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INTRODUCTION

Second-order differential elliptic operators of divergent and nondivergent types acting on the
entire space R

d (d � 2) are considered. The coefficients of the operators are rapidly oscillating
quasiperiodic functions, and ε is a small parameter determining the fast oscillation. The zeroth
and the first approximations are constructed for the resolvent of the operators in the operator
norms ‖ · ‖L2(Rd)→L2(Rd) and ‖ · ‖L2(Rd)→H1(Rd), respectively, with an error of the order of ε. The
approximations are related to the homogenized operators which are similar to the original ones in
their structure and have constant coefficients. As is usual in homogenization theory, to find these
coefficients, there is a “problem on the cell,” whose solvability in the quasiperiodic setting meets
with difficulties because this problem is degenerate. Small denominators can occur here. For this
reason, a “frequency condition” arises, which is a condition on the frequency vectors entering the
formation of quasiperiodic functions. It should be noted that the frequency condition holds for
the operators “in general position.” This condition enables us to control the degeneration of the
problem on the cell. Only a degeneration of power-law nature is admitted, and, as a result, the
problem on the cell turns out to be “hypoelliptic” and is well posed in a scale of Sobolev spaces.

For nondivergent equations, all solvability problems (in the entire space, in a bounded domain,
on the periodicity cell) have positive answer under an additional condition on the coefficient ma-
trix. This additional condition is known, it is the “cone” condition or Cordes condition, in which
a constraint on the scattering of eigenvalues of the coefficient matrix is imposed. In the present
paper, we use the apparatus of reducing nondivergent equations with symmetric coefficient ma-
trix to divergent equations with asymmetric coefficient matrix. Thanks to this approach, operator
approximations are constructed, more or less, in the same way for divergent and nondivergent equa-
tions. An important role for nondivergent equations is played here by the so-called “acute angle
inequality,” which is proved here for quasiperiodic functions.

1. DIVERGENT EQUATION: ZEROTH APPROXIMATION

The resolvent equation on the entire space R
d is studied,

uε ∈ H1(Rd), (Aε + 1)uε = f, f ∈ L2(Rd),

Aε = − div(aε(x)∇),
(1.1)

with a rapidly oscillating coefficient matrix (as ε → 0),

aε(x) = a(y)|y=ε−1x. (1.2)
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Here a(y), y ∈ R
d, is a quasiperiodic matrix such that

a(y) = A(ω1y, . . . , ωmy), (1.3)

where A(z1, . . . , zm) is a continuous 1-periodic (with respect to every argument z1, . . . , zm) sym-
metric d×d-matrix, ω1, . . . , ωm ∈ R

d are the frequency vectors, and ωiy = ωi
jyj is the inner product

of vectors in R
d. The vectors ω1, . . . , ωm are (rationally) independent, which means that

kiω
i
j �= 0, j = 1, . . . , d, for every 0 �= k = (k1, . . . , km) ∈ Z

m. (1.4)

A consequence of the independence is the equation between the mean value of an almost periodic
function a(y) and the mean value of the periodic function A(z) [1], namely,

〈a〉 = 〈A〉, (1.5)

〈a〉 = lim
T→∞

1

(2T )d

∫
[−T,T ]d

a(y) dy, 〈A〉 =
∫
�
A(z)dz,

where � = �m = [0, 1)m.

The matrix A in (1.3) is subjected to the ellipticity condition

∃λ > 0 : λ|ξ|2 � A(z)ξ · ξ � λ−1|ξ|2 ∀ ξ ∈ R
d. (1.6)

In what follows, the family of frequency vectors ω1, . . . , ωm is always one and the same. The
expression “b(y) is a quasiperiodic function” means that we have a representation of the form (1.3),
i.e., b(y) = B(ω1y, . . . , ωmy), in which B(z), z ∈ R

m, is a continuous (or a more regular) periodic
function with the periodicity cell �m. The periodic function B(z) is referred to as the support
of the quasiperiodic function b(y). For example, a periodic trigonometric polynomial with integer
frequencies

Φ(z) =
∑
k

ake
i2πkz, z ∈ R

m, k ∈ Z
m, i =

√
−1, (1.7)

is the support of the quasiperiodic function

ϕ(y) =
∑
k

ake
i2πqky, i =

√
−1, y ∈ R

d, qk = klω
l ∈ R

d, (1.8)

which is also a trigonometric polynomial; however, its frequencies qjk are not integer in general.

We are interested in the behavior of the solution of problem (1.1) as ε → 0. The most general
result in this direction [2] is that

uε → u in L2(Rd) as ε → 0, (1.9)

where u is the solution of the homogenized equation

u ∈ H1(Rd), (A + 1)u = f, f ∈ L2(Rd), (1.10)

A = − div(a0∇).

The homogenized matrix a0 is constant, symmetric, positive definite, and can be found by the rule
indicated in Section 2.

The result of homogenization (1.9), (1.10) can be refined if we assume that the matrix A(z)
in (1.3) is sufficiently regular and if we also strengthen the independence condition (1.4) of the
frequency vectors.

In what follows, to simplify the statements, we assume that A(z) is a smooth periodic matrix.
Let us introduce the “frequency condition” on the vectors ω1, . . . , ωm ∈ R

d,

∃ c0, τ > 0 : |kjωj | > c−1
0 |k|−τ , for every 0 �= k = (k1, . . . , km) ∈ Z

m. (1.11)

This condition holds for families in general position, namely, the frequency vectors ω1, . . . , ωm

satisfying the inequality (1.11) for certain c0 and τ form a set of full Lebesgue measure in (Rd)m.
For considerations concerning this topic, see, e.g., [3].
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Theorem 1.1. Let the frequency condition hold. In this case, if uε, u are solutions of problems
(1.1) and (1.10), respectively, then

‖uε − u‖L2(Rd) � εC‖f‖L2(Rd), (1.12)

where the constant C depends only on the frequency condition and on the matrix A.

The bound (1.12) is of operator form and means that

‖(Aε + 1)−1 − (A+ 1)−1‖L2(Rd)→L2(Rd) � Cε. (1.13)

By (1.9) and (1.12), the function u can be referred to as the “zeroth approximation” or an
L2-approximation to the solution uε. Below, we shall indicate the “first approximation” or the
H1-approximation with error estimate of the order of O(ε), which is as in (1.12).

2. DIVERGENT EQUATION: FIRST APPROXIMATION

Introduce the problem of finding a quasiperiodic function nj(y), y ∈ R
d, such that

divy a(y)(∇yn
j(y) + ej) = 0, 〈nj〉 = 0, j = 1, . . . , d, (2.1)

where e1, . . . , ed stands for the canonical basis in R
d.

Lemma 2.1. If the frequency condition (1.11) holds, then there are functions {nj(y)}dj=1 that
are quasiperiodic together with all their derivatives and satisfy equation (2.1).

Lemma 2.1 is a consequence of a more general lemma, Lemma 3.1.

Having solutions of problem (2.1), one can define the homogenized matrix a0 in equation (1.10)
by the equation

a0ej = 〈a(y)(∇yn
j(y) + ej)〉, j = 1, . . . , d, (2.2)

in terms of the mean value of an almost periodic function.
The first approximation to the solution of the equation (1.1) is the function

vε(x) = u(x) + εnj(y)
∂u(x)

∂xj
, y = ε−1x, (2.3)

which is obtained by adding a corrector to the zeroth approximation, which enables us to achieve
the closeness of the approximation in the H1-norm. Obviously, vε(x) belongs to H1(Rd), because
u ∈ H2(Rd) due to the elliptic bound for the averaged equation, and nj(y) and ∇nj(y) are bounded
functions by Lemma 2.1.

Theorem 2.1. Let the frequency condition hold. Then the following bound holds:

‖uε − vε‖H1(Rd) � εC‖f‖L2(Rd), (2.4)

where the constant C is of the same type as that in (1.12).

Proof. From (2.3), using simple manipulations, we obtain

∇vε(x) = ∇u(x) +∇nj(y)
∂u(x)

∂xj
+ ε∇∂u(x)

∂xj
nj(y), y = ε−1x,

Rε(x) ≡ aε(x)∇vε(x)− a0∇u(x)

= [a(y)(∇yn
j(y) + ej)− a0ej ]

∂u(x)

∂xj
+ εa(y)∇∂u(x)

∂xj
nj(y)

= gj(y)
∂u(x)

∂xj
+ rε1(x), rε1(x) = εa(y)∇∂u(x)

∂xj
nj(y), y = ε−1x, (2.5)
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where, by (2.2) and (2.1),

gj(y) = a(y)(∇yn
j(y) + ej)− 〈a(·)(∇yn

j(·) + ej)〉

is a smooth solenoidal quasiperiodic vector with zero mean, divy g
j(y) = 0, 〈gj(·)〉 = 0. By

Lemma 3.2 presented below, we have the representation

gj(y) = divy pj(y), (2.6)

in which pj(y) is a smooth quasiperiodic skew-symmetric matrix. Therefore,

Rε(x) = div
(
εpj

(x
ε

)∂u(x)
∂xj

)
+ rε1(x) + rε2(x), div = divx

rε2(x) = −εpj
(x
ε

)
∇∂u(x)

∂xj
,

(2.7)

div Rε(x) = div (rε1(x) + rε2(x)) (2.8)

by the skew symmetry of the matrix pj(y). Hence,

− div[aε(x)∇(vε(x)− uε(x))] + (vε(x)− uε(x)) = − div[aε(x)∇vε(x)] + vε(x)− f

= − div[aε(x)∇vε(x)] + vε(x) + div a0∇u(x)− u(x)

= − div(aε(x)∇vε(x)− a0∇u(x)) + (vε(x)− u(x)) = − divRε(x) + rε0(x),

rε0(x) = εnj(
x

ε
)
∂u(x)

∂xj
. (2.9)

The solution of the equation

zε ∈ H1(Rd), − div(aε(x)∇zε) + zε = div F + F0, F0 ∈ L2(Rd), F ∈ L2(Rd)d,

satisfies the energy estimate

∫
Rd

(|zε|2 + |∇zε|2)dx � c

∫
Rd

(|F0|2 + |F |2)dx, c = const(λ),

according to which we derive from (2.9) that

∫
Rd

(|vε − uε|2 + |∇(vε − uε)|2)dx � c

∫
Rd

(|rε0|2 + |rε1|2 + |rε2|2)dx, c = const(λ),

where the expression for Rε(x) in terms of rεi (x) is used, see (2.8). Every term rεi (x) contains ε as
a factor (see (2.5), (2.7), and (2.9)) and admits the bound

‖rεi ‖L2(Rd) � ε‖u‖H2(Rd)‖b‖L∞(Rd) � εC‖f‖L2(Rd),

where, for the function b, we use nj , anj , and pj , which are obviously bounded pointwise. This
completes the proof of the theorem.

The bound (1.12) obviously follows from (2.4).
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3. PROBLEMS ON THE CELL

In this section, we prove Lemma 2.1 and the representation (2.6), which were used in the proof
of the bound (2.4). Assume that the frequency condition (1.11) holds; we do not mention this
assumption below.

3.1. Let a(y) be a quasiperiodic matrix in (1.3) and let f(y) be a given quasiperiodic vector
function. The problem of finding a quasiperiodic function n(y) such that

divy a(y)∇yn(y) = divy f(y), 〈n〉 = 0, (3.1)

is reduced to solving the periodic problem on the cell � = [0, 1)m,

divy A(z)∇yN(z) = divy F (z), 〈N〉 = 0, (3.2)

if one passes from quasiperiodic functions to their periodic supports. Problem (3.2) is not so obvious
as can appear at first glance, because it is degenerate, since it contains a differentiation with respect
to the argument y related to the variables zj by the equations zj = ωjy, j = 1, . . . ,m. To study
this problem, we introduce the spaces that we need.

Let Trig(Rm) be the set of trigonometric polynomials of the form (1.7). For every s ∈ R, denote
by Hs the completion of the set Trig(Rm) with respect to the Sobolev norm

‖U‖2s =
∑
k

|ak|2(k2 + 1)s, U(z) =
∑
k

ake
i2πkz.

By the Parseval formula, the spaces Hs, s = 1, 2, . . . , coincide with the Sobolev spaces Hs(�) of
periodic function square integrable over the cell � together with all their derivatives up to the
order s.

The operator ΛpU =
∑

k ak(k
2 + 1)p/2ei2πkz defines an isomorphism Λp : Hs+p → Hs for every

s, p ∈ R. For an even p > 0, we have Λp = (−Δz +1)p/2, where Δz stands for the Laplace operator
with respect to the variable z.

Let C l(�) be the space of all l times continuously differentiable periodic functions with the
periodicity cell �.

Lemma 3.1. If F ∈ Hs for sufficiently large s > s(m, τ), then equation (3.2) has a solution
N ∈ C2(�). If F ∈ C∞(�), then N ∈ C∞(�).

Proof. We follow the scheme suggested in [4] to study a similar problem.

Let us first prove a priori estimates for a solution of equation (3.2) and then use them to prove
the existence of a solution. Consider the corresponding integral identity on specially chosen test
functions,

(A(z)∇yN(z),∇yΦ(z))L2(�) = (F (z),∇yΦ(z))L2(�),

Φ = ΛsN, s/2 > 0 is even.
(3.3)

Let us use the fact that the operator Λs is self-adjoint and the equations

Λs = Λs/2Λs/2, Λs/2(A∇yN) = A∇yΛs/2N + · · · ,

where the dots stand for the summands containing the derivatives of the function N with respect
to z of order less than s. Then, using (3.3), one can readily imply the inequality

λ‖∇yN‖2s � c(s)(‖∇yN‖20 + ‖F‖2s). (3.4)

Moreover, formula (3.3) for s = 0 gives the energy inequality ‖∇yN‖20 � c(λ)‖F‖20. Finally,
(3.4) implies the bound

‖∇yN‖s � c(λ)‖F‖s, s/2 > 0 is even. (3.5)
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By the frequency condition and the equation 〈N〉 = 0, we have

‖N‖s−τ � c‖∇yN‖s,

and therefore, (3.5) implies the bound

‖N‖s−τ + ‖∇yN‖s � c‖F‖s. (3.6)

If we now solve equation (3.2) by the Galerkin method, then the bound (3.6), which certainly
holds for the Galerkin approximation (in the form of a trigonometric polynomial), enables us to
justify the passage to the limit and to obtain a periodic solution of the equation in the space Hs−τ

under the condition F ∈ Hs. Since Hs−τ ⊂ C2(�) for a sufficiently large s, we obtain the desired
solution N ∈ C2(�). This completes the proof of the lemma.

Lemma 2.1 is an obvious corollary to Lemma 3.1.
3.2. When deriving the bound (2.4), we used the following special representation of solenoidal

vectors.

Lemma 3.2. Let a smooth quasiperiodic vector g(y), y ∈ R
d, be solenoidal and have zero mean

value, div g = 0, 〈g〉 = 0. Then the representation g = div p holds, where the smooth quasiperiodic
matrix p = {plj} is skew-symmetric, plj = −pjl. Moreover, the following bound holds for periodic
supports P and G of these functions:

‖P‖s � c0‖G‖s+τ , (3.7)

where c0 and τ are the constants in the frequency condition.

Proof. Represent the vector g using a series of the form (1.8), taking its properties into account,
namely,

g(y) =
∑
k �=0

ake
i2πqky, ak, qk ∈ R

d, ak ⊥ qk, qk �= 0, (3.8)

and using the orthogonality property ak ⊥ qk is explained in the remark below. The desired matrix
is

p(y) =
∑
k �=0

pke
i2πqky, pljk =

1

2πi

alkq
j
k − ajkq

l
k

|qk|2
. (3.9)

Indeed, for any chosen k �= 0, we have ake
i2πqky = div (pke

i2πqky), because

∑
j

∂

∂yj
(pljk e

i2πqky) =
∑
j

alkq
j
kq

j
k − ajkq

l
kq

j
k

|qk|2
ei2πqky =

∑
j

alkq
j
kq

j
k

|qk|2
ei2πqky = alke

i2πqky.

The bound (3.7) follows from the frequency condition, from the definition of the norm ‖ · ‖s, and
from precise formulas for the representation (3.9). For example, by (1.11), we have

qjk
|qk|2

� 1

|qk|
< c0|k|τ , j = 1, . . . , d.

This proves the lemma.

Remark. Let a quasiperiodic vector g(y) have a smooth periodic support G(z), and let, more-
over, divy g(y) = 0, i.e., let g be solenoidal. Then the following equation holds:

〈g(·) · ∇yϕ(·)〉 = 0 (3.10)
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for every trigonometric polynomial ϕ of the form (1.8). Indeed,

0 = 〈ϕ(·)(divy g)(·)〉 =
∫
�
Φ(z)(divy G)(z) dz = −

∫
�
G(z) · ∇yΦ(z) dz = −〈g(·) · (∇yϕ)(·)〉,

which proves (3.10). In this chain of equations, the second and fourth equations follow from a
property similar to (1.5) and the third equation is obtained by integration by parts in the integral
over the cell � and using the periodicity of the functions G and Φ, because ∂yj

= ωk
j ∂zk .

Setting ϕ(y) = e−i2πqjy in (3.10) for a chosen 0 �= j ∈ Z
m, we derive the orthogonality condition

for the coefficients of the Fourier series in (3.8) if we take into account the equality ∇e−i2πqjy =
−i2πqje

−i2πqjy and

〈ei2π(qj−qk)y〉 =
∫
�
ei2π(j−k)z dz �= 0,

only if k=j. Here again we use the coincidence of the mean values (see (1.5)).

4. CASE m�d

Above we have imposed no conditions on the dimensions d and m of the quasiperiodic and
periodic variables y and z, respectively (see the definition of the matrix (1.3)). We claim now that,
in the case m � d, the frequency condition (1.11) can be replaced by the simpler condition of linear
independence of the frequency vectors. It suffices to show that the assertions of Lemmas 3.1 and 3.2
remain valid.

Let us begin with Lemma 3.1. The periodic problem of finding a function N ∈ H1(�) = H1

such that
(A(z)∇yN(z),∇yΦ(z))L2(�) = (F (z),∇yΦ(z))L2(�) ∀ Φ∈H1 (4.1)

is solvable for every F ∈ L2(�), because, on the left-hand side of the identity (4.1), after passing
to the gradients with respect to the variable z, a nondegenerate form arises, namely,

(Ã(z)∇zN(z),∇zΦ(z))L2(�), Ã > 0.

The matrix Ã = {Ãsj} with the entries Ãsj = Alkω
s
l ω

j
k is the Gram matrix of the vectors

ω1, . . . , ωm, and it is positive definite by the ellipticity condition (1.6). Moreover, the right-hand
side of the identity (4.1) is a linear form in ∇zΦ(z) (we can take into account that ∂yj

= ωk
j ∂zk).

It can readily be seen that the assertion of Lemma 3.1 hold if the right-hand side of F in (4.1) is
sufficiently regular.

Consider Lemma 3.2. Let us construct the periodic support P of the desired matrix p from the
periodic support G = (G1, . . . , Gd) of the given quasiperiodic vector g.

Consider the problem of finding a periodic vector function B = (B1, . . . , Bd) satisfying the
relations

−ΔyB(z) = G(z), 〈B〉 = 0, (4.2)

where the equation is understood in the case of integral identity for every component,

Bj ∈ H1(�), (∇yBj(z),∇yΦ(z))L2(�) = (Gj(z),Φ(z))L2(�) ∀ Φ ∈ H1(�). (4.3)

Problem (4.2) has a unique solution, because 〈G〉 = 〈g〉 = 0 and the left-hand side of the iden-
tity (4.3), after the passage to the gradients with respect to the variable z, defines the form

(Â∇zBj(z),∇zΦ(z))L2(�). Here Â = {Âsj}ms,j=1, and Âsj = ωs · ωj is the inner product of the

vectors ωs, ωj ∈ R
d, and hence, Â > 0 by a property of the Gram matrix. The solution of problem

(4.2) satisfies the elliptic bound

‖B‖H2(� � c ‖G‖L2(�), c = const(ω1, . . . , ωm). (4.4)

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 22 No. 2 2015



HOMOGENIZATION ESTIMATES OF OPERATOR TYPE 271

Moreover, by (4.2) and by the solenoidal property of the vector g, the function B̃ = divy B satisfies
the relations

−ΔyB̃(z) = divy G(z) = 0, 〈B̃〉 = 0,

and thus, B̃ = divy B = 0.

By setting P sj = ∂Bj/∂ys − ∂Bs/∂yj , we obtain the desired matrix P = {P sj}ds,j=1. Indeed, by
(4.4), the bound ‖P‖H1(�) � c ‖G‖L2(�) holds, which can be regarded as an analog of the bound
(3.7) for s = 1. Moreover,

∂P sj

∂yj
=

∂

∂yj

(∂Bj

∂ys
− ∂Bs

∂yj

)
=

∂

∂ys
(divy B)−ΔyBs = −ΔyBs = Gs,

i.e., the representation divy P = G holds. For a smooth function G, differentiating the equation
(4.2), we first derive the smoothness of the function B and then also the smoothness of the func-
tion P .

Example. Let m = d = 2 and let a matrix a(y), y ∈ R
2, be obtained from a matrix A(z),

z ∈ R
2, which is periodic with respect to the variables z1, z2 (the periodicity cell is the unit

square [0, 1)2), by the substitution a(y) = A(ω1y, ω2y), where ω1 and ω2 are noncollinear vectors
on the plane. Depending on the choice of the vectors ω1 and ω2, two versions are possible: either
a(y) turns out to be periodic (possibly with another periodicity cell) or a(y) is not periodic. For

example, if ω1 = (
√
2, 0) and ω2 = (0,

√
3), then a(y1, y2) = A(

√
2y1,

√
3y2) is periodic with the cell

[0, 1/
√
2)× [0, 1/

√
3). If ω1 = (

√
2, 1) and ω2 = (1,

√
3), then a(y1, y2) = A(

√
2y1 + y2, y1 +

√
3y2)

is aperiodic. In any case, as is shown by the above analysis, auxiliary “problems on the cell” are
reduced to nondegenerate periodic problems. Thus, in this section we have identified the “easy”
case of quasiperiodic coefficients, which differs little from the case of periodic coefficients, although
does not belong formally to the periodic case.

5. NONDIVERGENT EQUATION

Consider the nondivergent equation

uε ∈ H1(Rd), (Aε + 1)uε = f, f ∈ L2(Rd),

Aε = −aεij(x)
∂2

∂xi∂xj
,

(5.1)

where aε(x) = {aεij(x)} is a quasiperiodic matrix defined by relations (1.2)–(1.6). The elliptic theory

ensures the existence of the resolvent (Aε + s)−1 if s > 0 is sufficiently large. In our case, as will
be seen below, there is a nondegenerate weight pε(x) = p(x/ε) such that 0 < ν � p(·) � 1/ν and
the coercive bound holds in the weighted L2-space,

(Aεu, u)L2(Rd,pεdx) � λ‖∇u‖2L2(Rd,pεdx)
.

Hence, to show the solvability of equation (5.1), one can apply the Lax–Milgram lemma by equip-
ping H1(Rd) with the weighted norm (equivalent to the standard norm) given by the equation
(‖∇u‖2

L2(Rd,pεdx)
+ ‖u‖2

L2(Rd,pεdx)
)1/2.

The crucial point in our considerations is the existence of a smooth quasiperiodic positive function
p(y) (see Lemmas 5.1 and 5.2) satisfying the equation

divy divy(a(y)p(y)) = 0 (5.2)

and also the conditions of normalization and nondegeneracy,

〈p〉 = 1, 0 < ν � p(·) � 1/ν. (5.3)
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It follows from (5.2) that the vector

g(y) = divy(a(y)p(y)) (5.4)

is solenoidal and, by Lemma 3.2, the representation

g(y) = divy s(y) (5.5)

holds, where s(y) is a smooth quasiperiodic skew-symmetric matrix with zero mean value.

The following transformations are related to the function p(y) and the vector g(y):

p(y)aij(y)
∂2

∂yi∂yj
=

∂

∂yi

(
p(y)aij(y)

∂

∂yj

)
− gj(y)

∂

∂yj
,

paij
∂2

∂yi∂yj
=

∂

∂yi

(
paij

∂

∂yj

)
−

( ∂

∂yi
sij

) ∂

∂yj
=

∂

∂yi

[
(paij − sij))

∂

∂yj

]
=

∂

∂yi

(
ãij

∂

∂yj

)
,

(5.6)
ãij(y) = p(y)aij(y)− sij(y). (5.7)

We obtain a divergent operator with asymmetric matrix ã(y). This matrix is solenoidal, since

divy ã(y) = divy(pa(y))− divy s(y)
(5.4)
= g(y)− divy s(y)

(5.5)
= 0. (5.8)

As is well known (see [2, Russian p. 24]), in this case, the homogenized matrix is evaluated by the
rule a0 = 〈ã〉, and therefore,

a0 = 〈pa〉. (5.9)

By setting
pε(x) = p(x/ε), ãε(x) = ã(x/ε), (5.10)

we obtain (by (5.6)) the representation

pε(x)Aε = − ∂

∂xi
ãεij(x)

∂

∂xj
(5.11)

with asymmetric matrix ãε(x), and equation (5.1) can be represented in an equivalent form

uε ∈ H1(Rd), − div(ãε∇uε) + pεuε = pεf. (5.12)

In [2], the following homogenization result for the equation (5.1) (or (5.12)) was proved:

uε⇀u in H1(Rd), (5.13)

where u is a solution of equation (1.10) with the matrix a0 of the form (5.9). Let us return to the
crucial object of our considerations, namely, to equation (5.2).

Lemma 5.1. Let the matrix A(z) in (1.3) be close to the identity matrix. Then there is a
quasiperiodic positive solution p(y) of equation (5.2). The solution can be regarded as an arbitrarily
smooth function.

This assertion is customarily referred to as the “lemma on the ground state.” In the statement
of the lemma, one can take any constant positive definite matrix instead of the identity matrix.
One can see from the proof of the lemma, which uses perturbation theory (see Section 6), what is
the precise meaning of the assertion that the matrix A(z) is close to a constant matrix. The lemma
remains valid under a more general assumption.
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Lemma 5.2. Let a matrix A(z) be subjected to the “cone” condition or the Cordes condition
(for details, see Section 6 ). Then the statement of Lemma 5.1 holds.

As is known [5], the Cordes condition follows from the ellipticity condition (1.6) in dimension
d = 2 (see Section 7); this fails to hold in the general case, and the Cordes condition must be
imposed in addition to (1.6). The “cone” condition gives a constraint on the scattering of the
eigenvalues of the matrix A(z). The solvability of nondivergent equations without conditions of this
type is not established.

Thanks to the lemma on the ground state, the matrix a0 in (5.9) is elliptic, and thus, the state-
ment of the homogenized problem with this matrix is well posed. Moreover, also using Lemma 3.2,
one can reformulate the original problem (5.1) in the form of equation (5.12).

The result of homogenization (5.13) stated above can be refined in the following sense. The
solution uε can be approximated by the solution of the homogenized problem in the H1-norm,
and with a controlled bound for the approximation of order ε, if one takes a somewhat corrected
equation as compared with (1.10) for the averaged equation, namely,

vε ∈ H1(Rd), − div a0∇vε + vε = pεf, f ∈ L2(Rd), (5.14)

where the matrix a0 and the weights pε are defined in (5.9) and (5.10), respectively.

Theorem 5.1. Let the assumptions of Lemma 5.1 or of Lemma 5.2 hold, together with the
frequency condition (1.11). Then the difference between the solutions of equations (5.1) and (5.14)
satisfies the bound

‖uε − vε‖H1(Rd) � εC‖f‖L2(Rd), (5.15)

where the constant C depends on the matrix A(z) and on the frequency condition.

Proof. We claim that, for the solution of equation (5.12), the zeroth approximation vε is also
the first approximation. To simplify our notation, here and below, we write vε = v. Transform the
difference of the flows, namely, the difference between the approximate flow and the averaged flow,

Rε(x) = ãε(x)∇v(x) − a0∇v(x)
(5.7),(5.9)
===== (pa(y)− s(y)− 〈pa− s〉)∇v(x)

= hj(y)
∂v(x)

∂xj
= (divy ςj(y))

∂v(x)

∂xj
, y =

x

ε
,

where hj(y) = (pa(y) − s(y) − 〈pa − s〉)ej , j = 1, . . . , d, is a solenoidal vector (see (5.8)) with
mean value 〈hj〉 = 0. For hj , we use the representation of the skew-symmetric matrix ςj given by
Lemma 3.2. Therefore,

Rε(x) = div
(
εςj

(x
ε

)∂v(x)
∂xj

)
− εςj

(x
ε

)
∇∂v(x)

∂xj
, − divRε(x) = εdiv

(
ςj

(x
ε

)
∇∂v(x)

∂xj

)
(5.16)

due to the skew symmetry of the matrix ςj . Therefore,

− div[ãε∇(v − uε)] + pε(v − uε)
(5.12)
= − div(ãε∇v) + pεv − pεf

(5.14)
= − div(ãε∇v)+pεv+div a0∇v−v =− div(ãε∇v−a0∇v)+(pε−1)v =− div Rε+(pε−1)v,

(5.17)
where, by Lemma 5.3 presented below, we have

‖(pε−1)v‖H−1(Rd) � εC‖v‖H1(Rd). (5.18)

For the equation
− div(ãε∇z) + z = div F + F0,

we have the energy bound

‖∇z‖L2(Rd) + ‖z‖L2(Rd) � c(‖F‖L2(Rd) + ‖F0‖H−1(Rd)).

As applied to (5.17), this bound gives the desired inequality (5.15) if we take into account formulas
(5.16) and (5.18), the sufficient smoothness of ςj , and the elliptic bound ‖v‖H2(Rd) � C‖f‖L2(Rd).
This completes the proof of the theorem.
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Lemma 5.3. Let the frequency condition (1.11) hold, let b(y) be a sufficiently smooth quasiperi-
odic function with zero mean, and let bε(x) = b(x/ε). Then

‖bεv‖H−1(Rd) � εC‖v‖H1(Rd). (5.19)

Proof. We shall first obtain the representation

b(y) = divy h(y) (5.20)

in which h(y) is a bounded quasiperiodic function. One must take h(y) = ∇yw(y), where w(y) is a
solution of the equation Δyw(y) = b(y). The solvability of this equation in the class of sufficiently
smooth quasiperiodic functions is ensured by the frequency condition. Indeed, for periodic supports,
we have an equation on the cell �, namely,

ΔyW (z) = B(z), 〈B〉 = 0.

The solution W is written out by an explicit formula using a Fourier series, which implies a bound
in the scale of Hs spaces (see Section 3), ‖W‖Hs−2τ

� c‖B‖Hs
. For sufficiently large s, we have

Hs−2τ ⊂ C2(�), and thus, the representation (5.20) is justified. Using this representation, one can
readily derive inequality (5.19) immediately from the definition of the H−1-norm. This completes
the proof of the lemma.

6. PROOF OF THE LEMMA ON THE GROUND STATE

6.1. Lemma 5.1 is proved in [4]. For the sake of completeness of our presentation, we reproduce
this proof.

Consider the space X = L2(�)d
2

on the m-dimensional cell � and the subset S of X formed by

the elements of the form { ∂2

∂yl∂yj
Φ}, where Φ ranges over Trig(Rm

z ). Since zj = ωjy, it follows that

∂/∂yj = ωl
j∂/∂zl. Denote by W 2

2 the closure of S in X and by W−2
2 the dual space of W 2

2 with
respect to the inner product in X. Introduce an operator Δy by the equation

ΔyV =

d∑
i=1

Vii, V = {Vij} ∈ W 2
2 .

On the set S, which is dense in W 2
2 , the operator Δy is the ordinary Laplace differential operator.

The following bound holds:
‖ΔV ‖L2(�) � c1‖V ‖W 2

2
. (6.1)

If V ∈ Trig(Rm), then

∂

∂yj
V = i2π

∑
akq

j
ke

i2πkz,
∂2

∂yl∂yj
V = (i2π)2

∑
akq

l
kq

j
ke

i2πkz,

where the components of the vectors qk = kiω
i are used, and so inequality (6.1) follows from the

Parseval formula and the elementary inequality 2αβ � α2 + β2, α, β ∈ R.

It follows from (6.1) that the image of the adjoint operator Δ∗
y : L2(�) → W−2

2 coincides with

W−2
2 . The kernel of the operator Δ∗

y is formed by the constants only, because every trigonometric
polynomial Ψ with zero mean is representable in the form Ψ = ΔyΦ. It should be noted that the
frequency vectors ω1, . . . , ωm are rationally independent, and thus, qk = kiω

i �= 0. This implies
that, for every F ∈ W−2

2 , there is a unique solution of the equation

Δ∗
yU = F, U ∈ L2(�), 〈U〉 = 0,
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where ‖U‖L2(�) � c0‖F‖W−2
2

. Denote the solution operator W−2
2 → L2(�) by R.

Now let us introduce the family of operators As : W
2
2 → L2(�). For an element V = {Vij} ∈ W 2

2 ,
set

AsV = Λ−saijΛs{Vij}, s/2 � 0 is an integer,

where the operator Λs is defined in Section 3. Assume that the matrix aij is close to the identity
matrix δij . Then aij = δij + χij and

AsV = ΔyV + Λ−sχijΛs{Vij} = ΔyV +KsV,

where the operator Ks is sufficiently small if the Cs(�)-norms of the functions χij are sufficiently
small. By perturbation theory, the equation A∗

sV = 0 (i.e., (Δ∗
y +K∗

s)V = 0) has a solution, and it
can be obtained as follows. Write

V (N) =

N∑
i=0

Vi, V0 = 1, Vi = −RK∗
sVi−1 (i > 0).

Then V (N) is a Cauchy sequence in L2(�), and its limit is the solution V . It is clear that V is close
to V0 = 1, and thus, is positive.

Thus, we have found a function V such that

∫
�
A∗

sVΨdz = 0 ⇐⇒
∫
�
V AsΨdz = 0,

∫
�
V Λ−s(ΔyΦ+ χij

∂2

∂yl∂yj
Φ)dz = 0,

‖V − 1‖L2(�) � δ,

where δ > 0 is sufficiently small and Ψ = Λ−sΦ, Φ is a trigonometric polynomial. Then P = Λ−sV
satisfies the identity ∫

�
P
(
ΔyΦ+ χij

∂2

∂yl∂yj
Φ
)
dz = 0,

i.e., P is a solution of the equation div div(aP ) = 0, and it is sufficiently close to 1 in the
C2(�)-norm. Increasing s, one can achieve an arbitrarily high smoothness of the function P . The
properties of P thus obtained ensure the statement of Lemma 5.1.

We stress that, in Lemma 5.1, the frequency condition (1.11) is not required. The solvability
problem for equation (5.2) has a positive answer which follow from smallness considerations, because
equation (5.2) differs only slightly from the solvable equation with the operator Δ∗

y.

6.2. We now turn to Lemma 5.2.
Let us first formulate the “cone” condition introduced by Cordes [6], which a condition on the

matrix A(z),

∃ δ > 0 : (d− 1)
(
1 +

d(d− 2)

d2 − 1

) d∑
i<j=2

(λi(z)− λj(z))
2 � (1− δ)(TrA(z))2, (6.2)

where λ1(z), . . . , λd(z) are the eigenvalues of the matrix A(z) and TrA(z) =
∑d

i=1 λi(z) stands for
the trace of the matrix A(z). An important consequence of condition (6.2), which was proved in [5],
is the “acute angle inequality,” which, in our case, becomes

λ̃

∫
Rd

|Δu|2 dx � −
∫
Rd

AεuΔu dx, u ∈ C∞
0 (Rd). (6.3)

The constant λ̃ > 0 depends only on δ in (6.2) and on the ellipticity constant λ in (1.6).
We need the following version of the “acute angle inequality.”
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Lemma 6.1. Let condition (6.2) hold, and let ϕ(y) be a smooth quasiperiodic function. Then
the support of this function Φ(z) satisfies the inequality

λ̃

∫
�
|ΔyΦ|2 dz � −

∫
�
AyΦΔyΦ dz, (6.4)

where Ay = −Aij(z)∂
2/∂yi∂yj and the constant λ̃ > 0 is just the same as in (6.3).

Proof. Write out inequality (6.3) for u(x) = α(x)ϕ(x/ε), where α ∈ C∞
0 (Rd). Since

Δu(x) = ε−2α(x)Δyϕ(y) +O(ε−1), y = x/ε,

−Aεu(x) = ε−2α(x)aij(y)
∂2

∂yi∂yj
ϕ(y) +O(ε−1), y = x/ε,

we obtain

λ̃

∫
Rd

|α(x)Δyϕ(y)|2 dx �
∫
Rd

α(x)aij(y)
∂2

∂yi∂yj
ϕ(y)α(x)Δyϕ(y) dx+O(ε), y = x/ε. (6.5)

Using the properties of the mean value 〈ψ(·)〉 of the quasiperiodic function ψ(y) = Ψ(z)|zi=ωiy, i.e.,
the weak L1

loc-convergence ψ(x/ε) ⇀ 〈ψ(·)〉 and the coincidence of means 〈ψ(·)〉 = 〈Ψ(·)〉, we find
the limits as ε → 0 of the integrals in (6.5); these limits are equal to

∫
Rd

|α(x)|2〈|ΔyΦ(·)|2〉 dx,
∫
Rd

|α(x)|2〈Aij(·)
∂2

∂yi∂yj
Φ(·)ΔyΦ(·)〉 dx.

Hence, passing to the limit in (6.5), we see that

λ̃

∫
�
|ΔyΦ(z)|2 dz �

∫
�
Aij(z)

∂2

∂yi∂yj
Φ(z)ΔyΦ(z) dz,

as was to be proved. This completes the proof of the lemma.

Having the inequality (6.4), consider the operator Ay : W
2
2 → L2(�), where the space W 2

2 is
defined in Subsection 6.1. The range of this operator is closed due to the bound (which follows

from (6.1)) c1‖u‖W 2
2
� ‖Ayu‖L2(�) � c2‖u‖W 2

2
. Introduce the space L̃ = {f ∈ L2(�) : 〈f〉 = 0}

and the orthogonal projection P : L2(�) → L̃. It can readily be seen that Δy : W
2
2 → L̃ is an

isomorphism, and we can define the operator PAyΔ
−1
y : L̃ → L̃. Formula (6.4) implies the coercive

property

−〈PAyΔ
−1
y f f〉 = −〈PAyuΔyu〉 = −〈AyuΔyu〉 � c‖Δyu‖2L2(�) = c‖f‖2L2(�),

where u = Δ−1
y f . In this case, by the Lax–Milgram lemma, PAy : W

2
2 → L̃ is an isomorphism,

and the range of the operator Ay : W
2
2 → L2(�) can have codimension equal to zero or one. The

case of zero codimension is excluded, because the problem Ayu = 1, u ∈ W 2
2 , is not solvable, as

is shown by inequality (6.4). Thus, the dimension of the range of the operator Ay : W
2
2 → L2(�)

is equal to one. In this case, the adjoint operator has a one-dimensional kernel, i.e., equation (5.2)
has precisely one solution p normalized by the condition 〈p〉 = 1. It is positive, which follows from
the fact that, otherwise, there would be an f > 0 such that 〈fp〉 = 0 and the equation Ayu = f
would be solvable. This contradicts the maximum principle. Lemma 5.2 is proved.

We stress that, in Lemma 5.2, we do not assume the frequency condition (1.11), and the solv-
ability problem has a positive answer due to the “acute angle inequality” in the form (6.4), which
is ensured by the Cordes condition (6.2).
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7. SOME REMARKS

On the method. Diverse aspects of homogenizing were studied earlier for equations with
quasiperiodic coefficients in [7–9, 4]. In particular, bounds for the homogenization errors were
treated in [7]. However, these bounds were not in operator form and were obtained using the
maximum principle under excessive regularity conditions on the right-hand side f of the equation.
The majorant in the error bounds depended on the Sobolev norms of the function f or on the
Ck-norms of f . In this case, it is impossible to represent the error bounds as bounds for the
difference between the resolvents of the original and the homogenized operator in the operator
L2 → L2 norm, as in (1.13).

The operator estimate (1.13) is proved by the classical “method of first approximation” in
the modification originating from [10], where divergent uniformly elliptic equations with periodic
measurable coefficients were studied. In the present paper, we are forced to assume the sufficient
regularity of the coefficients of the equation (the measurability is certainly insufficient), which is
related to the “problem on the cell” in the class of quasiperiodic functions. In the case of diver-
gent uniformly elliptic equations with periodic coefficients (we suppose that these coefficients are
measurable), the corresponding “problem on the cell” is an elliptic periodic problem on �, and
this problem has a solution in the Sobolev W 1,2-space of periodic functions (belonging to L2(�)
together with all its derivatives), which is sufficient for the method (see [10]). Moreover, in the
scalar case, this periodic solution turns out to be bounded by the maximum principle (see [11,
Th. B.2 in Chap. II]).

If the coefficients of a uniformly elliptic equation are quasiperiodic, then the “problem on the
cell” in the class of quasiperiodic functions on R

d is reduced, by the coincidence of the mean values
(see (1.5)), to a “hypoelliptic” problem in the class of periodic functions on R

m. For m > d, this
periodic problem is degenerate, and there are difficulties concerning its solvability. Moreover, one
must ensure the existence of solution in the Sobolev space Hk on the cell �m (for the definition,
see Section 3) for sufficiently large k and ensure that the solution is at least continuous and cor-
rectly define the quasiperiodic function. For these reasons, we need the sufficient smoothness of the
coefficients of the equation under consideration.

On the reduction technique. When considering nondivergent equations, we have used the
trick of reducing these equations to divergent equations. The reduction technique was developed
in [4, 9]. Using this approach, one can obtain (from our results) interesting consequences for equa-
tions which do not belong formally to the case under consideration and can be reduced to this case
according to [4, 9]. Consider, for example, the stationary Schrödinger equation

uε ∈ H1(Rd), (Aε + 1)uε = f, f ∈ L2(Rd),

Aε = −Δ+ ε−2ϕε(x),
(7.1)

with oscillating quasiperiodic potential ϕε(x) = ϕ(y), y = ε−1x, where, as usual,
ϕ(y) = Φ(ω1y, . . . , ωmy) and Φ(z1, . . . , zm) is a continuous function 1-periodic with respect to
every argument. Suppose that λ0 = 0 is the lowest eigenvalue of the operator −Δy + Φ(z) on the
unit cube [0, 1)m with periodic boundary conditions. The corresponding eigenfunction P (z) may
be chosen posititive with normalizing condition 〈P 2〉 = 1. It means that there exists a positive
quasiperiodic function p(y) such that

−Δyp(y) + ϕ(y)p(y) = 0, 〈p2〉 = 1. (7.2)

The following reduction formula holds:

p(−Δy + ϕ)pv = − ∂

∂yi
p2

∂

∂yi
v,

thanks to which the operator Aε from (7.1) is positive, thereby, the resolvent (Aε + 1)−1 really
exists. Setting ρε(x) = p2(x/ε), pε(x) = p(x/ε), and ũε = uε(x)/p(x/ε), after multiplying (7.1) by
p(x/ε), we obtain

ũε ∈ H1(Rd), − ∂

∂xi
ρε

∂

∂xi
ũε + ρεũε = pεf. (7.3)
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Let us find the homogenized matrix a0 for an isotropic matrix aε(x) = {ρε(x)δij}, as is described
in Section 2, and introduce the operator A = − div(a0∇). For the homogenized problem, we take
problem (5.14). The difference between the solutions of problems (7.3) and (5.14) satisfies the bound

‖ũε − vε‖L2(Rd) � εC‖f‖L2(Rd),

where the constant C depends on the potential Φ(z) and on the frequency condition. This bound
can be represented in operator form as∥∥∥pε

(
− ∂

∂xi
ρε

∂
∂xi

+ ρε

)−1

pε − pε(A+ 1)−1pε

∥∥∥
L2(Rd)→L2(Rd)

� εC.

By the reduction formula, the first bordered resolvent can be replaced by the resolvent of the
operator Aε = −Δ+ ε−2ϕε(x), namely,

‖(Aε + 1)−1 − pε(A+ 1)−1pε‖L2(Rd)→L2(Rd) � εC.

The somewhat nonstandard normalization condition in (7.2) enables one to use Lemma 5.3 when
deriving this bound.

Suppose that instead of (7.2) the ground state equation is of the form (−Δy+ϕ(y)−λ0)p(y) = 0,
where λ0 > 0. In this case the problem (7.1) is again well posed and due to the reduction formula
it may be transformed into the equation −divρε∇ũε+(ε−2 +1)ρεũε = pεf. Hence, one can readily
conclude that ‖ũε‖L2 = O(ε2) instead of above estimates.

On the Cordes condition. In the planar case (d = 2), (6.2) follows from (1.6). Indeed, the
Cordes condition becomes (λ1 − λ2)

2 � (1 − δ)(λ1 + λ2)
2, and it certainly holds with

δ = 2λ2/(1 + λ2) < 1. Here λ is the ellipticity constant, and we may always assume that λ < 1.
By (1.6), the point (λ1, λ2) belongs to the square Q = {t ∈ R

2 : λ � ti � 1/λ, i = 1, 2}, which is
contained in the acute angle between the lines γ± with the equations t2 = λ±2t1. In the new orthog-
onal system of coordinates t̃1 = t2+t1, t̃2 = t2−t1, the straight lines γ± have the angular coefficient

k± = ±(1− λ2)/(1 + λ2). Therefore, for every point of the square Q, we have |t̃2/t̃1| � 1−λ2

1+λ2 . Then

(λ1 − λ2)
2 � (λ1 + λ2)

2(1−λ2

1+λ2 )
2 < (1− 2 λ2

1+λ2 )(λ1 + λ2)
2, as was to be proved.
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