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Abstract. We continue our study of gauge equivariant K-theory. We thus study the analysis
of complexes endowed with the action of a family of compact Lie groups and their index in
gauge equivariant K-theory. We introduce various index functions, including an axiomatic
one, and show that all index functions coincide. As an application, we prove a topological
index theorem for a family D = (Db)b∈B of gauge-invariant elliptic operators on a G-bundle
X → B, where G → B is a locally trivial bundle of compact groups, with typical fiber G.
More precisely, one of our main results states that a-ind(D) = t-ind(D) ∈ K0

G(X), that is,
the equality of the analytic index and of the topological index of the family D in the gauge-
equivariant K-theory groups of X. The analytic index inda(D) is defined using analytic
properties of the family D and is essentially the difference of the kernel and cokernel KG-
classes of D. The topological index is defined purely in terms of the principal symbol of D.

DOI 10.1134/S1061920815010100

1. INTRODUCTION

Analysis on singular spaces, as developed by Connes, Cordes, Melrose, Rosenberg, Skandalis,
Schrohe, Schulze [12–14, 28, 41, 45, 46], and many others, leads naturally to Lie algebroids and,
hence, to Lie groupoids. This was formalized in [1, 29, 36] and other papers. One of the simplest
Lie groupoids is given by a family (or bundle) of Lie groups. In applications, one is interested
mostly in the case of families of solvable Lie groups [2, 3, 25, 30, 34, 51]. Nevertheless, families of
compact Lie groups are interesting because some of the techniques that are developed for dealing
with compact groups can be used as a model in the case of solvable Lie groups as well. Moreover,
families of compact Lie groups form a basic building block in the structure of proper groupoids,
which is a very important class of groupoids. Proper groupoids have received recently a great deal
of attention and several important results have been proved for this class of groupoids by Emerson
and Meyer [16–19].

In this paper, we continue our study of families of compact Lie groups [32, 33, 49, 50] by studying
gauge-equivariant complexes and the various index functions defined on them. The natural topo-
logical invariants of these complexes live in the gauge-equivariant K-theory defined in [32]. Among
these invariants, a prominent role is played by the analytic and topological indices. Our approach
is based on a careful investigation of the formal properties of index mappings, which leads us to
the result stating that the analytic and topological index for these complexes coincides. This result
is a generalization of the well known theorem of Atiyah and Singer [5], and is proved in the spirit
of their original paper.

Let us introduce some notation to describe our results in more detail. Let p : G → B be a bundle
of compact groups. Recall that this means that each fiber Gb := p−1(b) is a compact group and that,
locally, G is of the form U ×G, where U ⊂ B open and G a fixed compact group. Let X and B be
locally compact spaces and πX : X → B be a continuous mapping. In the present paper, as in [32],
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AN INDEX THEOREM FOR GAUGE-INVARIANT FAMILIES 75

this mapping will be supposed to be a locally trivial bundle. The case of nonlocally trivial bundles
will be dealt with in a later publication.

Assume that G acts on X. This action will always be fiber-preserving. Then we can associate
to the action of G on X the G-equivariant K-theory groups Ki

G(X) as in [32]. We shall review and

slightly generalize this definition in Section 2. For X compact, the group K0
G(X) is defined as the

Grothendieck group of G-equivariant vector bundles onX. IfX is not compact, we define the groups
K0

G(X) using fiberwise one-point compactifications. We shall call these groups simply the gauge-
equivariant K-theory groups of X when we do not want to specify G. The reason for introducing
the gauge-equivariant K-theory groups is that they are the natural range for the index of a gauge-
invariant families of elliptic operators. In turn, the motivation for studying gauge-invariant families
and their index is due to their connection to spectral theory and boundary value problems on
noncompact manifolds. Some possible connections with Ramond-Ramond fields in String Theory
were mentioned in [21, 32]. See also [7, 22, 26, 27, 31, 42]. A different approach to equivariant index
constructions can be found in [43].

In this paper, in particular, we also continue our study of gauge-equivariant K-theory. Our ini-
tial motivation for this paper was to develop an equivariant topological index theorem for gauge
equivariant operators in the framework of our two earlier papers on the subject [32, 33], see The-
orem 5.6. In fact, the most part of the present paper was written in 2009 (and the results were
presented at the conference [35]). Connections with proper groupoids [19] provide now further mo-
tivation for our study. We begin by providing two alternative definitions of the relative KG–groups,
both based on complexes of vector bundles. (In this paper, all vector bundles are complex vector
bundles, with the exception of the tangent bundles or where explicitly stated.) These alternative
definitions, modeled on the classical case [4, 23], provide a convenient framework for the study of
products, especially in the relative or noncompact cases. The products are especially useful for the
proof of the Thom isomorphism in gauge-equivariant theory [33], which is one of the main ingredi-
ents for the results of this paper. A Thom isomorphism was proved later also in the framework of
bivariant KK-theory [19]. Let E → X be a G-equivariant complex vector bundle. Then the Thom
isomorphism is a natural isomorphism

τE : Ki
G(X) → Ki

G(E). (1)

(There is also a variant of this result for spinc-vector bundles, but since we will not need it for
the index theorem 5.6, we will not discuss it in this paper.) The Thom isomorphism allows us to
define Gysin (or push-forward) mappings in K-theory. As it is well known from the classical work
of Atiyah and Singer [5], the Thom isomorphism and the Gysin mappings are some of the main
ingredients used for the definition and study of the topological index. In fact, we shall proceed
along the lines of that paper to define the topological index for gauge-invariant families of elliptic
operators. Some other approaches to Thom isomorphism in general settings of Noncommutative
Geometry were the subject of [11, 20, 24, 26, 39, 47] and many other papers.

Gauge-equivariant K-theory behaves in many ways like the usual equivariant K-theory, but
exhibits also some new phenomena. For example, the groups K0

G(B) may turn out to be reduced

to K0(B) when G has “a lot of twisting” [32, Proposition 3.6]. This is never the case in equivariant
K-theory when the action of the group is trivial, but the group itself is not trivial. In [32], we
addressed this problem in two ways: first, we found conditions on the bundle of groups p : G → B
that guarantee that K0

G(X) is not too small (this condition is called finite holonomy and is recalled

below), and, second, we studied a substitute of K0
G(X) which is never too small (this substitute is

K∗(C
∗(G)), the K-theory of the C∗-algebra of the bundle of compact groups G).

In this paper, we shall again need the finite holonomy condition, so let us review it now. To define

the finite holonomy condition, we introduced the representation covering of G, denoted ̂G → B.

As a space, ̂G is the union of all the representation spaces ̂Gb of the fibers Gb of the bundle of compact
groups G. One measure of the twisting of the bundle G is the holonomy associated to the covering
̂G → B. We say that G has representation theoretic finite holonomy if ̂G is a union of compact-open
subsets. (An equivalent conditions can be obtained in terms of the fundamental groups when B is
path-connected, see Proposition 2.3 below.) Let C∗(G) be the enveloping C∗-algebra of the bundle
of compact groups G. We have proved in [32, Theorem 5.2] that

Kj
G(B) ∼= Kj(C

∗(G)), (2)
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76 NISTOR AND TROITSKY

provided that G has representation theoretic finite holonomy. This guarantees that Kj
G(B) is not

too small. It also points out to an alternative, algebraic definition of the groups Ki
G(X).

Let us put our results into some perspective. Recently, an important paper of Emerson and Meyer
with implications for our project [19] has appeared. In that paper, Emerson and Meyer developed
a G-equivariant version of the bivariant K-groups, denoted KKG for a proper groupoid G. Then, to
anyK-oriented mapping f : X → Y , they had associated an element f !an ∈ KKG�Y (C0(X), C0(Y ))
and had shown that this defined a functor. They then interpreted this result as an equivariant topo-
logical index theorem. R. Meyer has kindly informed us that some of the results, the present paper
can also be obtained from this theorem in [19]. It would be quite worthwhile to complete in full
detail this alternative proof. We are grateful to him and to H. Emerson for discussions on that
subject at the above mentioned conference ([35]) and later. In particular, in view of the comments
in the introduction to that paper, the exact relation between our gauge-invariant operators and
bivariant K-theory still needs to be understood. We thus feel that the concrete constructions in
this paper, done in the spirit of the original Atiyah-Singer paper, have a merit of their own. They
may turn out to be useful also in cyclic homology calculations of the index and shed some new
light and explain the difficult results of Emerson and Meyer.

The structure of the paper is as follows. We start with the definition of gauge-equivariant K- the-
ory and with some basic results from [32], most of them related to the “finite holonomy condition,”
a condition on bundles of compact groups that we recall in Section 2. In Subsection 2.2, we describe
an equivalent definition of gauge-equivariant K-theory in terms of complexes of vector bundles. This
will turn out to be especially useful when studying the topological index. In Section 3, we review
the Thom isomorphism in gauge-equivariant K-theory, we define and study the Gysin mappings,
and we define the topological index, building on the results from [33]. In Section 4, we establish the
main properties of topological index. As a consequence, in Section 5, we prove that the topological
and analytical index coincide. We conclude with a discussion of the cyclic homology of the relevant
groupoid algebras and with some comments on future work.

We thank T. Schick, R. Meyer, and G. Skandalis for useful discussions. We would like to thank
also the Max Planck Institute for Mathematics, where part of this work was completed.

2. PRELIMINARIES

We begin by recalling the definition of gauge-equivariant K-theory and some basic results
from [32]. An important part of our discussion will be devoted to the discussion of the finite
holonomy condition for a bundle of compact groups p : G → B, a condition introduced below.

All vector bundles considered in this paper are complex vector bundles, excluding the tangent
bundles to the various manifolds appearing below and if otherwise mentioned.

2.1. Bundles of Compact Groups and Finite Holonomy Conditions

We begin with a short discussion of bundles of locally compact groups. Then we study finite
holonomy conditions for bundles of compact groups. Let G be a locally compact group. We shall
denote by Ĝ the set of equivalence classes of irreducible representations of G with the Jacobson
topology and by Aut(G) we shall denote the group of continuous (group) automorphisms of G.
We endow this group with the topology of uniform convergence on compact subsets. Clearly, Aut(G)

acts on Ĝ.

Definition 2.1. Let B be a locally compact space and let G be a locally compact group. A
bundle of locally compact groups G with typical fiber G over B is, by definition, a fiber bundle
G → B with typical fiber G and structural group Aut(G).

We need now to introduce the representation theoretic holonomy of a bundle of Lie group with
compact fibers p : G → B. Let P → B be the principal Aut(G)-bundle such that

G ∼= P ×Aut(G) G := (P ×G)/Aut(G).

We fix the above notation. In particular, if Gb is the fiber of G → B above b, then Gb � G as groups
(nonuniquely).
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AN INDEX THEOREM FOR GAUGE-INVARIANT FAMILIES 77

We assume from now on that G is compact and denote by ̂G the (disjoint) union of the sets ̂Gb

of equivalence classes of irreducible representations of the groups Gb. Using the natural action of

Aut(G) on Ĝ, we can naturally identify ̂G with P×Aut(G)Ĝ as fiber bundles over B. Let also Aut0(G)
be the connected component of the identity in Aut(G). The group Aut0(G) will act trivially on the

set Ĝ, because the later is discrete. Let

HG := Aut(G)/Aut0(G), P0 := P/Aut0(G), and ̂G � P0 ×HG
Ĝ.

Above, ̂G is defined because P0 is an HG-principal bundle. The space ̂G is called the representation

space of G and the covering ̂G → B is called the representation covering associated to G.
Assume now that B is a path-connected, locally simply-connected space and fix a point b0 ∈ B.

We shall denote, as usual, by π1(B, b0) the fundamental group of B. Then the bundle P0 is classified
by a morphism

ρ : π1(B, b0) → HG := Aut(G)/Aut0(G), (3)

which will be called the holonomy of the representation covering of G.
For our further reasoning, we shall sometimes need the following finite holonomy condition.

Definition 2.2. We say that G has representation theoretic finite holonomy if every σ ∈ ̂G is

contained in a compact-open subset of ̂G.

In the cases we are interested in, the above condition can be reformulated as follows [32].

Proposition 2.3. Assume that B is path-connected and locally simply-connected. Then G has

representation theoretic finite holonomy if and only if π1(B, b0)σ ⊂ ̂G is a finite set for any irre-
ducible representation σ of G.

The case when G does not have the representation theoretic finite holonomy condition (“does
not satisfy the finite holonomy condition” for short) leads to some interesting, but pathological
situations [19, 32]. In particular, they lead to the appearance of bundles with nontrivial Dixmier–
Douady invariants [32]. See [40, 44] for more on Dixmier–Douady invariants.

Example 2.4. For instance, let A1, . . . , Ak be commuting n×nmatrices with integer coefficients
and denote also by the same letters the corresponding automorphism of Z

n and G := (S1)n.
Let B := (S1)k (so both G and B are tori, possibly of different dimensions). Then the matrices
A1, . . . , Ak give rise to a morphism π1(B) � Z

k → Aut(G). By choosing the matrices A1, . . . , Ak

appropriately, we may arrange that the resulting G family of Lie groups will not have the finite
holonomy condition. We may even have that π1(B) � Z

k → Aut(G) is injective.

From now on, we shall assume that G has representation theoretic finite holonomy, unless ex-
plicitly otherwise mentioned.

2.2. Gauge-Equivariant K-Theory

Let us now define the gauge equivariant K-theory groups of a “G-fiber bundle” πY : Y → B.
All our definitions are well known if B is reduced to a point (cf. [4, 23]). First we need to fix the
notation.

If fi : Yi → B, i = 1, 2, are two mappings, we shall denote by

Y1 ×B Y2 := {(y1, y2) ∈ Y1 × Y2, f1(y1) = f2(y2) } (4)

their fibered product. Let p : G → B be a bundle of locally compact groups and let πY : Y → B
be a continuous mapping. We shall say that G acts on Y if each group Gb acts continuously on
Yb := π−1(b) and the induced mapping μ defined by

G ×B Y := {(g, y) ∈ G × Y, p(g) = πY (y)} � (g, y) −→ μ(g, y) := gy ∈ Y
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is continuous. If G acts on Y , we shall say that Y is a G-space. If, in addition to that, Y → B is
also locally trivial, we shall say that Y is a G-fiber bundle, or, simply, a G-bundle. This definition is
a particular case of the definition of the action of a differentiable groupoid on a space.

Let πY : Y → B be a G-space, with G a bundle of compact groups over B. Recall that a vector
bundle π̃E : E → Y is a G-equivariant vector bundle (or simply a G-equivariant vector bundle) if

πE := πY ◦ π̃E : E → B

is a G-space, the projection
π̃E : Eb := π−1

E (b) → Yb := π−1
Y (b)

is Gb := p−1(b) equivariant, and the induced action Ey → Egy of g ∈ G, between the corresponding
fibers of E → Y , is linear for any y ∈ Yb, g ∈ Gb, and b ∈ B.

To define gauge-equivariant K–theory, we first recall some preliminary definitions from [32]. Let
π̃E : E → Y be a G-equivariant vector bundle and let π̃E′ : E′ → Y ′ be a G′-equivariant vector
bundle, for two bundles of compact groups G → B and G′ → B′. We shall say that (γ, ϕ, η, ψ) :
(G′, E′, Y ′, B′) → (G, E, Y,B) is a γ–equivariant morphism of vector bundles if the following five
conditions are satisfied:

(1) γ : G′ → G, ϕ : E′ → E, η : Y ′ → Y, and ψ : B′ → B,
(2) all the resulting diagrams are commutative,
(3) ϕ(ge) = γ(g)ϕ(e) for all e ∈ E′

b and all g ∈ G′
b,

(4) γ is a group morphism in each fiber, and
(5) f is a vector bundle morphism.

We shall say that φ : E → E′ is a γ–equivariant morphism of vector bundles if, by definition, it is
part of a morphism (γ, ϕ, η, ψ) : (G′, E′, Y ′, B′) → (G, E, Y,B). Note that η and ψ are determined
by γ and φ.

Let p : G → B be a bundle of compact groups and πY : Y → B be a G-space. The set of isomor-
phism classes of G-equivariant vector bundles π̃E : E → Y will be denoted by EG(Y ). On this set,
we introduce a monoid operation, denoted “+,” using the direct sum of vector bundles. This defines
a monoid structure on the set EG(Y ) as in the case when B consists of a point.

Definition 2.5. Suppose that G → B is a bundle of compact groups acting on the G-space
Y → B. Assume Y to be compact. The G-equivariant K-theory group K0

G(Y ) is defined as the
group completion of the monoid EG(Y ).

The groups K0
G(Y ) have a natural ring structure and the functoriality properties of the usual

equivariant K-theory groups extend to the gauge equivariant K-theory groups.
A G-equivariant vector bundle E → Y on a G-space Y → B, Y compact, is called trivial if, by

definition, there exists a G-equivariant vector bundle E′ → B such that E is isomorphic to the
pull-back of E′ to Y . Thus E � Y ×B E′. If G → B has representation theoretic finite holonomy
and Y is a compact G-bundle, then every G-equivariant vector bundle over Y can be embedded
into a trivial G-equivariant vector bundle. This embedding will necessarily be as a direct sum.

If G → B does not have finite holonomy, it is possible to provide examples of G-equivariant vector
bundles that do not embed into trivial G-equivariant vector bundles [32]. Also, a related example
from [32] shows that the groups K0

G(Y ) can be fairly small if the holonomy of G is “large.” This is

seen by considering k = 2 in Example 2.4 and choosing an injective morphism Z
k → Aut(G). In

this case, K0
G(Y ) and K0(C

∗(G)) are not isomorphic. A very similar construction was used in [19]. A
further observation is that it follows from the definitions that the tensor product of vector bundles
defines a natural ring structure on K0

G(Y ).

The definition of the gauge-equivariant groups extends to noncompact G-spaces Y as in the case
of equivariant K–theory with some small modifications. Let Y be a G-bundle. We shall denote then
by Y + := Y ∪ B the compact space obtained from Y by the one-point compactification of each
fiber Yb of πY : Y → B (recall that B is compact). The need to consider the space Y + is the main
reason for also considering bundles on B with non longitudinally smooth fibers. Then we define

K0
G(Y ) := ker

(

K0
G(Y

+) → K0
G(B)

)

.
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Also as in the classical case, we let

Kn
G (Y, Y

′) := K0
G((Y \ Y ′)× R

n)

for a G-subbundle Y ′ ⊂ Y . Then [32] we have the following periodicity result.

Theorem 2.6. We have natural isomorphisms

Kn
G (Y, Y

′) ∼= Kn−2
G (Y, Y ′).

The extended gauge-equivariant K-theory is then functorial with respect to open embeddings.
For the purpose of defining the Thom isomorphism, it is convenient to work with an equivalent

definition of gauge-equivariant K-theory in terms of complexes of vector bundles. This will turn out
to be especially useful when studying the topological index. The details and proofs can be found
in [33]. Analogous results in G-bivariant theory were obtained by [19].

Let X → B be a locally compact, paracompact G-bundle. A finite complex of G–equivariant
vector bundles over X is a complex

(E∗, d) =
(

· · · di−1−→ Ei di−→ Ei+1 di+1−→ · · ·
)

of G-equivariant vector bundles over X with only finitely many Ei’s different from zero. Explicitly,
the Ei are G–equivariant vector bundles, the di’s are G-equivariant morphisms, di+1di = 0 for every
i, and Ei = 0 for |i| large enough. We shall also use the notation (E∗, d) =

(

E0, . . . , En, di : E
i|Y →

Ei+1|Y
)

, if Ei = 0 for i < 0 and for i > n. As usual, a morphism of complexes f : (E∗, d) → (F ∗, δ)

is a sequence of morphisms fi : E
i → F i such that fi+1di = δi+1fi, for all i. These constructions

yield the category of finite complexes of G–equivariant vector bundles. Isomorphism in this category
will be denoted by (E∗, d) ∼= (F ∗, δ).

Definition 2.7. Let X be a compact G-bundle and Y be a closed G-invariant subbundle. Denote
by Cn

G (X,Y ) the set of (isomorphism classes of) sequences

(E∗, d) =
(

E0, E1, . . . , En, dk : Ek|Y → Ek+1|Y
)

of G-equivariant vector bundles over X such that (Ek|Y , d) is exact if we let Ej = 0 for j < 0 or
j > n. We endow Cn

G (X,Y ) with the semigroup structure given by the direct sums of complexes.
An element in Cn

G (X,Y ) is called elementary if it is isomorphic to a complex of the form

· · · → 0 → E
Id→ E → 0 → · · ·

Two complexes (E∗, d), (F ∗, δ) ∈ Cn
G (X,Y ) are called equivalent if and only if there exist elementary

complexes Q1, . . . , Qk, P 1, . . . , Pm ∈ Cn
G (X,Y ) such that

E ⊕Q1 ⊕ · · · ⊕Qk
∼= F ⊕ P1 ⊕ · · · ⊕ Pm ,

in which case we write E � F . The semigroup of equivalence classes of sequences in Cn
G (X,Y ) will

be denoted by Ln
G(X,Y ).

We therefore obtain natural semigroup homomorphisms

Cn
G (X,Y ) → Cn+1

G (X,Y ) and CG(X,Y ) :=
⋃

n

Cn
G (X,Y ).

The equivalence relation ∼ commutes with embeddings, so the above morphisms induce morphisms
Ln
G(X,Y ) → Ln+1

G (X,Y ). Let L∞
G (X,Y ) := lim

→
Ln
G(X,Y ).
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Definition 2.8. Let X be a compact G-space and Y ⊂ X be a G-invariant subset. An Euler
characteristic χn is a natural transformation of functors χn : Ln

G(X,Y ) → K0
G(X,Y ), such that,

for Y = ∅, it takes the form

χn(E) =

n
∑

i=0

(−1)i[Ei] ,

for any sequence E = (E∗, d) ∈ Ln
G(X,Y ).

Now, let (E, d) be a complex of G-equivariant vector bundles over a G-space X. A point x ∈ X
will be called a point of acyclicity of (E, d) if the restriction of (E, d) to x, i.e., the sequence of
linear spaces

(E, d)x =
(

· · · (di)x−→ Ei
x

(di+1)x−→ Ei+1
x

(di+2)x−→ · · ·
)

is exact. The support of a finite complex (E, d) is defined as the complement in X of the set of its
points of acyclicity and is denoted supp(E, d). We shall say that two complexes in Ln

G(X,Y ) are
homotopic if they are isomorphic to the restrictions to X × {0} and X × {1} of a complex defined
over X × I and acyclic over Y × I.

Definition 2.9. Let X be a compact G-bundle and Y ⊂ X be a G-invariant subbundle.
We define En

G (X,Y ) to be the semigroup of homotopy classes of complexes of G-equivariant vector
bundles of length n over X such that their restrictions to Y are acyclic (i.e. exact).

The restriction of morphisms induces a morphism Φn : En
G (X,Y ) → Ln

G(X,Y ).

In the case of a locally compact, paracompact G-bundle X, we change the definitions of Ln
G and

En
G as follows. Recall that Y ⊂ X is closed. Then, in the definition of Ln

G, the morphisms di have
to be defined and form an exact sequence outside some compact G-invariant subset C of X �Y . In
the definition of En

G , the complexes have to be exact outside some compact G-invariant subset of
X � Y . In particular, Ln

G(X,Y ) = Ln
G(X

+, Y +). The following result was proved in [33].

Theorem 2.10. One has natural isomorphisms

K0
G(X,Y ) ∼= Ln

G(X,Y ) ∼= En
G (X,Y ), n � 1, (5)

induced by χn and Φn in the case of compact bundles.

3. THE THOM ISOMORPHISM, GYSIN MAPPINGS, AND TOPOLOGICAL INDEX

We now recall the Thom isomorphism in gauge-equivariant K-theory [33]. We begin with a
discussion of the compact case.

3.1. The Compact Case

Let us recall products and the Thom morphism in gauge-equivariant K-theory. Let πX : X → B
be a G-space, π̃F : F → X be a complex G-vector bundle over X, and s : X → F a G-invariant
section. We shall denote by ΛiF the i-th exterior power of F , which is again a complex G-equivariant
vector bundle over X. As in the proof of the Thom isomorphism for ordinary vector bundles, we
define the complex Λ(F, s) of G-equivariant vector bundles over X by

Λ(F, s) := (0 → Λ0F
α0

−→ Λ1F
α1

−→ · · · α
n−1

−→ ΛnF → 0) , (6)

where αk(vx) = s(x) ∧ vx for vx ∈ ΛkF x and n = dimF . It is immediate that αj+1(x)αj(x) = 0,
and hence, (Λ(F, s), α) is a complex indeed.

The Künneth formula shows that the complex Λ(F, s) is acyclic for s(x) 
= 0, and hence,
supp(Λ(F, s)) := {x ∈ X|s(x) = 0}. If this set is compact, we can associate to the complex
Λ(F, s) of Eq. (6) an element

[Λ(F, s)] ∈ K0
G(X). (7)
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Let X be a G-bundle and πF : F → X be a G-equivariant vector bundle over X. The point of the
above construction is that π∗

F (F ), the lift of F back to itself, has a canonical section sF (f) = (f, f)
whose support is X. Hence, if X is a compact space, we obtain an element

λF := [Λ(π∗
F (F ), sF )] ∈ K0

G(F ). (8)

Recall that the tensor product of vector bundles defines a natural product ab = a⊗ b ∈ K0
G(X)

for any a ∈ K0
G(B) and any b ∈ K0

G(X), where πX : X → B is a compact G-space, as above.
Recall that all our vector bundles are assumed to be complex vector bundles, except for the ones

coming from geometry (tangent bundles, their exterior powers) and where explicitly mentioned.
Due to the importance that F be complex in the following definition, we shall occasionally repeat
this assumption.

Definition 3.1. Let πF : F → X be a (complex) G-equivariant vector bundle. Assume the G-
bundle X → B is compact and let λF ∈ K0

G(F ) be the class defined in Eq. (8), then the mapping

ϕF : K0
G(X) → K0

G(F ), ϕF (a) = π∗
F (a)⊗ λF ,

is called the Thom morphism.

As we shall see below, the definition of the Thom homomorphism extends to the case when X
is not compact, although the Thom element itself is not defined if X is not compact.

The definition of the Thom homomorphism immediately gives the following proposition. We shall
use the notation of Proposition 3.1.

Proposition 3.2. The Thom morphism ϕF : K0
G(X) → K0

G(F ) is an isomorphism of K0
G(B)-

modules. It extends to K1 by periodicity.

Let ι : X ↪→ F be the zero section embedding of X into F . Then ι induces a homomorphism
ι∗ : K0

G(F ) → K0
G(X). Then ι∗ϕF (a) = a ·

∑n
i=0(−1)iΛiF.

3.2. The Noncompact Case

We consider now the case when X is locally compact, but not necessarily compact. The complex
Λ(π∗

F (F ), sF ) has a noncompact support, and hence, it does not define an element of K0
G(F ).

However, if a = [(E,α)] ∈ K0
G(X) is represented by the complex (E,α) of vector bundles with

compact support, then we can still consider the tensor product complex
(

π∗
F (E), π∗

F (α)
)

⊗ Λ(π∗
FF, sF ).

From the Künneth formula for the homology of a tensor product, we obtain that the support of a
tensor product complex is the intersection of the supports of the two complexes. In particular, we
obtain

supp{(π∗
FE, π∗

Fα)⊗ Λ(π∗
FF, sF )} ⊂ supp(π∗

FE, π∗
Fα) ∩ suppΛ(π∗

FF, sF )

⊂ supp(π∗
FE, π∗

Fα) ∩X = supp(E,α).
(9)

Thus, the complex (π∗
F E , π∗

Eα) ⊗ Λ(π∗
FF, sF ) has compact support and, hence, defines an element

in K0
G(F ). Of course, the reason for this is that the Thom element is more naturally an element of

a bivariant K-theory group.

Proposition 3.3. The homomorphism of K0
G(B)-modules

ϕF : K0
G(X) → K0

G(F ), ϕF (a) = [(π∗
F E , π∗

Fα)⊗ Λ(π∗
FF, sF )], (10)

defined in Eq. (9) extends the Thom morphism to the case of not necessarily compact X. The Thom
morphism ϕF satisfies i∗ϕF (a) = a ·

∑n
i=0(−1)iΛiF .

We are now ready to formulate the Thom isomorphism in the setting of gauge-equivariant vector
bundles.
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Theorem 3.4 [33, Theorem 4.5]. Let X → B be a G-bundle and F → X a complex
G- equivariant vector bundle, then ϕF : Ki

G(X) → Ki
G(F ) is an isomorphism.

We now discuss a few constructions related to the Thom isomorphism, which will be necessary for
the definition of the topological index. The most important one is the Gysin mapping. For several
of the constructions below, the setting of G-spaces and even G-bundles is too general, and we shall
have to consider longitudinally smooth G-fiber bundles πX : X → B. The main reason why we need
longitudinally smooth bundles to define the Gysin mapping is the same as in the definition of the
Gysin mapping for embeddings of smooth manifolds. We shall denote by TvertX the vertical tangent
bundle to the fibers of X → B. All tangent bundles below will be vertical tangent bundles.

Let X and Y be longitudinally smooth G-fiber bundles, i : X → Y be an equivariant fiberwise
embedding, and pT : TvertX → X be the vertical tangent bundle to X. Assume Y is equipped with
a G-invariant Riemannian metric and let pN : Nvert → X be the fiberwise normal bundle to the
image of i.

Let us choose a function ε : X → (0,∞) such that the mapping ρ : Nvert → Nvert, defined by

φ(ξ) = ξ
1+|ξ| is G-equivariant and defines a G-diffeomorphism Φ : Nvert → W onto a bundle of open

tubular neighborhoods W ⊃ X in Y.
Let (N ⊕N)vert := Nvert ⊕Nvert. The embedding i : X → Y can be written as a composition of

two fiberwise embeddings i1 : X → W and i2 : W → Y . Passing to differentials, we obtain

TvertX
di1−→ TvertW

di2−→ TvertY and dΦ: TvertN → TvertW,

where we use the simplified notation TvertN = TvertNvert.

Lemma 3.5. (cf. [23, p. 112]) The manifold TvertN can be identified with p∗T (N ⊕N)vert using
a G-equivariant diffeomorphism ψ that makes the following diagram commutative:

p∗T (N ⊕N)vert

��

TvertN
ψ

��

��
TvertX

pT

����
���

���
���

Nvert

pN

����
��
��
��
�

X,

where pT : TvertX → X is the canonical projection.

With the help of the relation i · (n1, n2) = (−n2, n1), we can equip

p∗T (N ⊕N)vert = p∗T (Nvert)⊕ p∗T (Nvert)

with the structure of a complex manifold. Then we can consider the Thom homomorphism

ϕ : K0
G(TvertX) → K0

G(p
∗
T (N ⊕N)vert).

Since TvertW is an open G-stable subset of TvertY and di2 : TvertW → TvertY is a fiberwise em-
bedding, by using the direct image morphism, we obtain a homomorphism (di2)∗ : K0

G(TvertW ) →
K0

G(TvertY ).

Definition 3.6. Let i : X → Y be an equivariant embedding of G-bundles. The Gysin homo-
morphism is the mapping

i! : K
0
G(TvertX) → K0

G(TvertY ), i! = (di2)∗ ◦ (dΦ−1)∗ ◦ ψ∗ ◦ ϕ.
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We thus see that the Gysin homomorphism is obtained by passage to K-groups in the upper
part of the diagram

p∗T (N ⊕N)vert

qT

��

TvertN
ψ�� dΦ ��

��

TvertW
di2 ��

��

TvertY

��

TvertX
pT

����
���

���
���

Nvert

pN

�����
��
��
�� Φ

����
���

���
��

X
i1 �� W

i2 �� Y.

A different choice of a metric or neighborhood W induces a homotopic mapping and (by (3) of
Theorem 3.7 below) the same Gysin homomorphism i!. Recall from the following result from [33],
where pT : TvertX → X is the canonical projection.

Theorem 3.7. [Properties of Gysin homomorphism] Let i : X → Y be a G-embedding.

(1) i! is a homomorphism of K0
G(B)-modules.

(2) Let i : X → Y and j : Y → Z be two fiberwise G-embeddings, then (j ◦ i)! = j! ◦ i!.
(3) Let fiberwise embeddings i1 : X → Y and i2 : X → Y be G-homotopic in the class of

embeddings. Then (i1)! = (i2)!.
(4) Let i : X → Y be a fiberwise G-diffeomorphism and di : TvertX → TvertY be the differential

of i. Then i−1
! = (di)∗.

(5) A fiberwise embedding i : X → Y can be represented as a compositions of embeddings X
in Nvert (as the zero section s0 : X → N) and Nvert → Y by i2 ◦ Φ: Nvert → Y. Then
i! = (i2 ◦ Φ)!(s0)!.

(6) Consider the complex bundle p∗T (Nvert ⊗ C) over TvertX. Form the complex Λ(p∗T (Nvert ⊗
C), 0) :

0 → Λ0(p∗T (Nvert ⊗ C))
0→ · · · 0→ Λk(p∗T (Nvert ⊗ C)) → 0

with noncompact support. If a ∈ K0
G(TvertX), then the complex

a⊗ Λ(p∗T (Nvert ⊗ C), 0)

has compact support and defines an element of K0
G(TvertX). Then

(di)∗i!(a) = a · Λ(p∗T (Nvert ⊗ C), 0),

where di is the differential of the embedding i.
(7) i!(x(di)

∗y) = i!(x) · y, where x ∈ K0
G(TvertX) and y ∈ K0

G(TvertY ).

We shall need also the following properties of the Gysin mapping. If X = B, the trivial longi-
tudinally smooth G-bundle, we shall identify TvertX = B and TvertV = V ⊗ C for a real bundle
V → B.

Theorem 3.8. [33, Theorem 5.4] Suppose that V → B is a G-equivariant real vector bundle and
that X = B. Then the mapping

i! : K
0
G(B) = K0

G(TvertX) → K0
G(TvertV) = K0

G(V ⊗ C)

coincides with the Thom homomorphism ϕV⊗C.

Now we recall our “fibered Mostow–Palais theorem” that will be useful in defining the index.
A generalization of this result to proper groupoids can be found in [19].
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Theorem 3.9. [33, Theorem 6.1] Let πX : X → B be a compact G-fiber bundle. Then there
exists a real G-equivariant vector bundle V → B and a fiberwise smooth G-embedding X → V. After
averaging one can assume that the action of G on V is orthogonal.

Let us now turn to the definition of the topological index. Let X → B be a compact, longi-
tudinally smooth G-bundle. From Theorem 3.9, it follows that there exists a G-equivariant real
vector bundle V → B and a fiberwise smooth G-equivariant embedding i : X → V. We can assume
that V is endowed with an orthogonal metric and that G preserves this metric. Thus, the Gysin
homomorphism

i! : K
0
G(TvertX) → K0

G(TvertV) = K0
G(V ⊗ C)

is defined. Since TvertV = V ⊗ C is a complex vector bundle, we have the following Thom isomor-
phism:

ϕ : K0
G(B)

∼−→ K0
G(TvertV).

Definition 3.10. The topological index is, by definition, the morphism

t-indXG : K0
G(TvertX) → K0

G(B), t-indXG := ϕ−1 ◦ i!.

The topological index satisfies the following properties.

Theorem 3.11 [33, Theorem 6.3]. Let X → B be a longitudinally smooth bundle and

t-indXG : K0
G(TvertX) → K0

G(B)

be its associated topological index. Then

(1) t-indXG does not depend on the choice of the G-equivariant vector bundle V and on the
G-equivariant embedding i : X → V.

(2) t-indXG is a K0
G(B)-homomorphism.

(3) If X = B, then the mapping

t-indXG : K0
G(B) = K0

G(TvertX) → K0
G(B)

coincides with IdK0
G(B).

(4) Suppose X and Y are compact longitudinally smooth G-bundles, i : X → Y is a fiberwise
G-embedding. Then the diagram

K0
G(TvertX)

i! ��

t-indX
G ����

���
���

��
K0

G(TvertY )

t-indY
G�����

���
���

�

K0
G(B).

commutes.

4. AN AXIOMATIC APPROACH

Condition 4.1. From now on, we shall assume some additional smoothness properties of the
spaces and actions involved. Namely, we assume B to be a smooth (compact) manifold and X → B
to be a smooth bundle. We also assume that all vector bundles involved are smooth. Let us trivialize
over an open subset U ⊂ B, so that X|U = X0 ×U and G|U = G×U ⊂ G×R

n (we consider U as
an open neighborhood of zero in R

n). We then assume that the induced action of G× U on X0 is
smooth.

Below, by a morphism of bundles of groups we shall mean a morphism of bundles which is a
fiberwise homomorphism of groups. The morphism ψ∗ is naturally induced by the group-bundle
morphism ψ : H → G. We now introduce the important concept of an “index function,” extending
the definition in [5].
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Definition 4.2. An index function is a family of K0
G(B)-homomorphisms {indXG }

indXG : K0
G(TvertX) → K0

G(B),

where G runs over the set of bundles of compact Lie groups and X runs over compact longitudinally
smooth G-bundles. This family is required to satisfy the following two conditions.

(1) If f : X → Y is a G-diffeomorphism, then the diagram

K0
G(TvertX)

(df−1)∗ ��

indX
G ����

���
���

��
K0

G(TvertY )

indY
G�����

���
���

�

K0
G(B)

is commutative.
(2) If ψ : H → G is a morphism of bundles of groups over B, then the diagram

K0
G(TvertX)

ψ∗
��

indX
G
��

KH(TvertX)

indX
H

��
K0

G(B)
ψ∗

�� K0
H(B)

is commutative.

We have the following.

Proposition 4.3. The topological index t-indXG is an index function.

Proof. Indeed, we need to check the two conditions defining an index function. To prove (1),
let us suppose that we have a mapping i : Y ↪→ V and let j := i◦f : X ↪→ V. By (2) of Theorem 3.7
(on the properties of the Gysin mapping), the following diagram is commutative.

K0
G(TvertY )

i!

		��
���

���
���

K0
G(TvertV)

ϕ−1

�� K0
G(B).

K0
G(TvertX)

f!





j!

��											

By (4) of the same theorem, we have f! = (df−1)∗ in our case, and then we complete the proof of
(1) by using this definition of t-ind.

Property (2) immediately follows from the definitions if, on V, we consider the action of H
induced by ψ.

Let us consider the following two axioms for an index function {indXG } family of mappings

indXG : K0
G(TvertX) → K0

G(B), defined for all compact, longitudinally smooth G-bundles X → B,
and satisfying the two conditions above.

Axiom A1. If X = B, then indXG : K0
G(TvertX) → K0

G(B) coincides with IdK0
G(B).
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Axiom A2. Suppose i : X → Y is a fiberwise G-embedding. Then the diagram

K0
G(TvertX)

i! ��

indX
G ����

���
���

��
K0

G(TvertY )

indY
G�����

���
���

�

K0
G(B)

is commutative.
We have the following corollary to Theorem 3.11.

Corollary 4.4. The topological index t-indXG satisfies Axioms A1 and A2.

We can now prove the following theorem.

Theorem 4.5. Let indXG be an index function satisfying Axioms A1 and A2. Then indXG =

t-indXG .

Proof. Consider a G-embedding i : X → V of a longitudinally smooth G-bundle X in a real
vector G-bundle V → B. The fiberwise one-point compactification V+ (i.e., a sphere bundle) is a
G-bundle with the canonical G-inclusion ε+ : V → V+. Put i+ := ε+ ◦ i : X → V+. If P = B ⊂ V
and j : P → V is the inclusion, then we obtain the diagram

K0
G(TvertX)

i!

��

















 indX

G



���
���

���
���

��

i+!
��

K0
G(TvertV)

(ε+)! �� K0
G(TvertV+)

indV+

G �� K0
G(B)

K0
G(TvertP ) = K0

G(B),

j!

����������������
j+!





indP
G

��















where j+ = ε+ ◦ j : P → V+. By (2) of Theorem 3.7 (respectively, by Axiom A2), the left

(respectively, right) triangles commute. By Axiom A1, indPG is the identity mapping. Since j! :
K0

G(B) → K0
G(TV) = K0

G(V ⊗ C) coincides with the Thom homomorphism, one has

indXG = indV
+

G ◦i+! = indV
+

G ◦(ε+)! ◦ i! = indV
+

G ◦(j+)! ◦ j−1
! ◦ i!

= indPG ◦j−1
! ◦ i! = j−1

! ◦ i! = t-indXG .

The theorem is proved.

We would like to replace Axiom A2 by new axioms. We start from the following formulation.
Axiom B1 (excision). Let U be a (noncompact) longitudinally smooth G-bundle and

j1 : U → X ′, j2 : U → X ′′

be fiberwise G-embeddings of U onto open subsets of the compact longitudinally smooth G-bundles
X ′ and X ′′. Then the diagram

K0
G(TvertX

′)

indX′
G

����
���

���
��

K0
G(TvertU)

(dj1)∗
�������������

(dj2)∗ 		��
���

���
���

K0
G(B)

K0
G(TvertX

′′)
indX′′

G

������������
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is commutative.
Suppose at least one of the embeddings j1 or j2 is defined. Then by Axiom B1, the index mapping

indUG : K0
G(TvertU) → K0

G(B)
is well defined.

Let Y be a smooth, compact manifold and H be a compact Lie group acting on Y . Let D
be an elliptic (pseudo)differential operator acting between suitable sections of two vector bundles
on Y . Then the kernel and cokernel of D are finite dimensional, complex representations of H,
and thus define elements in R(H), the representation ring of H. We shall denote by C-indYH(D) :=
[ker(D)]− [coker(D)] ∈ R(H) the classical H-equivariant index of D. We thus obtain a well defined
morphism

C-indYH : K0
H(TY ) → R(H).

We have the following statement (see [5]). Suppose j : ∗ → R
n is the embedding of the origin, hence,

j! : R(O(n)) → K0
O(n)(TR

n). Then
C-indR

n

O(n) j!(1) = 1. (11)

Let π : P → X be a compact longitudinally smooth principal bundle for a compact bundle of
Lie groups H → B, i.e., we have a (right) free action of H on P and X = P/H. Suppose we have
a left action of the bundle G → B on P and these two actions commute. Let F be a compact
longitudinally smooth left (G × H)-bundle, where we write G × H instead of G ×B H for a more
compact notation. We can form the associated bundle π1 : Y = P×HF → X with the natural action
of G. Consider the tangent bundle along the fibers of π1 (which is automatically “vertical”). Let us
denote it by TFY . Then TFY is a G-invariant real subbundle of TYvert and TFY = P ×H TFvert.
Using the metric, it is possible to decompose TYvert into a direct sum TvertY = TFY ⊕π∗

1(TvertX).
Therefore, the multiplication

K0
G(TvertX)⊗K0

G(TFY )
↓

K0
G(π

∗
1TvertX)⊗K0

G(TFY ) → K0
G(TvertY )

is well defined. There exists a mapping

K0
G×H(TvertF ) → K0

G×H(P × TvertF ) ∼= K0
G(P ×H TvertF ) = K0

G(TFY ).

Hence, we can define a mapping

γ : K0
G(TvertX)⊗K0

G×H(TvertF ) → K0
G(TvertY ).

Denote γ(a⊗ b) by a · b.
If V → B is a complex vector (G×H)-bundle, then P ×HV is a complex vector G-bundle over X.

We obtain the following ring homomorphism, which is a homomorphism of K0
G(B)-modules:

μP : K0
G×H(B) → K0

G(X), [V] �→ [P ×H V].
Since K0

G(TvertX) has a K0
G(X)-module structure, we can formulate the following axiom.

Axiom B2. If a ∈ K0
G(TvertX), b ∈ K0

G×H(TvertF ), then

indYG (a · b) = indXG (a · μP (ind
F
G×H(b))),

i.e., the diagram

K0
G(TvertX)⊗K0

G×H(TvertF ) −−−−

γ

��

1⊗ indF
G×H �� K0

G(TvertX)⊗K0
G×H(B)

1⊗μP

��
K0

G(TvertY )

indY
G

��

K0
G(TvertX)⊗K0

G(X)

��
K0

G(B) K0
G(TvertX)

indX
G��

is commutative
The following two statements were briefly mentioned in [33]; we recall them for the convenience

of the reader.
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Theorem 4.6. Let π : P → X be a principal right H-bundle with a left action of G commuting
with H. Suppose F is a longitudinally smooth (G×H)-bundle. Let us denote by Y the space P×HF .
Let j : X ′ → X and k : F ′ → F be fiberwise G- and (G × H)-embeddings, respectively. Let
π′ : P ′ → X ′ be the principal H-bundle induced by j on X ′. Assume that Y ′ := P ′ ×H F ′. The
embeddings j and k induce G-embedding j ∗ k : Y ′ → Y . Then the diagram

K0
G(TvertX)⊗K0

G(B) K
0
G×H(TvertF )

γ �� K0
G(TvertY )

K0
G(TvertX

′)⊗K0
G(B) K

0
G×H(TvertF

′)
γ ��

j!⊗k!





K0
G(TvertY

′)

(j∗k)!





is commutative.

Let us remark that, in the statement of this theorem, there is no compactness assumption
on X,X ′, F, and F ′, since there is no compactness assumption in the definition of the Gysin
homomorphism. This is not so in the definition of the topological index, where we start with a
compact G-bundle X → B.

Proof. Let us use the definition of γ:

K0
G(TvertX)⊗K0

G×H(TvertF ) ��

1

K0
G(TvertX)⊗K0

G×H(P × TvertF )
∼= ��

2

K0
G(TvertX

′)⊗K0
G×H(TvertF

′) ��

j!⊗k!





K0
G(TvertX

′)⊗K0
G×H(P ′ × TvertF

′)

ε





∼= ��

∼= K0
G(TvertX)⊗K0

G(P ×H TvertF ) →

3

K0
G(π

∗
1TvertX)⊗K0

G(P ×H TvertF ) →

∼= K0
G(TX

′)⊗K0
G(P

′ ×H TvertF
′) →

β





K0
G((π

′
1)

∗TvertX
′)⊗K0

G(P
′ ×H TvertF

′) →

α





→ K0
G((π

∗
1TvertX)× (P ×H TvertF )) →

4

→ K0
G((π

′
1)

∗TvertX
′ × (P ′ ×H TvertF

′)) →
(12)

→ K0
G(π

∗
1TvertX ⊕ (P ×H TvertF )) = K0

G(TvertY )

4 ↑ (j ∗ k)!
→ K0

G((π
′
1)

∗TvertX
′ ⊕ (P ′ ×H TvertF

′)) = K0
G(TY

′
vert),

where the projections π1 : Y = P ×H F → X and π′
1 : Y ′ = P ×H F ′ → X ′ are defined as above.

Here we use the isomorphism K0
G×H(P × W ) ∼= K0

G(P ×H W ) for a free H-bundle P (see [33,
Theorem 2.6]). Let us recall the following diagram that was used for the definition of the Gysin
homomorphism of an embedding j : X ′ → X:

p∗T (NX′ ⊕NX′)vert

qX
′

T

��

TvertNX′
ψ�� dΦX′ ��

��

TvertWX′
dj2 ��

��

TvertX

��

TvertX
′

pT

		��
���

���
���

��
NX′,vert

pN
X′,vert

����
��
��
��
�

ΦX′

����
���

���
��

X ′ j1 �� WX′
j2 �� X.
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From the similar diagrams for k! and (j ∗ k)! and the explicit form of these mappings, it follows

that the square 4 in (12) is commutative if and only if α has the following form:

α(σ ⊗ ρ) =(π∗
1)
{

(dj2)∗ (dΦ
−1
X′ )

∗ ψ∗
X′

}

◦ ϕS(σ)

⊗ (π∗j2 ×H dk2)∗

(

(π∗ΦX′ ×H dΦF ′)−1
)∗

(1×H ψF ′)∗ ϕR(ρ),

where S and T are bundles of the form

π∗
1

(

(pX
′

T )∗{NX′ ⊕NX′}
)

π∗NX′ ×H (pF
′

T )∗ (NF ′ ⊕NF ′)

S : ↓ (π′
1)

∗qX
′

T R : ↓ (π′)∗(pNX′ )×H qF
′

T

(π′
1)

∗ (TvertX
′), π∗ X ′ ×H TvertF

′ = P ′ ×H TvertF
′.

Hence, the square 3 in (12) is commutative if and only if the homomorphism β has the form

β(τ ⊗ ρ) = j!(τ)⊗ (π∗j2 ×H dk2)∗

(

(π∗ΦX′ ×H dΦF ′)−1
)∗

(1×H ψF ′)∗ ϕR(ρ),

τ ∈ K0
G(TX

′), ρ ∈ K0
G(P

′ ×H TF ′).

In turn, the square 2 in (12) is commutative if and only if the homomorphism ε has the form

ε(τ ⊗ δ) = j!(τ)⊗ (π∗j2 ×H dk2)∗

(

(π∗ΦX′ ×H dΦF ′)−1
)∗

(1×H ψF ′)∗ ϕR̃
C
(δ),

τ ∈ K0
G(TX

′), δ ∈ K0
G×H(P ′ × TF ′),

where ˜R is the following bundle:

π∗NX′ × (pF
′

T )∗ (NF ′ ⊕NF ′)
˜R : ↓ (π′)∗(pN )× qF

′

T
P ′ × TF ′.

Suppose δ = [C]̂⊗ω, where [C] ∈ K0
G×H(P ′), C is the one-dimensional trivial bundle and ω ∈

K0
G×H(TF ′). Then

ε(τ ⊗ δ) = j!(τ)⊗
{

π∗(j2)∗(Φ
−1
X′ )

∗[C]̂⊗k!(ω)
}

= j!(τ)⊗
{

[C]̂⊗k!(ω)
}

.

Since the mapping K0
G×H(TF ) → K0

G×H(P × TF ) (as well as the lower line in (12)) has the form

ω �→ [C]̂⊗ω, we have proved the commutativity of 1 in (12).

From this theorem, we obtain the following corollary.

Corollary 4.7. Let M be a compact smooth H-manifold, let H = B×H, and let P be a principal
longitudinally smooth H-bundle over X carrying also an action of G commuting with the action
of H. Also, let X → B be a compact longitudinally smooth G-bundle. Let Y := P ×H M → X be
associated longitudinally smooth G-bundle. Taking F = B×M , we define TMY := TFY . Then TMY
is a G-invariant real subbundle of TvertY and TMY = P ×H TM . Let j : X ′ → X be a fiberwise
G-equivariant embedding and let k : M ′ → M be an H-embedding. Denote by π′ : P ′ → X ′ the
principal H-bundle induced by j on X ′ and assume that Y ′ := P ′ ×H M ′. The embeddings j and k
induce G-embedding j ∗ k : Y ′ → Y . Then the diagram

K0
G(TvertX)⊗K0

H(TM)
γ �� K0

G(TvertY )

K0
G(TvertX

′)⊗K0
H(TM ′)

γ ��

j!⊗k!





K0
G(TvertY

′)

(j∗k)!
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is commutative.

Let us assume that, in Axiom B2, the class b ∈ K0
G×H(B) is actually in K0

G(B), namely,

indFG×H(b) ∈ K0
G(B) ⊂ K0

G×H(B).

To be precise, the mapping K0
G(B) → K0

G×H(B) is induced at the level of semigroups by sending a
G-vector bundle E with an action g : e �→ ge (e ∈ Eb, g ∈ Gb) to the same bundle with the action
(g, h) : e �→ ge (h ∈ Hb). The existence of a left inverse mapping (restriction of action) implies
injectivity.

We now consider the two following weak forms of Axiom B2.

Axiom B2′. If indFG×H(b) ∈ K0
G(B) ⊂ K0

G×H(B), then

indYG (a · b) = indXG (a) · indFG×H(b).

Assume in B2 X = P, H = B. We can then formulate the following axiom.

Axiom B2′′. If X and F are longitudinally smooth G-bundles, then
indX×F

G (a · b) = indXG (a) · indFG (b).

Since μP and indXG are K0
G(B)-homomorphisms, then Axioms B2′ and B2′′ are consequences of

Axiom B2.

Theorem 4.8. Suppose that an index function indXG satisfies Axioms A1, B1, B2′, then

indXG = t-indXG .

Proof. First, we extend Axiom B2′ to the noncompact case under some restrictions in the fol-
lowing way. Suppose that, in Axiom B2′, F is equal to an open (G ×H)-subbundle of the compact

longitudinally smooth bundle ˜F . Let j : F ↪→ ˜F . Then

indYG(a·b)=indỸG (dJ∗)(a·b)=indỸG(a·((dj)∗b))=indXG(a)·indF̃G×H((dj)∗b)=ind
X
G(a)·indFG×H(b), (13)

where J is the embedding

Y = P ×H F
Id×Hj
↪→ P ×H ˜F = ˜Y .

Indeed, let us consider the diagram

K0
G(TvertX)⊗K0

G×H(TvertF ) ��

1⊗(dj)∗
��

K0
G(TvertX)⊗K0

G×H(P × TvertF ) ∼=

1⊗(Id×dj)∗
��

K0
G(TvertX)⊗K0

G×H(Tvert
˜F ) �� K0

G(TvertX)⊗K0
G×H(P × Tvert

˜F ) ∼=

∼= K0
G(TvertX)⊗K0

G(P ×H TvertF )

1⊗(Id×Hdj)∗
��

�� K0
G(TvertX)⊗K0

G(TFY ) ��

1⊗α∗

��
∼= K0

G(TvertX)⊗K0
G(P ×H Tvert

˜F ) �� K0
G(TvertX)⊗K0

G(T ˜FY ) ��

�� K0
G(π

∗
1TvertX)⊗K0

G(TFY ) ��

1⊗α∗

��

K0
G(TvertY )

(dJ)∗
��

�� K0
G(π

∗
1TvertX)⊗K0

G(T ˜FY ) �� K0
G(Tvert

˜Y ).
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This diagram is commutative. In fact, we have

TvertY TFY ⊕ π∗
1(TvertX)

⏐

⏐

�dJ

⏐

⏐

�

(

α 0
0 1

)

Tvert
˜Y T

F̃
Y ⊕ π∗

1(TvertX),

and α = Id×Hdj under the identification TFY = P ×H TF . We have proved the second equality
in (13), the remaining are obvious.

Let us now take, in particular,

F = R
n ×B, ˜F = (Rn)+ ×B = Sn ×B, H = O(n)×B, b = φ!(1), 1 = [C],

where φ : �0×B ↪→ R
n ×B is the natural embedding. Then P is a principal O(n)×B-bundle over

X, the bundle of groups G acts on P commuting with O(n)× B. Suppose G acts on R
n × B in a

trivial way. We form the associated real G-bundle

Y := P ×O(n) R
n = P ×O(n)×B (Rn ×B) → X.

Let us denote by
i : X → Y, i = 1X ∗ φ,

the embedding of X as of the zero section. Assume that, in Theorem 4.6, we have F = R
n × B,

X ′ = X, F ′ = B. Then we obtain the commutative diagram

K0
G(TvertX)⊗K0

G(B) K
0
G×(O(n)×B)(Tvert(R

n ×B))
γ �� K0

G(TvertY )

K0
G(TvertX)⊗K0

G(B) K
0
G×(O(n)×B)(B)

γ ��

(1X )!⊗φ!





K0
G(TvertX).

(1X∗φ)!= i!





Since γ (a⊗ 1) = a on the bottom line, we have

i!(a) = γ
(

((1X)! ⊗ φ!) (a⊗ 1)
)

= γ (a⊗ φ!(1)) = a · φ!(1) = a · b.

By Equation (11),

indR
n

G×O(n) φ!(1) = 1,

where G acts on R
n ×B in a trivial way. Now by equality in Equation (13),

indXG(a)=ind
X
G (a·1)=indXG (a·μP (1))=ind

X
G(a·μP (ind

R
n

G×(O(n)×B)(b)))=ind
Y
G (a · b)=indYG i!(a). (14)

Let k : X → Z be a fiberwise embedding of X in a compact longitudinally smooth G-bundle Z
with the fiberwise normal bundle N and a fiberwise G-invariant tubular neighborhood Φ: N → W .
By the definition of the Gysin homomorphism, k! = (di2 ◦ dΦ)∗i!, where di2 : TvertW → TvertZ is
an embedding of vertical tangent bundle and i : X → N is the fiberwise embedding of X as of the
zero section in the normal bundle. In the diagram

K0
G(TvertX)

i! ��

indX
G 		��

���
���

���
K0

G(TvertN)
(di2◦dΦ)∗��

indN
G

��

K0
G(TvertZ)

indZ
G�����

���
���

���

K0
G(B)
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the left triangle is commutative by (14). Indeed, we can take P equal to the principal O(n)-bundle
of normal vertical orthonormal frames and Y = N . The mapping i2 · Φ is an open embedding.
Hence, by Axiom B1, the right triangle is commutative too. Therefore, indXG = indZG ◦k!. Hence,
Axiom A2 is satisfied. To complete the proof, it remains to apply Theorem 4.5.

Let us remark that we have used only a very particular case of Axiom B2′, namely, the following
one.

Axiom B20. Let P be the principal O(n)×B-bundle of normal (vertical) orthonormal frames
of the embedding k : X → Z, i.e., the bundle of frames of N . Suppose G acts on R

n×B in a trivial
way. The associated real G-bundle

Y := P ×O(n) R
n = P ×O(n)×B (Rn ×B) → X

is just N . Let
i : X → Y, i = 1X ∗ φ,

be the embedding of X as of the zero section. Then the diagram

K0
G(TvertX)

i! ��

indX
G ����

���
���

��
K0

G(TvertY )

indY
G�����

���
���

�

K0
G(B)

commutes.
In the formulation of the next theorem, we require the excision axiom, hence, one can use instead

of Axiom B20 its reformulation for the fiber-wise compactification, demanding commutativity of
the following diagram:

K0
G(TvertX)

i! ��

indX
G ����

���
���

��
K0

G(TvertY
•)

indY •
G�����

���
���

�

K0
G(B)

,

where Y • = P ×O(n)×B (Sn ×B). So we have.

Theorem 4.9. Suppose that an index function indXG satisfies Axioms A1, B1, B20, then

indXG = t-indXG .

5. PROOF OF THE INDEX THEOREM

First of all, let us notice that the analytical index is an index function. Indeed, it has the
property (1) of Definition 4.2, since a G-diffeomorphism takes KER to KER and COK to COK.
The property (2) of 4.2 for the analytical index means that, in the presence of ψ, the bundles KER
and COK can be considered as G-bundles and H-bundles in a coherent way. Thus the analytic
index function a-ind also satisfies the property (2) of the definition of an index function.

Lemma 5.1. The analytical index a-ind satisfies Axiom A1.

Proof. An elliptic family of operators over the trivial bundle X = B → B is a G-morphism
P : V → W of equivariant vector bundles and [σ(P )] = [V]− [W] = a-indP ∈ K0

G(B).

Before going further, let us note that if a Fredholm G-family is fiberwise surjective, then its
kernel forms a G-vector bundle over B, i.e., KER = ker and COK = coker = 0, see [32] for the
definitions of KER and COK.
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Lemma 5.2. Let H0
b and H1

b be G-bundles of Hilbert spaces together with an equivariant Fred-
holm family Db : H

0
b → H1

b , b ∈ B. Let L → B be a finite-dimensional G-bundle and T : L → H a
morphism of G-bundles such that Db + Tb : Hb ⊕ Lb → Hb is surjective for all b (that is, B + T is
fiberwise surjective). Then

a-ind(D) = ker(D + T )− [L].

Proof. Denote by Q the family D + T considered as a family of fiberwise mappings from
H⊕L → H⊕L. Then Q is a fiberwise compact perturbation of D⊕Id. Hence, a-ind(Q) = a-ind(D).
Also a-ind(Q) = ker(D + T )− [L].

Also we need the following statement.

Lemma 5.3. Let (Db)b∈B be an elliptic family with invariant principal symbol family (σb)b∈B.
Then the fiberwise average AvGD is an invariant elliptic family with the same principal symbol.

Proof. All facts are known from single operator theory, except for the continuity of AvGD.
However, since this is a local question, we can assume that X|U = X0 × U , G|U = G × U , Db

depends continuously on b ∈ U ⊂ B, and the action of G×U on X0 is smooth (see Condition 4.1).
Then, by [5, item 5.5], the action of G is continuous on families of operators, and hence we can
integrate over G to project onto the fixed-point set.

Theorem 5.4. The index a-ind satisfies Axiom B1.

Proof. We shall use the notation introduced in the statement of Axiom B1. Thus, suppose that
a ∈ K0

G(TvertU), that
j1 : U ��

���
��

��
��

� X ′

����
��
��
��

B

and j2 : U ��

���
��

��
��

� X ′′

����
��
��
��

B
are fiberwise G-embeddings, and that π : TvertU → U is the natural projection. Let the sequence

0 → π∗E
ρ→ π∗F → 0

of G-bundles be exact for x ∈ U \ L, |ξ| > c (point and (co)vector), where E → U and F → U are
longitudinally smooth G-bundles and L is some G-invariant compact subbundle of U . Suppose

α : E|U\L ∼= (U \ L)×B N, β : F |U\L ∼= (U \ L)×B N,

and ρ = (π∗β)−1 (π∗α),

where N → B is a vector G-bundle. More precisely, one can assume that, for a G-invariant metric,
L is a bundle of open balls of continuously changing radius over B. Take a representative of the
homotopy class of ρ being a symbol of order zero. Then it is possible to assume the corresponding
symbols σ1 ∈ Smbl0(X

′, E1, F1), σ2 ∈ Smbl0(X
′′, E2, F2) (we use the notation Smblk, Intk and

CZk for family symbols, Fourier integral operators and Calderon-Zygmund operators (cf. [37])) be
as follows. Suppose

E1 = E ∪j1α (X ′ \ j1L)×B N, E2 = E ∪j2α (X ′ \ j2L)×B N.

Let the similar equalities hold for F1 and F2, and σ1 = ρ ∪j1 Id, σ2 = ρ ∪j2 Id . Let us pass to

the construction of families of operators ˜D1 and ˜D2, which represent these families of symbols in
Int0(X

′;E1, F1) and Int0(X
′′;E2, F2), respectively. Let us take a trivializing cover, a partition of

unity and smoothing functions on U . Pull them back on j1U and j2U , and then complete these
collections of open sets (to obtain covers) by some open sets not intersecting with j1L and j2L,
respectively. By our symbols and with the help of this data, let us construct in the usual way
(noninvariant) families of operators D1, D2 ∈ CZ0, and then (keeping in mind Lemma 5.3)

˜D1 = AvGD1 ∈ Int0(X
′), ˜D2 = AvGD2 ∈ Int0(X

′′).
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It is necessary to verify the equality

a-ind ˜D1 = a-ind ˜D2 ∈ K0
G(B).

Since L is invariant, the averaging over this set is the same for both operators. Since the operators
have the order zero, we compute the index in continuous families of L2 (square integrable) spaces.
For these spaces,

L2(X
′, E1) ∼= L2(j1L,E1|j1L)⊕ L2(X

′ \ j1L,E1|X′\j1L)

and
˜D1 : L2(X

′ \ j1L,E1|X′\j1L)
∼= L2(X

′ \ j1L,E1|X′\j1L)

(this is the identity operator). These decompositions are continuous (in L2-norms) in b ∈ B. Similar

relations hold for ˜D2. On the second summand of the decomposition of L2, we have the commutative
diagram

Γ(E1|j1L)
˜D1 ��

(j2j
−1
1 ) ∼=

��

Γ(F1|j1L)

(j2j
−1
1 )∼=

��
Γ(E2|j2L)

˜D2 �� Γ(F2|j2L).
This diagram of G-mappings demonstrates the coincidence of indices, because KER and COK for
˜D1 can serve as KER and COK for ˜D2.

See also [8, 10].

Theorem 5.5. The analytical index a-ind satisfies Axiom B20.

Proof. Denote by B an O(n)-equivariant elliptic operator of order 1 over Sn, B : Γ∞(Sn, F 0) →
Γ∞(Sn, F 1), such that

(1) its symbol σ(B) : π∗
SF

0 → π∗
SF

1 represents the class φ!(1), where we denote by φ the
injection 0 ↪→ R

n as well as its lift to B and πS : TS
n → Sn is the natural projection;

(2) kerB∗ = 0 and kerB is a one dimensional trivial O(n)-module.

The existence of such ˜B follows, e.g., from [6, Lemma 4.1]. Let an a ∈ K0
G(TvertX) be presented

by a symbol s : π∗
XE0 → π∗

XE1 of order one. As it was explained in the proof of Theorem 4.8, we
have i!(a) = a · φ!(1). Thus, by (1) above, i!(a) has a representative

S =

(

s⊗B Id − Id⊗Bσ(B)∗
Id⊗Bσ(B) s∗ ⊗B Id

)

: π∗
Y •((E0 ⊗B F 0)⊕ (E1 ⊗B F 1))

→π∗
Y •((E1 ⊗B F 0)⊕ (E0 ⊗B F 1))

(15)

because γ or · is locally the tensor multiplication of 2-complexes reduced over B. Now we need to

verify that a-indXG (s) = a-indY
•

G (S).

Starting from a family A with the symbol s and operator B, using local lifts and averaging, we
construct in a standard way (see, e.g., [6] and [48, p. 173]) an elliptic family

D =

(

˜A − ˜B∗

˜B ˜A∗

)

with the symbol S. The main difference with the standard argument is the new way of averaging
over G. It is explained in Lemma 5.3 that the averaging over G respects continuity of families, the
other properties are known from the single operator equivariant theory [5].
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It remains to verify that a-ind(A) = a-ind(D). Indeed, let h0 ∈ Γ∞(Sn, F 0) be a generator of the

one dimensional O(n)-module kerB. Define for any G-equivariant bundle ˜E over X the mapping

f : Hs(X, ˜E) → Hs−1(Y •, ˜E ⊗ F 0), f(u) = u⊗ h0.

Since h0 is O(n)-fixed, f is a well-defined injective G-vector bundle homomorphism. Let L be

a finite-dimensional G-vector bundle over B and T : L → Hs−1(X, ˜E1) be a G-vector bundle
homomorphism such that

Qb : H
s(X, ˜E0)b ⊕ Lb → Hs−1(X, ˜E1)b, Qb(u, v) = Ab(u) + T (v),

is surjective for any b. For L one can take (a bundle representing) COK(A) and for T one can take
the natural inclusion.

Consider a mapping

Rb : H
s(Y •, ˜E0 ⊗B F 0 ⊕ ˜E1 ⊗B F 1)b ⊕ Lb → Hs−1(Y •, ˜E1 ⊗B F 0 ⊕ ˜E0 ⊗B F 1)b

defined by the formula
Rb(u, v) = Db(u) + (f ◦ T (v)⊕ 0).

A standard argument (see, e.g., [48, pp. 174–175]) shows that Rb is surjective for any b and kerR =
kerQ. Thus, by Lemma 5.2,

a-ind(A) = ker(Q)− [L] = ker(R)− [L] = a-ind(D)

and we are done.

We can now prove the following topological index theorem for gauge-equivariant operators.

Theorem 5.6. The index functions a-ind and t-ind coincide. More precisely, suppose that G
satisfies the finite holonomy condition, that Y → B is a longitudinally smooth bundle and that P
is a gauge-equivariant family of pseudodifferential operators on Y . Then

a-ind(P ) = t-ind(P ) .

Proof. From the results of this section (Lemma 5.1 and Theorems 5.4 and 5.5), it follows that
we can apply Theorem 4.9 to conclude that a-ind = t-ind.

We conclude with a brief discussion of the homology of the groupoid algebras, in view of its
connections to index theory [12].

Remark 5.7. Let us denote for any Lie group G by I(G) := C∞(G)G, the space of smooth class
functions on G. We shall use this only for compact G. Let G → B be a longitudinally smooth bundle
of Lie groups. Then I(Gb), b ∈ B, is a naturally flat bundle over B. It follows then from the Künneth
formula in Hochschild and cyclic homology and using also localization with respect to the maximal
ideals of C∞(B) that the Hochschild homology groups of C∞(G) are isomorphic to the space of
forms on B with values in the sheaf defined by I(Gb). Similarly, the periodic cyclic homology groups
of C∞(G) are isomorphic to the cohomology groups of B with coefficients in the the sheaf I(Gb). It
would be interesting to establish a cohomological index theorem in cyclic homology, but this seems
hard even in the case of a single operator without any group action, in spite of the many recent
advances on the subject. See [38] and the references therein.

As mentioned in Introduction, operators invariant with respect to groups appear in analysis on
singular spaces, see [1–3, 9, 29, 36, 51], for example. It would be quite important to extend the
results of this paper to operators invariant with respect to bundles of solvable Lie groups [15, 25,
30, 34, 49, 50].
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presque plat,” J. Reine Angew. Math.0 423, 73–99 (1992).

25. Matthias Lesch and Markus J. Pflaum, “Traces on Algebras of Parameter Dependent Pseudodiffer-
ential Operators and the Eta-Invariant,” Trans. Amer. Math. Soc. 352 (11), 4911–4936 (2000).

26. Varghese Mathai, Richard B. Melrose, and Isadore M. Singer, “The Index of Projective Families of
Elliptic Operators,” Geom. Topol. 9, 341–373 (2005) (electronic).

27. Varghese Mathai, Richard B. Melrose, and Isadore M. Singer, “The Index of Projective Families of
Elliptic Operators: the Decomposable Case,” Astérisque (328), 255–296 (2010).
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