

(σ(D)(x, ξ))w(n) =
∑

k

σ(Dk)(∂g
n(x, ξ))T kw(n), w ∈ l2(Z), n ∈ Z, (1.2)

where T is the shift operator on l2(Z) given by (T w)(n) = w(n+1), σ(Dk) is the principal symbol
of Dk, and ∂g = (tdg)−1 : T ∗M → T ∗M is the codifferential of g.

We say that D is elliptic if the operator in (1.2) is invertible for all (x, ξ) ∈ T ∗M \ 0.
The elliptic operators are Fredholm (see [1, 2, 10]).
As we have already mentioned in the introduction, the aim of this paper is to obtain an index

formula for elliptic operators of the form (1.1). The main idea used here is the pseudodifferential
uniformization of an operator, i.e., a reduction of the operator to an elliptic pseudodifferential
operator (in general, acting on sections of Hilbert bundles).

2. Uniformization of operators

The uniformization is carried out in two steps.
A. Reduction to a proper action, namely, the passage to the infinite cylinder. On the real line

with coordinate t, consider the operator A = ∂/∂t + t : Hs(R) → Hs−1(R) (see Appendix for the
definition of Hs(R) and more details on operators of this type). It is elliptic and has index one.

Indeed, the cokernel is trivial, while the kernel is generated by the function e−t2/2.
We next extend the isometry g : M → M to an isometry g̃ : M × R → M × R of the infinite

cylinder M ×R with local coordinates x, t by setting g̃(x, t) = (g(x), t+1). As above, we obtain an

action of Z and a shift operator T̃ by

(T̃ u)(x, t) = u(g(x), t + 1). (1.3)

Using the operators Dk of equation (1.1), we define the operator

D̃ =
∑

k

DkT̃
k : Hs(M × R) −→ Hs−1(M × R)

and consider the external product of D̃ and A,

D̃#A =
(

D̃ A
−A∗ D̃∗

)
: Hs(M × R,C2) −→ Hs−1(M × R,C2). (1.4)

Here we take the adjoint with respect to the inner product in L2(M ×R).

B. Reduction to the (smooth) orbit space. The isometry g̃ defines a free proper action of the
group Z on the cylinder. Hence, the corresponding orbit space is a smooth manifold. Let us consider
functions on the cylinder as functions on the orbit space ranging in functions on the fiber of the
projection1 M×R −→ (M×R)/Z = MZ. The point of this representation is that the shift operator

T̃ on M ×R becomes an operator of multiplication, i.e., a local operator on the space MZ.

For L2-spaces and Sobolev spaces, this representation of functions on M×R in terms of functions
on MZ is described by the following proposition.

1The space MZ is also called the homotopy quotient of M by the action of Z.
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Proposition 1.2. Let E be the vector bundle E = (M ×R× l2(Z))/Z over MZ with fiber l2(Z).
Here n ∈ Z acts by (x, t, u) �→ (gn(x), t+ n,T −nu).

(1) We have the isomorphism
I : L2(M × R) −→ L2(MZ, E),
(Iϕ)(x, t, n) = ϕ(gn(x), t+ n).

(1.5)

(2) The operator I in (1.5) induces an isomorphism of the Sobolev spaces
I : Hs(M × R) → Hs(MZ, E), (1.6)

where the Sobolev space Hs(MZ, E) of sections of the infinite-dimensional bundle E over MZ

is endowed with the norm
‖u‖2 =

∑

n

‖(1 + Δx,t + n2)s/2u(x, t, n)‖2L2(M×[0,1]). (1.7)

Proof. A direct computation shows that the inverse mapping is equal to

(I−1u)(x, t) = u(g−[t](x), {t}, [t]),
where t = [t] + {t} is the decomposition into the integer and fractional part of t. This proves the
isomorphism of the L2-spaces. The statement for the Sobolev spaces is proved in Sec. 2.

Theorem 1.3 [Uniformization theorem].

(1) The operator D = I(D̃#A)I−1, which closes the commutative diagram

Hs(M × R,C2)
D̃#A−−−−→ Hs−1(M × R,C2)

I

⏐⏐� I

⏐⏐�

Hs(MZ, E ⊗ C
2)

D−−−−→ Hs−1(MZ, E ⊗C
2),

(1.8)

is a differential operator. Its symbol in the sense of [11], Sec. 3.3, is the following (nonho-
mogeneous) operator-valued function on T ∗MZ,

σ(D)(x, ξ, t, τ)=(σ(D)(x, ξ))#(iτ + t+ n) : l2(Z, μξ,τ,s)⊗C
2−→ l2(Z, μξ,τ,s−1)⊗C

2. (1.9)
Here, iτ + t+ n acts by multiplication, and l2(Z, μξ,τ,s) has the norm

‖w‖2ξ,τ,s =
∑

n

(1 + |ξ|2 + τ2 + n2)s|w(n)|2. (1.10)

(2) If D is elliptic, then the differential operator D is also elliptic, i.e., the operator in (1.9) is
invertible for large |(ξ, τ)|, say, for |(ξ, τ)| � R, and the norm of the inverse is uniformly
bounded.

(3) Under the assumptions of (b), the following equality holds:
indD = indD. (1.11)

Theorem 1.3 will be proven in Secs. 2 and 3. We first establish assertions (1)–(2) and then show
equality (3) for the indices.

3. Index formula

We denote by S∗
RMZ the cosphere bundle of MZ of radius R with R as in Theorem 1.3(2)

and consider the space Λ(S∗
RMZ,End E) of differential forms on S∗

RMZ ranging in endomorphisms
of the Hilbert bundle E . This space is endowed with the differential d (the differential is well
defined, since E is flat). Taking the fiberwise trace of operators in l2(Z) gives the (partially defined)
mapping tr : Λ(S∗

RMZ,End E) −→ Λ(S∗
RMZ). We endow MZ with the metric h + dt2, where h is

the g-invariant metric on M . Since g is an isometry, this metric is well defined, and we have the
equality Td(T ∗

C
M) = Td(T ∗

C
MZ) of differential forms, which represent the Todd classes of the

complexification of the cotangent bundles of M and MZ, respectively. With this identification, we
introduce the following definition.

Definition 1.4. The topological index of an elliptic operator D is the number

indt D =
∑

j

Cj

∫

S∗
R
MZ

tr
[
(σ(D)−1dσ(D))2j−1 Td(T ∗

C
M)

]
, (1.12)

where Cj = (j − 1)!/[(2πi)j (2j − 1)!].

The properties of the topological index are studied in Sec. 4.2 below.
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Theorem 1.5. For the elliptic operator D in (1.8) with symbol σ(D), the topological index (1.12)
is well defined provided that dimM > 1, and then the index formula holds:

indD = indt D. (1.13)

Equalities (1.11) and (1.13) give the index formula for the original operator D. Theorem 1.5 is
proven in Sec. 4.

2. REDUCTION TO THE ORBIT SPACE

1. Isomorphism of Sobolev spaces

To see that the mapping (1.6) is an isomorphism, we use the two lemmas presented below.

Let γ be the one-dimensional complex vector bundle over MZ × S
1 defined by the equality

C∞(MZ × S
1, γ) = {v ∈ C∞(M × R× S

1) | v(g(x), t + 1, ϕ) = v(x, t, ϕ)e−iϕ}.

Lemma 2.1. The mapping
K : Hs(MZ, E) −→ Hs(MZ × S

1, γ)
{u(x, t, n)} �−→ Fn→ϕu(x, t, ·) = 1√

2π

∑
n u(x, t, n)einϕ,

which is just the fiberwise Fourier transform (series), is an isomorphism for all s.

Proof. This is an immediate consequence of the fact that the Fourier transform Fn→ϕ takes
the norm (1.7) defining Hs(MZ, E) to the norm

‖u‖s =
∥∥ (1 + Δx,t − ∂2/∂ϕ2

)s/2
u(x, t, ϕ)

∥∥
L2(MZ×S1,γ)

(2.1)

defining Hs(MZ × S
1, γ) if we consider this space as the space of functions on MZ taking values in

functions on S
1, cf. [10], Sec. 12.2.1.

Lemma 2.2. The mapping KI : Hs(M × R) −→ Hs(MZ × S
1, γ) is an isomorphism for all s.

Proof. First note that KI takes rapidly decreasing functions on M × R to smooth sections of
γ. The assertion then follows from the fact that this mapping takes the operator Δx + t2 − ∂2/∂t2,
which is the base for the norm in Hs(M × R), to the Laplacian (modulo lower order terms) Δx −
∂2/∂ϕ2 − ∂2/∂t2 that induces the norm in Hs(MZ × S

1, γ).

So, I = K−1(KI) is an isomorphism, as the composition of two isomorphisms.

2. Computation of the operator-valued symbol

Let
B =

∑

k

Bk

(
x,−i∂/∂x, t,−i∂/∂t

)
T̃ k

be a differential operator with shifts on M × R. We have

{u(x, t, n)} I−1

�−→ u(g−[t](x), {t}, [t])
B�−→

∑

k

Bk

(
x,−i∂/∂x, t,−i∂/∂t

)
u(g−[t](x), {t}, [t + k])

I�−→
{∑

k

Bk

(
gn(x),−i∂/∂(gn(x)), t+ n,−i∂/∂t

)
T ku(x, t, n)

}
.

Thus, the operator IBI−1 is indeed a differential operator on MZ acting on the sections of the
infinite-dimensional bundle E . Its symbol in the sense of [11], Sec. 3.3, is equal to

σ(IBI−1)(x, ξ, t, τ) =
∑

k

σ(Bk)(∂g
n(x, ξ), t + n, τ)T k : l2(Z, μξ,τ,s) → l2(Z, μξ,τ,s−1).

An easy computation shows that it smoothly depends on x, ξ, t, τ , satisfies the necessary estimates,
and has the compact variation property. Namely, the derivatives

∂σ(IBI−1)/∂ξ, ∂σ(IBI−1)/∂τ : l2(Z, μξ,τ,s) → l2(Z, μξ,τ,s−1)

are compact operators for all x, ξ, t, τ .

For B = D̃#A we obtain the symbol (1.9) and its properties stated in Theorem 1.3 (1).
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3. Ellipticity

Lemma 2.3. Let D be elliptic. Then the operator D is also elliptic, i.e., its symbol (1.9) is
invertible provided that |ξ|2 + τ2 is large enough and the norm of the inverse is uniformly bounded.

Proof. Let us first reduce our operator to the spaces l2(Z). Consider the commutative diagram

l2(Z, μξ,τ,s)⊗ C
2 σ(D)(x,ξ,t,τ)−−−−−−−−→ l2(Z, μξ,τ,s−1)⊗C

2

δs
⏐⏐� δs−1

⏐⏐�

l2(Z)⊗C
2 σs(x,ξ,t,τ)−−−−−−−→ l2(Z)⊗ C

2,

where δ = (1 + |ξ|2 + τ2 + n2)1/2. In this diagram, the vertical mappings are isomorphisms, and
the operator σs(x, ξ, t, τ) is defined by σs(x, ξ, t, τ) = δs−1σ(D)(x, ξ, t, τ)δ−s . We claim that the
operator σs(x, ξ, t, τ) : l

2(Z) ⊗ C
2 −→ l2(Z) ⊗ C

2 is invertible for large |ξ, τ | and the norm of the
inverse operator is uniformly bounded. To construct the inverse operator, we consider the following
expression (the variables x, ξ, t, τ are omitted for brevity):

σs = δs−1
(
σ(D)#σ(A)

)
δ−s =

(
δs−1σ(D)δ−s

)
#δ−1σ(A) = (σ(D)δ−1#δ−1σ(A)) +Q. (2.2)

Here and below, Q : l2(Z)⊗ C
2 → l2(Z)⊗ C

2 stands for operator families of order −1 in the scale
l2(Z, μξ,τ,s). The first equality in (2.2) is just the definition of the symbol σs; the second one holds,
because A has no shifts, and the third one is valid because the commutator [T , δs] is an operator
of order � s− 1,

[T , δs] = (T δsT −1 − δs)T = [(1 + |ξ|2 + τ2 + (n+ 1)2)s/2 − (1 + |ξ|2 + τ2 + n2)s/2]T

= δs
((

1 +
2n+ 1

1 + |ξ|2 + τ2 + n2

)s/2

− 1
)
T = δs−1P,

where P is a uniformly bounded operator family. Here we have used a Taylor expansion of (1+α)s/2

at α = 0 for the last equality. With a slight modification of the argument, we can also obtain the
form δ−1σ(D)#σ(A)δ−1 +Q on the right-hand side of (2.2).

To construct a left inverse of σs, consider the operator σ∗
sσs. A direct computation using (2.2)

shows that

σ∗
sσs =

(
δ−1(σ(D)∗σ(D) + (n2 + τ2))δ−1 0

0 δ−1(σ(D)σ(D)∗ + (n2 + τ2))δ−1

)
+Q.

Let us prove that the self-adjoint operators on the diagonal of this matrix are positive definite.
Indeed, consider, for instance, the operator in the left upper corner. Using the ellipticity of D, we
have

〈δ−1(σ(D)∗σ(D) + n2 + τ2)δ−1w,w〉 = 〈(σ(D)∗σ(D) + n2 + τ2)δ−1w, δ−1w〉

� c|ξ|2〈δ−1w, δ−1w〉+ 〈(n2 + τ2)δ−1w, δ−1w〉 � c′〈δ2δ−1w, δ−1w〉 = c′〈w,w〉

with suitably small c, c′ > 0. This implies that δ−1(σ(D)∗σ(D) + n2 + τ2)δ−1 is positive definite,
and the operator σ∗

sσs is the sum of an invertible family with uniformly bounded inverse and an
operator family which tends to zero as (ξ, τ) → ∞. Hence, the family σ∗

sσs is uniformly invertible,
and (σ∗

sσs)
−1σ∗

s is a left inverse of σs.
To construct a right inverse for σs, we consider the family σsσ

∗
s . A similar reasoning shows that

it is also uniformly invertible. Therefore, a right inverse of σs is given by σ∗
s (σsσ

∗
s )

−1.
The proof of the lemma is complete.

3. EQUALITY OF THE INDICES

Let us prove equality (1.11). Since I is an isomorphism, the equality of the indices is a corollary
of the following proposition.

Proposition 3.1. The operator D̃#A in (1.4) is Fredholm for all s, its index does not depend
on s, and we have the equality

ind(D̃#A) = indD. (3.1)
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Proof. Step 1. The operator D̃#A is an operator with shifts on the cylinder; its symbol is

σ(D̃#A)(x, ξ, t, τ) = σ(D)(x, ξ)#σ(A)(t, τ) : l2(Z,C2) −→ l2(Z,C2),

cf. the Appendix. Since D and A are elliptic, σ(D)(x, ξ) is invertible whenever ξ 
= 0, and σ(A)(t, τ)
is invertible whenever t2 + τ2 
= 0. Hence, the external product of these symbols is invertible

whenever |ξ|2 + t2 + τ2 
= 0. Therefore, D̃#A is elliptic, and thus a Fredholm operator.
Step 2. Consider the operator family

Bε =
(∑

k

DkT̃
k
ε

)
#A : Hs(M ×R,C2) −→ Hs−1(M ×R,C2), 0 � ε � 1,

where T̃εu(x, t) = u(g(x), t + ε). By construction, B1 = D̃#A. The ellipticity condition in Defi-
nition 5.1 requires the invertibility of the symbol in the crossed product algebra and is therefore
independent of ε, cf. Remark 5.4.

So it is clear that the operators Bε are elliptic and hence are Fredholm operators for ε ∈ [0, 1].
Since D and A commute, the technique of external products, cf. Sec. 9 in [3], shows that

kerB0 = kerB∗
0B0 = kerD ⊗ kerA � kerD

and, similarly,
cokerB0 = kerB0B

∗
0 = kerD∗ ⊗ kerA � cokerD.

Step 3. To prove equality (1.11), it remains to show that the index of Bε does not depend on ε.
This is not trivial, because the mapping ε �→ Bε is not continuous in the operator norm. For

the proof, we rely on a Hörmander theorem on the homotopy invariance of the index (see Theorem
19.1.10 in [8]). The cited result guarantees that the index does not change, provided that

(1) the family Bε consists of Fredholm operators and the family of almost inverses B−1
ε is

strongly continuous in ε;
(2) the families

K1,ε = 1−BεB
−1
ε and K2,ε = 1−B−1

ε Bε (3.2)

are uniformly compact, which means that the closures of the sets
⋃

ε∈[0,1] K1,εB and⋃
ε∈[0,1] K2,εB, where B ⊂ L2(M × R) is the unit ball, are compact.

Let us show that these two conditions are satisfied in our situation. Write Bε =
∑

b̂kT̃
k
ε , and

denote the principal symbol of b̂k in the sense of the Appendix by bk. While the symbol σ(Bε)
defined in Remark 5.2 is in general an element of the crossed product algebra B � Z, where B
consists of the continuous functions on the sphere {|ξ|2 + t2 + τ2 = 1}, the symbol lies in the case
in question even in the subalgebra A � Z of sequences with rapidly decreasing coefficients in the
algebra A of all smooth functions on the sphere {|ξ|2 + t2 + τ2 = 1}; recall that the sum is finite

and the b̂k are differential operators. According to a result of Schweitzer [15], this algebra is inverse
closed. Hence there is a rapidly decreasing sequence {ak}k ⊂ A such that

σ(Bε)
−1 =

∑

k

akT k.

We now choose a sequence {âk}k of operators all of whose seminorms are rapidly decreasing in k.
Let

B−1
ε =

∑
âkT

k
ε .

A direct computation yields the estimate ‖T̃ k
ε ‖ � C(1 + |k|)|s| for the norm of T̃ k

ε on Hs(M × R).

Hence the series for B−1
ε converges. Moreover, the strong continuity of T̃ε and the rapid decay of

the âk imply the strong continuity of ε �→ B−1
ε .

It remains to consider the families (3.2). Let us first consider K1,ε. We infer from Cauchy’s
product formula that

1−BεB
−1
ε = 1−

∑

m+k=0

b̂mT̃m
ε âkT̃

−m
ε −

∑

l�=0

( ∑

m+k=l

b̂mT̃m
ε âkT̃

−m
ε

)
T̃ l
ε.

By construction, the coefficient of each power of T̃ε in this expression is an operator of order −1. As
a consequence, the sum of the first two terms on the right-hand side is of order −1, and so is each

of the terms Ll,ε =
∑

m+k=l b̂mT̃m
ε âkT̃

−m
ε , l 
= 0. Now we observe that, for fixed m, ε �→ T̃m

ε âkT̃
−m
ε
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is bounded. Since we have only finitely many summands for each l, the sum of the first two terms
is a bounded function of ε with values in operators of order −1, and so is each Ll,ε. Using the

boundedness of T̃ε, we conclude that all the mappings ε �→ Ll,εT̃
l
ε take values in operators of order

−1 and are bounded. Then the rapid decay of the sequence {b̂k} shows that ε �→ K1,ε is a bounded
mapping in the space of operators of order −1. The family K2,ε can be considered similarly. Hence
the conditions of Hörmander’s theorem are fulfilled and indBε is constant. This completes the
proof.

4. INDEX OF OPERATORS IN HILBERT BUNDLES

In this section, we prove Theorem 1.5 on the index of the operator D with operator-valued
symbol.

1. Reduction to a pseudodifferential operator with homogeneous symbol

Let D′ be a pseudodifferential operator, of order zero on MZ, whose symbol is equal to σ(D)
for |(ξ, τ)| = R, where R is a sufficiently large positive number, and is a homogeneous function of
degree zero in the covariables (ξ, τ). Explicitly, this symbol is defined by

σ(D′)(x, ξ, t, τ) = σ(D)
(
x,

Rξ

|(ξ, τ)| , t,
Rτ

|(ξ, τ)|
)
.

Lemma 4.1. The following equality holds:
indD = indD′. (4.1)

Proof. Let Λ be a first-order operator with the symbol (|ξ|2 + τ2 + n2)1/2. The index of this
operator is obviously equal to zero. We obtain

indD = ind(DΛ−1) = p ![σ(DΛ−1)] = p ![σ(D)] = p ![σ(D′)] = indD′,

where p : T ∗MZN → pt is the projection and [σ(D)] ∈ K0(T ∗MZ) is the class of the symbol in
K-theory. Here the first equality and from the fact that Λ has index zero, and the second and last
equalities follow from the index formula in K-theory, see [9] or Theorem 3.89 in [11].

2. The topological index of operator-valued symbols

We prove the index formula for pseudodifferential operators with operator-valued symbols in the
following class.

Definition 4.2. An element σ ∈ C∞(S∗
RMZ,End E) is a symbol if its derivatives

∂σ

∂ξ
,
∂σ

∂t
,
∂σ

∂τ
: l2(Z) −→ l2(Z) (4.2)

are operators of order −1 in the scale of spaces l2(Z, μs) defined using the weight μs(n) = (1+n2)s/2.
A symbol is said to be elliptic if it is invertible at each point of S∗

RMZ.

The symbol of the operator D′ is an example of a symbol of this kind. Note also that, due to the
assumptions on the derivatives, these are symbols in the sense of Luke [9], i.e., they have compact
variation in the covariables.

We shall now study the topological index of Definition 1.4 for symbols of this class. The following
lemma establishes essential properties of the integrand.

Lemma 4.3. Let ω ∈ Λ2k(M) be a closed Z-invariant form of degree 2k. Then

(1) the expression
tr
[
(σ−1dσ)2j−1ω

]
∈ Λ2j−1+2k(S∗

RMZ) (4.3)

is a well-defined smooth closed form if 2j − 1 + 2k > dimM + 1;
(2) the cohomology class of (4.3) is invariant with respect to homotopies of the elliptic symbol

σ if 2j − 1 + 2k > dimM + 2.
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Proof. Write m = dimM for simplicity.
(a) Since ω is Z-invariant, it follows that we can consider ω as a smooth form on S∗

RMZ. It
suffices to prove the statement in local coordinates, which we denote by x, ξ, t, τ . Decompose the
form (σ−1dσ)2j−1 into a sum of monomials,

(σ−1dσ)2j−1 =
∑

α,β,γ,δ

fαβγδ(x, ξ, t, τ)dx
αdtβdξγdτ δ, (4.4)

where the summation ranges over the multi-indices α, β, γ, δ. Denote μ = |β| + |γ| + |δ|. Then
|α| + μ = 2j − 1 and |α| + 2k � m. This inequality means simply that a nonzero monomial can
have at most n differentials dx. It follows that μ � 2k − m + 2j − 1. By (4.2), this implies that
the product (σ−1dσ)2j−1ω is an operator of order −μ. Therefore, if 2k−m+ 2j − 1 > 1, then this
product is a form which ranges in trace-class operators, and the form (4.3) is well defined. The fact
that the form is closed holds because the even form ω commutes with σ−1dσ follows from the last
two equalities in the chain

d
(
tr((σ−1dσ)2j−1ω)

)
= (2j − 1) tr

(
d(σ−1dσ)(σ−1dσ)2j−2ω

)
= −(2j − 1) tr((σ−1dσ)2jω)

= (2j − 1) tr((σ−1dσ)2j−1ω(σ−1dσ)) = (2j − 1) tr((σ−1dσ)2jω).

(b) Let σ = σε be a homotopy with parameter ε ∈ [0, 1] of invertible elements. Then the
corresponding forms tr((σ−1dσ)2j−1ω) define the same cohomology class. This follows from the
transgression formula

(
∂

∂ε
) tr

(
(σ−1dσ)2j−1ω

)
= (2j − 1)d tr

(
σ−1(

∂σ

∂ε
)(σ−1dσ)2j−2ω

)
,

which holds for 2k + 2j − 1 > m+ 2.

The integral of expression (4.3) over S∗
RMZ can be nonzero only if β + |γ|+ δ � m+ 1 in (4.4),

and hence 2j− 1 � m+1. Moreover, if m > 1, then m+2 < 2m+1, and we necessarily have k > 0
if 2j − 1 � m+ 2. We thus conclude, from Lemma 4.3, that the following assertion holds.

Corollary 4.4. The topological index is a well-defined homotopy invariant if dimM > 1.

2. Index theorem

We next establish a cohomological index formula in the spirit of Rozenblum [12, 13] for our
situation.

Theorem 4.5. The Fredholm index of an elliptic pseudodifferential operator

σ̂ : L2(MZ, E) → L2(MZ, E)
with symbol σ is equal to

ind σ̂ = indt σ̂, (4.5)

where the topological index indt σ̂ is defined in (1.12).

Proof. Step 1. Let us reduce the symbol to the form of the identity plus a compact-valued
symbol. To this end, we choose a covector τ0 
= 0. Let σ′ be the elliptic symbol

σ′(x, ξ, t, τ) = σ(x, ξ, t, τ)σ−1(x, 0, t, τ0). (4.6)

We have
ind σ̂ = ind σ̂′, indt σ̂ = indt σ̂′. (4.7)

Both equalities follow from the logarithmic property of the (topological) index and the fact that
σ(x, 0, t, τ0) is the symbol of a multiplication operator.

Step 2. Let us now replace the symbol (4.6), which we shall denote for brevity by σ, by a symbol
of the form of the identity plus a finite rank symbol. To this end, we take a sequence {PN}, N � 1
of smooth projections PN : E −→ E of ranks tending to infinity as N → ∞ and ImPN ⊂ ImPN+1.
Below we take this family to be equal to the orthogonal projection to the subspace in l2(Z) spanned
by the vectors e−N+1, e−N+2, . . . , eN−1, eN , cosϕ(t)e−N +sinϕ(t)eN+1, where {ej} is the standard
base in l2(Z) and ϕ(t) is a smooth monotone function such that ϕ(t) = 0 if t < 1/3 and ϕ(t) = π/2
if t > 2/3. Obviously, these vectors are pairwise orthogonal for each t.
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Lemma 4.6. If N is large enough, then σ is linearly homotopic in the class of elliptic symbols
to the symbol

σ0 = (1− PN ) + PNσPN , (4.8)

which is equal to the direct sum of the identity and an elliptic symbol PNσPN of finite rank.

Proof. 1. A direct computation shows that PN is continuous inm ∈ S∗
RMZ uniformly for N � 1.

Hence, the symbol σ0,N = (1 − PN ) + PNσPN is also uniformly continuous in m and N . Given
ε > 0 (a specific choice of this number will be given below), by uniform continuity there exists a
finite subset {mj} ⊂ S∗

RMZ with the following property: given m ∈ S∗
RMZ, we have

‖σ(m) − σ(mj)‖ � ε, ‖σ0,N (m)− σ0,N(mj)‖ � ε (4.9)

for some mj and all N .

2. Since σ(mj) is equal to the sum of an identity operator and a compact operator, there exists
an N0 such that for all N � N0 we have

‖σ(mj)− σ0,N (mj)‖ � ε for all mj . (4.10)

3. Now (4.9) and (4.10) imply the estimate

‖σ(m)− σ0,N (m)‖ � 2ε+ ‖σ(mj)− σ0,N (mj)‖ � 2ε+ ε = 3ε (4.11)

for all m and N � N0. Let us now choose ε =
(
3‖σ−1‖

)−1
. Then (4.11) implies the inequality

‖σ − σ0,N‖ � ‖σ−1‖−1.

Hence, the linear homotopy (1 − α)σ + ασ0,N , α ∈ [0, 1], consists of invertible elements (this is
proved by using Neumann series).

The proof of the lemma is complete.

Step 3. To prove the theorem, it suffices to check (using the Atiyah–Singer index formula) that
(4.5) holds for the symbol σ0 (see (4.8)). For the analytic index, we have

ind σ̂0 = indPN σ̂PN , (4.12)
since σ0 is the direct sum of the identity and the symbol PNσPN . Further, the index of the operator

PN σ̂PN : L2(MZ, PNE) −→ L2(MZ, PNE)
acting on the sections of the finite-dimensional vector bundle PNE is calculated using the Atiyah–
Singer formula. Hence, we see that, to prove the theorem, it remains to show that the topological
index of σ̂0 is equal to the Atiyah–Singer topological index of PN σ̂PN . To this end, we choose, in
E , the connection:

∇0 = PNdPN + (1− PN )d(1 − PN ) : Λ(S∗
RMZ, E) −→ Λ(S∗

RMZ, E),

which is the direct sum of flat connections in the bundles PNE and (1−PN )E (the connections are
flat, since PN depends only on t and d is flat).

Lemma 4.7. The topological index of the symbol σ0 can be computed using either of the con-
nections ∇ = d or ∇0. More precisely, for each j � 1, we have the equality

∫

S∗
R
MZ

tr
[
(σ−1

0 dσ0)
2j−1 Td(T ∗

C
M)

]
=

∫

S∗
R
MZ

tr
[
(σ−1

0 ∇0σ0)
2j−1 Td(T ∗

C
M)

]
. (4.13)

Proof. The proof of this lemma is quite standard (see [6]). More precisely, first, one reduces the
integrals (4.13) over the odd-dimensional manifold S∗

RMZ to integrals of Chern character forms on
the even-dimensional manifold T ∗MZ. Second, the de Rham cohomology class of Chern character
forms on T ∗MZ does not depend on the choice of the connection. Hence, the integrals on T ∗MZ

(and hence on S∗
RMZ) are equal.

By this lemma, we can calculate the topological index of σ̂0 using the connection ∇0. Since this
is a direct sum connection and the symbol is also a direct sum, we see that the topological index is
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equal to the sum of the topological index of the identity (which is zero) and the topological index
of the operator PN σ̂PN ,

indt σ̂0 = indt(PN σ̂PN ) =
∑

j

Cj

∫

S∗
R
MZ

tr
[
(σ−1

N ∇NσN )2j−1 Td(T ∗
C
M)

]
, (4.14)

where ∇N = PNdPN is a flat connection in PNE and σN = PNσPN . However, the last expression
coincides with the Atiyah–Singer topological index of the symbol σN (see [6] again). Hence, (4.12)
and (4.14) give the desired equality ind σ̂0 = indt σ̂0. This completes the proof of Theorem 4.5.

Now the index theorem, Theorem 1.5, follows from equation (4.1) and Theorem 4.5.

APPENDIX. OPERATORS ON THE INFINITE CYLINDER

Symbol classes

We consider a class of pseudodifferential operators, on the cylinder M × R, similar to that
introduced by Shubin in [14]. To this end, we cover M × R with coordinate patches of the form
Uj × R, where the Uj ⊆ R

dimM are bounded coordinate charts for M . Denote the variables on
M × R by (x, t), the covariables by (ξ, τ), and say that P : C∞(M × R) → C∞(M × R) is an
operator of order m on M ×R if its local symbols a = a(x, ξ, t, τ) with respect to these coordinates
satisfy the estimates

Dα
ξ D

β
τD

γ
xD

δ
t a(x, ξ, t, τ) = O

(
(1 + |ξ|2 + |t|2 + |τ |2)(m−|α|−|β|−|δ|)/2).

These operators naturally act on the scale of Sobolev spacesHs(M×R) of all tempered distributions
u on M ×R such that (1+ t2 +Δx− ∂2

t )
s/2u ∈ L2(M ×R). For arbitrary s, an operator P of order

m defines a Fredholm operator in L(Hs(M × R),Hs−m(M × R)) if and only if it is elliptic, i.e.,
p(x, ξ, t, τ) is invertible for large |(ξ, t, τ)|, and

p(x, ξ, t, τ)−1 = O((1 + |ξ|2 + |t|2 + |τ |2)−m/2).

We have the subclass of all ‘classical’ operators whose symbols in these coordinates have an asymp-
totic expansion of the form p ∼

∑
pm−j, where pm−j is homogeneous of degree m − j in (ξ, t, τ)

for large |(ξ, t, τ)|, say, for |(ξ, t, τ)| � 1. Clearly, a classical operator of order m is elliptic if and
only if the principal symbol pm is invertible for |(ξ, t, τ)| = 1.

Operators with shifts

We next consider operators of the form

D̃ =
∑

DkT̃
k, (5.1)

where the sum is finite, the Dk are operators of order m on the cylinder as described above, and T̃
was defined in (1.3).

The conjugation P �→ T̃ P T̃−1 induces the action p �→ p(∂g(x, ξ), t, τ) on the principal symbol.
Following the approach of Antonevich and Lebedev, we give the following definition:

Definition 5.1. The symbol of the operator D̃ is the operator

σ(D̃)(x, ξ, t, τ) =
∑

k

σ(Dk)(∂g
n(x, ξ), t, τ)T k : l2(Z) −→ l2(Z), (5.2)

where σ(Dk) is the principal symbol of order m of Dk.

We say that D̃ is elliptic if σ(D̃) is invertible for all (x, ξ, t, τ) with |ξ|2 + t2 + τ2 = 1.

Remark 5.2. One can also define the symbol of the operator (5.1) following the approach of
[1, 2] as an element of the crossed product B � Z, where B is the algebra of continuous functions
on the cospheres {|ξ|2 + t2 + τ2 = 1}. Then the invertibility of the symbol in the crossed product
algebra is equivalent to the fact that, for all (x, ξ, t, τ) with |ξ|2 + t2 + τ2 = 1, the operator (5.2) is
invertible on l2(Z) (see Theorem 21.2 of [1]).
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Theorem 5.3. If D̃ is elliptic, then it is a Fredholm operator in L(Hs(M ×R), Hs−m(M ×R))

for each s. The index, kernel, and cokernel of D̃ do not depend on s.

Proof. On the spaces Hs(M × R), the shift T̃ is unitary modulo a compact operator, and the
principal symbol is independent of s. The Fredholm property therefore follows from the approach
in [1, 2]. The independence of the index of s is proved using the fact that D almost commutes with
order reduction operators. The independence of the kernel and the cokernel of s follows from the fact
that, on one hand, the dimension of the kernel is a nonincreasing function of s, while the dimension
of the cokernel is nondecreasing and, on the other hand, the difference of these dimensions is equal
to the index, which is constant in s.

Remark 5.4. Instead of the shift T̃ , we could have considered the shift T̃ε, 0 � ε � 1 induced

by the diffeomorphism (x, t) �→ (g(x), t+ε) on M ×R. Replacing T̃ in (5.1) by T̃ε leads to the same
symbol in (5.2), since the action on the principal symbol is the same.

Remark 5.5. Theorem 5.3 could also be proved using a reduction to a compact manifold, as
it was done for Connes operators on the real line in [10], Sec. 12.2.1.
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