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Abstract. We extend the Chern character construction of Neshveyev and Tuset to a map
whose values lie in Hopf cyclic homology with coefficients, generalizing their definition of
K-theory as well. We also introduce the sheaf of equivariant K-theory (with and without
coefficients) similar to the equivariant cohomology of Block and Getzler. This construction is
much more geometric (it is defined only for the case in which the Hopf algebra and the Hopf-
module algebra are both algebras of functions on some spaces). Thus, we give a geometric
definition of the corresponding Chern character, which takes values in a version of Block–
Getzler’s sheaf of equivariant cohomology.
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INTRODUCTION

In recent years, many papers dealing with the Hopf-cyclic cohomology of algebras and coalgebras
were published. The main motivation for this study is a result due to Connes and Moscovici, who
gave a construction of the characteristic map taking the Hopf-cyclic cohomology of a Hopf algebra
with invertible antipode to the cyclic cohomology of an algebra on which the Hopf algebra acts.
An important property of this map, justifying further investigations, is that the image of the map
contains characteristic classes associated with certain differential operators (in the case treated by
Connes and Moscovici, this was the transversal signature operator of a foliation). Later on, the ideas
of Connes and Moscovici were developed by Crainic, Hajac, Khalkhali, Rangipour, Sommerhäuser,
and other authors to a fully-fledged theory of Hopf-cyclic (co)homology of algebras and coalgebras,
which made it possible to use a rather wide spectrum of coefficient modules, the so-called stable
anti-Yetter–Drinfeld modules (SAYD for short). One can regard this cohomology theory as an
algebraic (noncommutative) analog of the equivariant cohomology, namely, in some elementary
cases (e.g., in the case of a finite group Hopf algebra), these cohomology spaces can be rather easily
identified with a version of equivariant cohomology (although the general situation is not quite
clear). The interested reader can find further details in [10].

As was mentioned above, from the very beginning, the Hopf-cyclic cohomology was the range of a
characteristic map. However, it was never clear what the domain of this map should be. In the orig-
inal papers of Connes and Moscovici, the characteristic map was associated with a pseudo-elliptic
differential operator. In the subsequent papers, this question was answered by introducing the dual
Hopf-cyclic homology theory, so that the characteristic map became a characteristic pairing. If we
want to extend the analogy with equivariant cohomology, it seems that the most adequate domain
of such a map should be given by an equivariant K-theory. However, it is still unclear what kind
of equivariant K-theory should be considered. Possible constructions of equivariant K-theory of a
module algebra over some Hopf algebra and the corresponding Chern character for the equivariant
cyclic homology were proposed by Neshveyev and Tuset [8] and Akbarpour and Khalkhali [1]. Both
constructions are quite similar and coincide if the Hopf algebra is quasitriangular. They are built
on the notion of Hopf-equivariant modules over Hopf-module algebras and, although they work
pretty well for K0, it is not evident whether or not one can extend this algebraic construction to
higher algebraic equivariant K-theory. In addition, the definition of these authors uses only the
Hopf algebra as coefficients (both on the level of K-theory and in the corresponding Hopf-cyclic
cohomology), and it is not evident how it can be replaced by a more general SAYD.
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In the present paper, we suggest two different ways to answer the above questions: what is
a Hopf-equivariant K-theory with coefficients and how can one introduce a Chern character on
it with values in the Hopf-cyclic theory. First, we extend the Chern character construction of
Neshveyev and Tuset to a map whose values lie in the Hopf cyclic homology with coefficients,
generalizing their definition of K-theory as well. Second, we introduce a sheaf of equivariant K-
theory (with and without coefficients), similar to the equivariant cohomology of Block and Getzler.
This construction is much more geometric (it is defined only in the case when the Hopf algebra and
the Hopf-module algebra are both algebras of functions on some spaces). So we give a geometric
definition of the corresponding Chern character, which takes values in a version of Block–Getzler’s
sheaf of equivariant cohomology. Although we know that this sheaf can be described algebraically as
the Hopf-cyclic cohomology with coefficients (the corresponding algebraic construction is described
in simple cases in [10]), there is an unsolved question: Are these two constructions related?

The paper is organized as follows. In Sec. 1 we recall the definition of Hopf-cyclic homology with
coefficients, as well as the definition of Block–Getzler’s sheaf of equivariant forms, and formulate
theorems analogous to the Hochschild–Kostant–Rosenberg theorem for them. Section 2 is devoted
to the constructions of equivariant K-theories; in Sec. 2.1 we introduce a λ-stable K-theory that
generalizes the equivariant K-theory of Neshveyev and Tuset [8], and in Sec. 2.2 we define the sheaf
of K-theories à la Block–Getzler. The Chern character constructions that map λ-stable K-theory
of a module algebra to its Hopf cyclic homology with coefficients and the sheaf of K-theories to
the corresponding Block–Getzler equivariant cohomology are described in Sec. 3.

1. HOPF CYCLIC HOMOLOGY

1.1. The algebraic construction

Throughout the paper, H stands for a fixed Hopf algebra with invertible antipode S over a
fixed characteristic zero field k and M is a stable anti-Yetter–Drinfeld (SAYD) module over H.
Assume that M is a left H-comodule and right module. Throughout the text, we use the standard
(Sweedler’s) notation with superscripts for the comultiplications and coactions, e.g., Δ(h) = h(1) ⊗
h(2) for all h ∈ H and ΔM(m) = m(−1) ⊗m(0) for every m ∈ M. Under these assumptions, the
anti-Yetter–Drinfeld condition takes the form

(mh)(−1) ⊗ (mh)(0) = S(h(3))m(−1)h(1) ⊗m(0)h(2), (1)
and the stability of M means that m(0)m(−1) = m for all m ∈ M.

Recall now the definition of cyclic (co)homology of an algebra with coefficients in stable anti-
Yetter–Drinfeld modules. Let A be a (left) Hopf-module algebra over H, i.e., there is an action
H ⊗ A → A such that, for all a, b ∈ A and all h ∈ H, one has h(ab) = h(1)(a)h(2)(b). Following
[6], consider the cyclic module CH

∗ (A, M), CH
n (A, M) = M⊗H A⊗n+1. The cyclic operations are

given by the formulas (we do not distinguish between the k-linear and H-linear tensor products in
our notation):

δi(m⊗ a0 ⊗ · · · ⊗ an) =

{
m⊗ a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an), 0 � i � n− 1,

m(0) ⊗ S−1(m(−1))(an)a0 ⊗ · · · ⊗ an), i = n,
σj(m⊗ a0 ⊗ · · · ⊗ an) = m⊗ a0 ⊗ · · · ⊗ 1⊗ · · · ⊗ an, 0 � j � n+ 1,

where 1 stands in the j-th place and

τn(m⊗ a0 ⊗ · · · ⊗ an) = m(0) ⊗ S−1(m(−1))(an)⊗ a0 ⊗ · · · ⊗ an−1.

One can see that, due to stability and the anti-Yetter–Drinfeld condition on M, these formulas
determine a well-defined cyclic structure. The Hochschild, cyclic, and periodic cyclic homology
(see [7]) of this cyclic module is called the Hochschild, cyclic, and periodic Hopf-cyclic homology
of A with coefficients in M, respectively. The cohomology is defined by the dualization of this
construction (see [6] for details).

Example 1. Let M = Hm be the SAYD module which coincides with H as a linear space.
The action of H on Hm is the usual multiplication in H, and the coaction ΔM is given by the
formula ΔM(m) = S(m(3))m(1)⊗m(2). Then Hm is a SAYD-module. One can check that the maps
Φ: CH

∗ (A,Hm) → C∗(A), where Φ(m ⊗ a0 ⊗ . . . an) = m · (a0 ⊗ · · · ⊗ an), induce an isomorphism
between the Hopf cyclic homology HCH

∗ (A,Hm) and the ordinary cyclic homology HC∗(A).
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Example 2. Let M = HΔ be the SAYD module which coincides with H as a linear space. The
coaction ΔM of H on HΔ is the usual comultiplication Δ in H and the action of H is given by
the formula m · h = S(h(2))mh(1), m ∈ HΔ = H, h ∈ H. Then HΔ is a SAYD-module. The Hopf
cyclic homology HCH

∗ (A,HΔ) coincides with the equivariant cyclic homology of H-module algebra
A defined by Neshveyev and Tuset [8].

1.2. The Block–Getzler sheaf of equivariant forms

Let a Lie group G act on a manifold X and on itself with conjugations. This fixed, the family
of open sets in G should be stable under the conjugations by elements of G. Let g be an ele-
ment of G and let Xg be the set of points in X stabilized by g, i.e., Xg = {x ∈ X|g(x) = x}.
Let Gg = {h ∈ G|gh = hg} be the centralizer of g, and let gg be the Lie algebra of Gg, or,
equivalently, gg = {ξ ∈ g|Adgξ = ξ}. Observe that h(Xg) = Xg for all h ∈ Gg. Thus, Xg is a Gg-
equivariant manifold. According to [2], define the equivariant differential forms on X as the sheaf
on G whose stalk at g is given by Ω•

g(X,G) = Ω•
Gg(Xg), where Ω•

Gg(Xg) stands for the completion

of the usual Gg-equivariant forms on Xg in Cartan’s sense: Ω•
Gg(Xg) = C∞

0 (gg,Ω•(Xg))G
g

, i.e., the
Gg-invariant part of the germs at 0 of the smooth maps from gg to Ω•(Xg). There are two differ-
entials d and ι in Ω•

Gg(Xg), (dω)(X) = d(ω(X)) and (ιω)(X) = ιX(ω(X)), for arbitrary X ∈ gg.
Here d is the de Rham differential in Ω(Xg) and ιX is the contraction of a differential form on Xg

with the vector field induced by X. It follows from the Cartan identities that (d + ι)2 = 0. The
cohomology of Ω•

Gg(Xg) with respect to the differential dG = d + ι (Cartan differential) is called
the equivariant cohomology of Xg.

To define the sheaf of equivariant differential forms on G, we must define the sections of the sheaf
on open subsets (see Sec. 1 of [2]). To this end, we first let the group G act on the disjoint union
of stalks

⋃
g∈G Ω•

Gg(Xg) by translations, namely, for any k ∈ G, we put ω �→ k · ω ∈ Ω•
k·Gg(Xk·g).

Here k · g and k · Gg stand for the conjugation of g and Gg by k. This action commutes with the
equivariant differentials on both sides. One says (see [2]) that a point h = g exp ξ (ξ ∈ gg, and
hence h ∈ Gg) is near g ∈ G, if Xh ⊆ Xg and Gh ⊂ Gg. By Lemma 1.3 of [2], the set of all points
in Gg that are near g is an open equivariant neighborhood of g in Gg. Finally, one defines the local
sections of our sheaf as the sections ω ∈ Γ(U ;

⋃
g∈G Ω•

Gg(Xg)) (U is an invariant open set) such

that, for any h near g, ωg|Xh×gh = ωh (the restriction here is just the restriction of germs).

As was shown in [2], there is a natural isomorphism between the sheaf of equivariant cohomology
groups associated to the above sheaf of equivariant differential forms and the sheaf of equivariant
cyclic cohomology of the sheaf of functions on X which, for every AdG-equivariant open subset U
of G, is just the Hopf-cyclic homology of O(G)-comodule algebra C∞(U) with coefficients in the
SAYD module O(G). Observe that one should consider, instead of the tensor products of C∞(X)
and O(U) that appear in definitions of cyclic modules, their appropriate completions or plainly the
functions on U × X×n. Then all cyclic operations can be expressed in the terms of maps of this
space.

Let now M be the module of coefficients over the Hopf algebra of functions on G. Assume that
it is equal to the module of sections of a smooth equivariant vector bundle E on G. We can form
the sheaf on G of equivariant E-valued differential forms on X, similarly to the sheaf of ordinary
differential forms.

First of all, for every g ∈ G, we consider the exponential map expg : g
g → G, X �→ g exp(X),

where X ∈ gg and exp: g → G is the ordinary exponent map of G. Let Ẽg = exp∗g E → gg be the

pullback bundle. The group Gg acts on its Lie algebra by the adjoint action Ad and the bundle Ẽg

is equivariant with respect to this action if we induce the action on the bundle from the action of
G on E, namely. just observe that the conjugation by any h ∈ Gg takes g to itself and induces the
adjoint action on gg.

So we define the stalks of the sheaf Ω•(X, G; E) at g by

Ω•
g(X, G; E) = Ω•

Gg(Xg; E) = C∞
0 (gg,Ω•(Xg)⊗ Ẽg)G

g

,

i.e., the Gg-equivariant differential forms on Xg with coefficients in the germs of sections of Ẽg

at 0 (we let Gg act on this space combining the actions on Xg and Ẽg). Cartan’s differential on

differential forms can be extended to these modules by putting dG(e) = 0 for e ∈ Ẽg. One further
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defines the space of sections of the sheaf Ω•(X, G; E) on an equivariant open subset U ⊆ G. As
above, it is defined in such a way that ωg|Xh×gh = ωh for all h near g, where the term near means,

as above, that Gh ⊆ Gg and Xh ⊆ Xh and, on the left-hand side, we consider the restriction of

the germs of sections of Ẽg to the subspace gh.

Finally, consider the sheaf C•(G, X; M) of Hopf-cyclic complexes on G. Put
Γ(U ; C•(G, X; M)) = C•

O(G)(C
∞(X), E(U)) = ⊕n�0(E(U) ⊗ C∞(X)⊗n+1)G,

where E(U) stands for the SAYD O(G)-module of sections of the restricted bundle E|U and the
superscript G on the right-hand side for the space of G-invariants. As in the paper of Block and
Getzler, one should take the topological point of view, so that Γ(U ; C•(G, X; M)) should be
regarded as the space of (smooth) sections of the bundle p∗(E|U ), where p : U ×X×n → U is the
projection.

Then, as we have shown in [10], the Hochschild–Kostant–Rosenberg map of Block and Get-
zler can be extended to a quasi-isomorphism of the sheaf of equivariant differential forms with
coefficients and the sheaf of Hopf-cyclic cohomology modules.

2. EQUIVARIANT K-THEORIES

2.1. λ-stable K-theory
Choose a linear map λ : H → k.
Let V be a finite-dimensionalH-module. The action ofH on V is determined by a homomorphism

π : H → End(V ). The product B = End(V ) ⊗ A has the structure of an H-module algebra with
the multiplication (T1 ⊗ a1)(T2 ⊗ a2) = T1T2 ⊗ a1a2, a1, a2 ∈ A, T1, T2 ∈ End(V ), and an action of
H, h 
 (T ⊗ a) = π(h(1))Tπ(S(h(3)))⊗ h(2) · a, a ∈ A, T ∈ End(V ), h ∈ H.

Definition 1. Suppose that B is a left H-module. An element b ∈ B is said to be λ-stable if
λ(h)b = λ(h(1))h(2) · b for each h ∈ H.

Example 3. Let λ = ε be the counit of the Hopf algebra H. Then an element b ∈ B is λ-stable
if and only if b is H-invariant, i.e., h · b = ε(h)b for any h ∈ H.

Consider some general properties of λ-stable elements.

Proposition 1.

(1) An element b ∈ B is λ-stable if and only if λ(h)b = λ(h(1))S−1(h(2)) · b for any h ∈ H;
(2) if B is a H-module algebra, then the set of λ-stable elements Bλ = {b ∈ B | b is λ-stable} is

a subalgebra of B;
(3) if b ∈ B is invertible and λ-stable, then b−1 is λ-stable.

Proof. 1. Let b be λ-stable. Then

λ(h(1))S−1(h(2)) · b = S−1(h(2)) ·
(
λ(h(1))b

)
= S−1(h(3)) ·

(
λ(h(1))h(2) · b

)
= λ(h(1))

(
S−1(h(3))h(2)

)
· b = λ(h(1))ε(h(2))b = λ(h(1)ε(h(2)))b = λ(h)b.

On the other hand, if λ(h)b = λ(h(1))S−1(h(2)) · b for any h ∈ H, then

λ(h(1))h(2) · b = h(2) ·
(
λ(h(1))b

)
= h(3) ·

(
λ(h(1))S−1(h(2)) · b

)
= λ(h(1))

(
h(3)S−1(h(2))

)
· b = λ(h(1))ε(h(2))b = λ(h(1)ε(h(2)))b = λ(h)b.

2. Let a and b be λ-stable. Then
λ(h(1))h(2) · (ab) = (λ(h(1))h(2) · a)(h(3) · b) = λ(h(1))a(h(2) · b) = λ(h)ab for any h ∈ H.

3. Let b be λ-stable and invertible. Then

b
(
λ(h(1))h(2) · b−1

)
= λ(h(1))

[(
h(3)S−1(h(2))

)
· b
]
(h(4) · b−1)

=
[
h(3) ·

(
λ(h(1))S−1(h(2)) · b

)]
(h(4) · b−1) = λ(h(1))(h(2) · b)(h(3) · b−1)

= λ(h(1))h(2) · (bb−1) = λ(h(1))ε(h(2)) = λ(h).

Hence λ(h)b−1 = b−1b
(
λ(h(1))h(2) · b−1

)
= λ(h(1))h(2) · b−1.
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Proposition 2. Let Hλ be the subalgebra in H generated by the elements λ(h(1))h(2), h ∈ H.
Then an element b in a H-module algebra B is λ-stable if and only if b is invariant under Hλ.

Proof. If b is λ-stable, then we have λ(h(1))h(2) · b = λ(h)b = ε
(
λ(h(1))h(2)

)
b for any h ∈ H,

which means that b is invariant under the element λ(h(1))h(2). Hence, b is invariant under the
subalgebra generated by the elements of this kind.

For an H-module algebra A, consider all possible λ-stable idempotents p ∈ End(V )⊗A, where
V runs over all the finite-dimensional H-modules. Two idempotents p ∈ End(V ) ⊗ A and p′ ∈
End(V ′) ⊗ A are said to be equivalent if there exist λ-stable elements γ ∈ Hom(V, V ′) ⊗ A and
γ′ ∈ Hom(V ′, V ) ⊗ A such that p = γ′γ and p′ = γγ′. The set of equivalence classes of λ-stable
idempotents C̄H,λ(A) is an Abelian semigroup.

We can equivalently describe the semigroup C̄H,λ(A) as the set of λ-stable idempotents p ∈
End(V )⊗A modulo the equivalence relation generated by

(1) (conjugacy) p ∼ γpγ−1, where γ ∈ End(V )⊗A is an invertible λ-stable element;
(2) (stabilization) p ∼ p⊕ 0 ∈ End(V ⊕ V ′)⊗A.

Definition 2. The λ-stable K-theory KH,λ(A) of a H-module algebra A is defined as the
Grothendieck group of the monoid C̄H,λ(A).

Example 4. If λ = ε is the counit of the Hopf algebra H, then λ-stable K-theory KH,λ(A) is
generated by equivalence classes of H-invariant idempotents; so it coincides with the equivariant
K-theory KH

0 (A) defined in [8].

If λ = 0 is trivial, then KH,λ(A) = K(A) is the ordinary K-theory of the algebra A, because
the condition of λ-stability is trivial here.

Let G be a finite group and let H = C[G] be the group algebra of G. Assume that G acts on a
smooth manifold X. Then A = C∞(X) is an H-module algebra. Let λ : H → C be a linear map. It
is determined by its restriction λ : G → C to G.

Proposition 3. KH,λ(A) = KGλ(A) = KGλ(X), where Gλ = 〈g|λ(g) �= 0〉 is the subgroup
generated by the support of λ.

Proof. The condition of λ-stability for a group-like element g of Hopf algebra looks as follows:
λ(g)a = λ(g)g · a, where a ∈ A. If λ(g) = 0, then the equality is obviously true; otherwise the
element a must be g-invariant, g · a = a. Hence, λ-stable elements are the same as elements which
are invariant under the group elements from the set {g|λ(g) �= 0}, and thus under Gλ.

The group KH,λ(A) is generated by Gλ-invariant idempotents p ∈ End(V ) ⊗ A, where V is
a finite-dimensional representation of G, whereas KGλ(A) is generated by the idempotents in
End(W ) ⊗ A, where W runs over all the finite-dimensional representations of Gλ. Therefore, for
the coincidence of the K-groups, it suffices to show that one can complement any finite-dimensional
representation W of Gλ by another finite-dimensional representation W ′ of Gλ in such a way that
the action of Gλ on W ⊕ W ′ can be extended to an action of G. This certainly holds for finite
groups. Indeed, any finite-dimensional representation of Gλ is completely reducible, any irreducible
representation of Gλ is a direct summand of the regular representation of Gλ, and the regular
representation of the group Gλ ⊂ G is a direct summand of the regular representation of G.

2.2. The sheaf of equivariant K-theories

Let G be a compact Lie group acting on a space X; X is assumed to be a smooth closed manifold.
Let E → G be an equivariant vector bundle (where we let G act on itself by conjugations), or,
more generally, let E be a G-equivariant sheaf of modules over the functions on G. In the case of
a finite group G, this is the same as a family of representations of G indexed by the conjugacy
classes in G. We are going to define a version of G-equivariant K-theory on X with coefficients
in the G-equivariant module E of sections of E (more generally, we can speak about an arbitrary
sheaf E).
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Let h ∈ G be an arbitrary element. Recall that Xh is the subspace of elements preserved by h
and Gh = {k ∈ G | hk = kh}. Thus, Gh is a subgroup of G, namely, the centralizer of h. Here and
below, we assume that the centralizers of elements of G are compact. For a G-equivariant
vector bundle E on G (with respect to the adjoint action of G on itself), we shall denote by Eh ⊆ E
the subbundle of elements preserved by g; this is a Gh-equivariant bundle over Gh whose sections
will be denoted by Eh (similarly, we can speak about the subsheaf preserved by h).

We are now able to give the definition mentioned above. Let us begin with the definition of an
extraordinary equivariant cohomology without coefficients (compare [2, 10] and Sec. 1.2 above).

Let h∗ be an extraordinary cohomology theory with values in commutative R-algebras. We shall
use the term G-equivariant extraordinary (co)homology of X associated with h∗ for the graded
G-equivariant sheaf H∗

G(X) defined as follows: the stalk of H∗
G(X) at a point g ∈ G is equal to

h∗
Gg(Xg), where h∗

G stands for the usual equivariant cohomology of Borel. The group G permutes

the stalks of this sheaf; to see this, just observe that the action by g sends Xh to Xghg−1

for any

G-space X, and the adjunction by g on G is an isomorphism of Gh and Gghg−1

. In particular,
Gh acts on h∗

Gh(X
h). These observations are sufficient to define an equivariant sheaf for a discrete

group. In case of a Lie group, we need to explain the local structure of sections.
Introduce a topology in the union of stalks

⋃
g∈G h∗

Gg (Xg) by defining the set of possible sections.

We say that a point h = g exp ξ, for a vector ξ ∈ gg such that h ∈ Gg, is near g ∈ G if Xh ⊆ Xg

and Gh ⊂ Gg. According to Lemma 1.3 of [2] again, the set of all points in Gg which are near g
form an open neighborhood of g in Gg. Define a section ω ∈ Γ(h∗

Gg (Xg)) for any adjoint-invariant
open subset U ⊆ G as a family of the elements ωg ∈ h∗

Gg(Xg), g ∈ U such that, for any h which

is near g, we have φGh

Xh(ωg) = ωh, where φH
Y is the natural map of the equivariant cohomology

induced by an equivariant map Y → X, H → G for a G-space X and an H-space Y .
Observe that H∗

G(X) is an equivariant sheaf of modules over the sheaf of rings with stalks
h∗
G(pt) = Oh

G, which is in its turn a module over the equivariant sheaf OG of functions on G (it
is a subsheaf of the sheafification of the union of the straight lines R over the points of G with
respect to the equivariant topology of sections, see above). Let now E be an equivariant sheaf of
OG-modules on G; define the equivariant cohomology of X with coefficients in E to be equal to
the equivariant sheafification of the union of tensor products (H∗

G(X)g ⊗Og
Eg)G

g

(the subscript
g indicates the stalk at g, while the superscript G, where G is a group, indicates the subspace of
elements invariant under the action of the whole group). This is the same as the equivariant tensor
product of sheaves.

Thus, for any equivariant vector bundle E → G (more generally, for an equivariant sheaf on G),
we have a graded equivariant sheaf H∗

G(X, E). In the case under consideration in the paper, we
put h∗ = K∗

R
and denote the corresponding sheaf by K∗

G(X, E). Our prime interest is in K0(X, E).

In the particular case h∗ = H∗(−, R) (and when X is a manifold), we obtain the Block–Getzler
sheaf of equivariant de Rham cohomology in this way. To see this, recall that the corresponding
definition in their paper is given at the level of equivariant differential forms by the sheafification
of the corresponding set of stalks of equivariant forms. Since the sequence of sheaves is exact if and
only if it is exact on the level of stalks, we conclude that the corresponding sheaf of cohomology is
equal to the sheafification of the equivariant cohomology of stalks.

It is easy to see that the usual statements concerning equivariant theories (such as exact se-
quences, equivariant homotopy invariance, etc.) hold here as well, since the constructions used here
are functorial with respect to the G-equivariant maps (we also use the fact that the exactness of
all sequences of sheaves follows from their exactness on the level of stalks).

Next, let F → G be another G-equivariant vector bundle and let φ : F → E be an equivari-
ant map. As one can immediately see, φ induces a map on the level of stalks, and hence a map
φ∗ : K∗

G(X, F ) → K∗
G(X, E). Moreover, if 0 → F0 → E → F1 → 0 is a short exact sequence, then

the same exact sequence occurs on the level of stalks (since we assume that G is a compact group).
The same conclusions follow for an arbitrary exact sequence of sheaves of O-modules on G.

Now let us consider a few particular cases.
Example 5.

(1) Let G = 1 and E = R. Then K∗
G(X, E) = K∗

R
(X) = K∗(X)⊗R. More generally, if E = R

n,
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then K∗
G(X, E) = (K∗(X) ⊗ R)⊕n.

(2) Let the action of G on X be free. Then Xg =

{
∅, g �= 1

X, g = 1.
So K∗

G(X, E) is the skyscraper

sheaf whose stalk at 1 ∈ G is equal to (K∗(X) ⊗ E1)
G (and 0 otherwise).

(3) Let E = R with the trivial action. Then the stalk of K∗
G(X, E) at a point h ∈ G is equal

to K∗
R
(Xh)G

h

, where K∗
Gh(X

h) is the Grothendieck group of Gh-equivariant vector bundles

on Xh.
(4) Let E be the skyscraper sheaf at 1 ∈ G whose stalk is given by a linear representation V

of G. Then K∗
G(X, E) is also a skyscraper sheaf, and its only nontrivial stalk is equal to

K∗
G(X) ⊗Z V .

3. CHERN CHARACTER

3.1. λ-stable Chern character

We define the Chern character in the λ-stable K-theory to the Hopf cyclic homology with
coefficients in a SAYD module M in the form chλ

n : K
H,λ(A) → Homk

(
M,HCH

2n(A,M)
)
.

Let p =
∑

i Ti⊗ai ∈ End(V )⊗A be a λ-stable idempotent and m ∈ M. The result chλ
n([p])(m)

of application of the Chern character to [p] ∈ KH,λ(A) is, by definition, the homology class of the
element ∑

i0,i1,...,i2n

λ(m(−2))Tr
(
π(m(−1))Ti0Ti1 . . . Ti2n

)
m(0) ⊗ ai0 ⊗ · · · ⊗ ai2n ∈ CH

2n(A,M).

Theorem 3.1. The map chλ
n is well defined.

Proof. Let p =
∑

i Ti ⊗ ai ∈ End(V )⊗ A be a λ-stable idempotent and let m ∈ M. The map
chλ

n can be regarded as a part of the following commutative diagram:

p ∈ K(Bλ)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→KH,λ(A)⏐⏐�chn

⏐⏐�chλ
n

HC2n(Bλ)
Ψλ,m

∗−−−−−−−−−→ HCH
2n(B,M)

Φ∗−−−−−−−→ HCH
2n(A,M)

where B = End(V )⊗A, Bλ is the subalgebra of λ-stable elements of B, and Ψλ,m
∗ and Φ∗ are the

homomorphisms of cyclic homologies induced by the maps Ψλ,m and Φ defined below.

The map Ψλ,m : C∗(Bλ) → CH
∗ (B,M) can be defined for any H-module algebra B; it is given

by the formula Ψλ,m(b0⊗ b1⊗ · · ·⊗ bn) = λ(m(−1))m(0) ⊗ b0⊗ b1⊗ · · ·⊗ bn, where b0⊗ b1⊗ · · ·⊗ bn
is an element of Cn(Bλ).

Proposition 5. The map Ψλ,m is a morphism of cyclic modules, and thus it defines a homo-

morphism Ψλ,m
∗ : HC∗(Bλ) → HCH

∗ (B,M) of cyclic homologies.

Proof. We just need to check that Ψλ,m commutes with the operators of cyclic module structure.
This can be done by straightforward calculations. For example, Ψλ,m ◦ τ = τ ◦Ψλ,m since

(Ψλ,m ◦ τ)(b0 ⊗ b1 ⊗ · · · ⊗ bn) = Ψλ,m(bn ⊗ b0 ⊗ · · · ⊗ bn−1)

= λ(m(−1))m(0) ⊗ bn ⊗ b0 ⊗ · · · ⊗ bn−1,

(τ ◦Ψλ,m)(b0 ⊗ b1 ⊗ · · · ⊗ bn) = τ(λ(m(−1))m(0) ⊗ b0 ⊗ b1 ⊗ · · · ⊗ bn)

= λ(m(−1))(m(0))(0) ⊗ S−1((m(0))(−1)) · bn ⊗ b0 ⊗ · · · ⊗ bn−1

= m(0) ⊗ λ(m(−2))S−1(m(−1)) · bn ⊗ b0 ⊗ · · · ⊗ bn−1

= λ(m(−1))m(0) ⊗ bn ⊗ b0 ⊗ · · · ⊗ bn−1,
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where the last equality follows from the first statement of Proposition 1.

The map
Φ: CH

∗ (End(V )⊗A,M) → CH
∗ (A,M)

is defined by the formula

Φ(m⊗ (T0 ⊗ a0)⊗ . . . (Tn ⊗ an)) = Tr
(
π(m(−1))T0 . . . Tn

)
m(0) ⊗ a0 ⊗ · · · ⊗ an,

where m⊗ (T0 ⊗ a0)⊗ . . . (Tn ⊗ an) ∈ CH
n (End(V )⊗A,M). It does not depend on λ or m.

Proposition 6. The map Φ is a morphism of cyclic modules.

Proof. One must check that Φ commutes with the operators of cyclic module. For example,

(Φ ◦ τ)(m⊗ (T0 ⊗ a0)⊗ . . . (Tn ⊗ an))

= Φ(m(0) ⊗ S−1(m(−1)) 
 (Tn ⊗ an)⊗ (T0 ⊗ a0)⊗ . . . (Tn−1 ⊗ an−1))

= Φ(m(0) ⊗ (π(S−1(m(−1)))Tnπ(m
(−3))⊗ S−1(m(−2)) · an)⊗ (T0 ⊗ a0)⊗ . . . (Tn−1 ⊗ an−1))

= Tr(π(m(−1))π(S−1(m(−2)))Tnπ(m
(−4))T0 . . . Tn−1)m

(0) ⊗ S−1(m(−3)) · an ⊗ a0 ⊗ · · · ⊗ an−1

= Tr(Tnπ(m
(−2))T0 . . . Tn−1)m

(0) ⊗ S−1(m(−1)) · an ⊗ a0 ⊗ · · · ⊗ an−1.

On the other hand,

(τ ◦Φ)(m⊗ (T0 ⊗ a0)⊗ . . . (Tn ⊗ an)) = τ(Tr(π(m(−1))T0 . . . Tn)m
(0) ⊗ a0 ⊗ · · · ⊗ an)

= Tr(π(m(−1))T0 . . . Tn)(m
(0))(0) ⊗ S−1((m(0))(−1)) · an ⊗ a0 ⊗ · · · ⊗ an−1

= Tr(Tnπ(m
(−2))T0 . . . Tn−1)m

(0) ⊗ S−1(m(−1)) · an ⊗ a0 ⊗ · · · ⊗ an−1

The other commutation relations can be verified similarly.

Thus, the element chλ
n(p)(m) can be regarded as a composition of the conventional Chern char-

acter and homomorphisms of cyclic homologies. Hence, chλ
n(p)(m) is well defined provided that the

idempotent p is fixed. Moreover, the result is not changed if the idempotent p is replaced by its
conjugate γpγ−1, where γ is an invertible element of Bλ.

On the other hand, by definition, chλ
n(p) = chλ

n(p ⊕ 0). Thus, the element chλ
n(p)(m) does not

depend on the choice of a representative idempotent in the equivalence class [p] ∈ KH,λ(A).

Proposition 3.4. If λ : H → k is a character, then the Chern character chλ
n maps the group

KH,λ(A) to the subspace HomH
(
M,HCH

2n(A,M)
)
⊂ Homk

(
M,HCH

2n(A,M)
)
, where H acts on

HCH
2n(A,M) trivially, i.e., α · h = ε(h)α, α ∈ HCH

2n(A,M), h ∈ H.

Proof. Let p =
∑

i Ti ⊗ ai ∈ End(V )⊗A be a λ-stable idempotent, m ∈ M, and h ∈ H. Then

chλ
n([p])(mh) =

∑
i0,i1,...,i2n

λ((mh)(−2))Tr
(
π((mh)(−1))Ti0Ti1 . . . Ti2n

)
(mh)(0) ⊗ ai0 ⊗ · · · ⊗ ai2n

=
∑

i0,i1,...,i2n

λ(S(h(5))m(−2)h(1))Tr
(
π(S(h(4)))π(m(−1))π(h(2))Ti0Ti1 . . . Ti2n

)
m(0)h(3)⊗ai0 ⊗· · ·⊗ai2n

=
∑

i0,i1,...,i2n

λ(S(h(5)))λ(m(−2))λ(h(1))Tr
[
π(m(−1))π(h(2))Ti0Ti1 . . . Ti2nπ(S(h

(4)))
]

m(0) ⊗ h(3) · (ai0 ⊗ · · · ⊗ ai2n)

=
∑

i0,i1,...,i2n

λ(S(h(2n+5)))λ(m(−2))λ(h(1))Tr
[
π(m(−1))π(h(2))Ti0Ti1 . . . Ti2nπ(S(h

(2n+4)))
]

m(0) ⊗ h(3) · ai0 ⊗ · · · ⊗ h(2n+3) · ai2n
=

∑
i0,i1,...,i2n

λ(S(h(2n+7)))λ(m(−2))·

Tr
[
π(m(−1))λ(h(1))π(h(2))Ti0π(S(h

(4)))π(h(5))Ti1 . . . Ti2nπ(S(h
(2n+6)))

]
·

m(0) ⊗ h(3) · ai0 ⊗ h(6) · ai1 · · · ⊗ h(2n+5) · ai2n
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=
∑

i0,i1,...,i2n

λ(S(h(2n+4)))λ(m(−2))λ(h(1))·

Tr
[
π(m(−1))Ti0π(h

(2))Ti1 . . . Ti2nπ(S(h
(2n+3)))

]
·

m(0) ⊗ ai0 ⊗ h(3) · ai1 · · · ⊗ h(2n+2) · ai2n = . . .∑
i0,i1,...,i2n

λ(S(h(2)))λ(m(−2))λ(h(1))Tr
[
π(m(−1))Ti0Ti1 . . . Ti2n

]
m(0) ⊗ ai0 ⊗ ai1 · · · ⊗ ai2n

=
∑

i0,i1,...,i2n

λ(h(1)S(h(2)))λ(m(−2))Tr
[
π(m(−1))Ti0Ti1 . . . Ti2n

]
m(0) ⊗ ai0 ⊗ ai1 · · · ⊗ ai2n

= ε(h)chλ
n([p])(m).

Here we have used, 2n+ 1 times, the equality∑
i

λ(h(1))π(h(2))Tiπ(S(h
(4)))⊗ h(3) · ai =

∑
i

λ(h)Ti ⊗ ai,

which means that the element p is λ-stable.

Remark 1. We can reformulate the Chern character as a pairing of the K-group with the Hopf
cyclic cohomology 〈·, ·〉λ : KH,λ(A) × HC2n

H (A,M) → Homk(M,k) or, if λ is a character, as a
pairing 〈·, ·〉λ : KH,λ(A) ×HC2n

H (A,M) → HomH(M,k).

When λ = ε and M = HΔ, one obtains the Chern character considered in [8]. In this case,
HomH(M,k) is the space R(H) of H-invariant linear functionals on H.

Example 6. Let G be a finite group that acts on a smooth manifold X. Let H = C[G] be
the group algebra of G and let A = C∞(X) be the algebra of smooth functions. A SAYD module
over H can be regarded as sections of an equivariant sheaf M =

⊕
g∈G Mg over G. Denote by

GX = {(g, x) ∈ G×X | gx = x} the Baum–Schneider space, and let GM = p∗1(M) be the induced
sheaf over GX. The Hochschild–Kostant–Rosenberg theorem [10] identifies the periodic Hopf cyclic
homology HPH

∗ (A,M) with the cohomology of equivariant de Rham forms Ω∗(GX,G M)G.

Let λ : G → C and m =
∑

g mg ∈ M. If p ∈ End(V ) ⊗ A is a λ-stable idempotent, then its
Chern classes are the cohomology classes of de Rham closed forms

chλ
n(p)(m)(g, x) =

1

(2n)!
λ(g)mgTr(π(g)p(x)dp(x)

2n) ∈ Ω2n(GX,G M)G.

3.2. Sheaf Chern character

In this section, we define the Chern character on the sheaf of equivariant K-theories. It takes
values in the Block–Getzler sheaf of equivariant cohomology (with or without coefficients). This
construction is in a sense a generalization of the last example of the previous section; however, here
the domain of the characteristic map is the sheaf version of the equivariant theory rather than the
λ-stable K-theory.

We begin with the coefficient-free case and give a geometric definition first; we closely follow
the presentation in [2]. Let γ ∈ Γ(U, K0

G(X)) be a section of the sheaf K0
G(X) over an equivariant

open subset U ⊆ G. For any g ∈ U , let γ(g) ∈ K0
G(X)g = K0

Gg(Xg) be the value of the section
at g (on the right-hand side, there stands the stalk of our sheaf at g). We can assume that γ(g) is
represented by an equivariant vector bundle ξg → Xg. Moreover, for all h which are near g (in the
sense of the Secs. 1.2 and 2.2), the values of the section at h are represented by restrictions to Xh

of the same vector bundle.
Choose a Gg-invariant connection ∇ on ξg. We associate with it an equivariant connection, i.e.,

an operator ∇gg in C∞(gg, Ω•(Xg, ξg))
Gg

[[u]] (where u is a formal parameter of degree −2) given
by (∇ggω)(X) = ι(X)(ω(X))+u∇(ω(X)) for all X ∈ gg (here ι(X) stands for the contraction along
the vector field operator). This operator verifies the Leibnitz rule with respect to the equivariant
differential dgg = ud + ι (compare with Sec. 1.2), and we can define the equivariant curvature
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of ∇g by setting Fgg = u−1∇2
gg . Then the equivariant Chern character form of ξg is given by

chG(γ)(g) = Tr(exp(−Fgg )). One can show in a usual way that this form is always closed and
that its equivariant cohomology class does not depend on the choice of connections. Applying this
construction at every point g ∈ U (choosing a cover U by the sets of near points), we obtain a section
of the Block–Getzler sheaf of equivariant cohomology (the local sections fit on the intersections since
the vector bundles associated to “near” elements are isomorphic).

Let now γ ∈ Γ(U, K0
G(X, E)) be a section. We can assume that this section is equal at a point

g ∈ U to the tensor product [ξg] ⊗ ϕ, where ξg is a Gg-equivariant vector bundle on Xg and ϕ
is (the germ of) a section of the coefficient bundle E. At near points, the section is equal to the
restriction of this element.

We consider a Eg-valued Gg-equivariant connection ∇Eg

gg of ξg → Xg, which is just an operator

on C∞(gg, Ω•(Xg, ξg)⊗Eg)
Gg

[[u]] (recall that Eg is the space of germs of sections of the coefficient
bundle in g ∈ G) that verifies the relation

∇Eg

gg (α ∧ ω) = dggα ∧ ω + (−1)|α|α ∧ ∇ξg

gg(ω) (2)

for any ω ∈ C∞(gg, Ω•(Xg, ξg) ⊗ Eg)
Gg

[[u]] and any equivariant differential form α. One can
obtain this sort of connection by equivariantizing the Eg-valued invariant connection on ξg as
described above. Here the notion of V -valued Gg-invariant connection, where V is a Gg-module, is
a straightforward generalization of the ordinary notion of connection, where the usual Leibnitz rule

is replaced by an equation similar to (2). We pass to the equivariant curvature F̃
Eg

gg = u−1(∇Eg

gg )2.

In this case, F
Eg

gg is a germ of operator-valued functions on gg; more accurately,

F
Eg

gg ∈ C∞(gg, Ω•(Xg, End(ξg))⊗ End(Eg))
Gg

[[u]].

We put chG,E(γ)(g) = Tr(exp (−F
Eg

gg ))(ϕ). This is an element in the stalk of the sheaf of E-valued
differential forms on G. A direct computation shows that it is closed and its class does not depend
on the choices made above.
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