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Abstract. The heat kernel trace in a (D+1)-dimensional Euclidean spacetime is used to de-
rive free energy in the finite temperature field theory. The spacetime presents a D-dimensional
compact space (domain) with a (D-1)-dimensional boundary, and one closed dimension,
whose volume is proportional to Planck’s inverse temperature. The thermal sum arises due
to the topology of the closed Euclidean time. The free energy thus obtained is a functional
of the Planck’s inverse temperature and the geometry of the system. Its ‘high temperature’
asymptotic expressions, given for (3+1) and (2+1) dimensions, contain two contributions
defined by the volume of the domain and by the volume of boundary of the domain. No
universal asymptotic of free energy exists while approaching the absolute zero temperature,
which is forbidden topologically.
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Quantum field theory (QFT) at finite temperature is a subject that has been developed for
a long time [1-4], nevertheless, it needs some clarifications, as is stressed by recent experimental
observations in the lower-dimensional condensed matter physics and in the heavy-ion collision
experiments of collider physics. Let us begin with the trivial statement that different physical
theories may not overlap, and one theory is not necessarily a limiting case of another. This is
certainly the case with quantum statistics and finite temperature quantum field theory, and these
two should not be mixed up. Therefore, we have to be careful with terminology, since same names
are sometimes used for entities that belong to different theories, even though these entities may be
not equivalent, e.g., free energy. There are also some technical problems with finite temperature
QFT. One problem is that the method imported from the study of scattering problems in accelerator
physics, namely the Feynman diagram expansion based on Green’s functions [5], is not the best
one for finite temperature QFT. The Feynman path integral and the thermal Green’s functions are
formulated in the phase space, but the phase space formalism is derived and valid for physics of
massive particles. Known particles and quasiparticles in condensed matter physics [6], where models
start with Hamiltonians, used to be massive until the situation changed with the recent discoveries
of massless quasiparticles [7]. However, massless particles cannot be localized [8], and there is no
threshold on the production of massless particles [9]; so the meaning of traditional physical notions
(mean free path, particle density, etc.) is lost. In addition, the Feynman integrals in massless QFT's
suffer from the infrared (IR) divergences caused by calculation methods. These IR divergences
overlap with the standard ultraviolet (UV) divergences of relativistic quantum theories, and as a
consequence finite temperature QFT becomes almost intractable [2]. Introducing mass-like physical
parameters (particles’ masses and chemical potentials), whose values are calibrated by experimental
data, may help getting rid of the divergences and eventually fitting observations, but the predictive
power of such theories may be limited.

To resolve these problems, we suggest to use QFT techniques, which originate from Julian
Schwinger’s ideas [10, 11, 8] of implementing the Lagrangian formalism in spacetime. The method of
effective action, which is based on the Schwinger-DeWitt (geometrical) QFT formalism [23, 27, 21],
is used below for finite-temperature field theory. The main functional of finite-temperature QFT
(below, we skip sometimes the term ‘quantum’ for brevity) is free energy, which is different in its
use and meaning from free energy in statistical physics. The effective action or free energy is a
phenomenological functional derived from the heat kernel. In the Schwinger—-DeWitt formalism,
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10 GUSEV

the interactions (gauge fields, gravity) are built-in via geometry. The notion of mean field is known
in condensed matter physics, and its QFT meaning is the field’s expectation values [9].

1. GENERAL PRINCIPLES

1.1. Temperature

The key concept of any theory of thermal phenomena is temperature [12, 13]. Temperature is
an intrinsic parameter of phenomenological theories from statistical thermodynamics [14] to the
Ginzburg-Landau model of superconductivity [15]. One usually understands the temperature as a
measure of the total energy density of electromagnetic interactions among constituents (particles)
of a condensed matter system [16]. This energy can be stored in or transferred out of a condensed
matter system [17]. Since there are several kinds of constituents in condensed matter, e.g., elastic
and electronic heat contributions, the unique temperature for the whole system in principle is
not guaranteed. Different kinds of energy should be convertible to each other to have a unique
temperature in a system, for, otherwise, more than one temperature would exist, which is not the
case under consideration here.

The temperature of gases is due to the kinetic energy of massive molecules, thus it is physically
different from temperature of condensed matter where particles do not freely propagate, but rather
form a continuous medium. Temperature is measured by a thermometer, however, a thermometer
does not really measure the energy density, but rather the power flux from condensed matter
medium through their common boundary. We assign a single constant value to the temperature
of a whole condensed matter system. This may be considered similar, even though not equivalent,
to thermal equilibrium in statistical thermodynamics. Later, we will have to relax this restriction.
Temperature is strictly positive, T' > 0, i.e., zero absolute temperature cannot occur in matter.
Mathematical justification of this fact is given below geometrically, while physically it corresponds
to the empirical law of thermodynamics that one cannot attain the absolute zero of temperature.
In textbooks, this statement follows from the third law of thermodynamics (the Nerst—Planck
theorem) [14] and is based of the notion of entropy. One might hope that explicitly including the
physical system’s topology into theory, as done in the heat kernel method, could mitigate some
problems with the use of entropy.

Temperature is one of input variables of the theory, and let us introduce it according to the
principle previously found in QFT. Since any condensed matter system exists in some spatial
D - dimensional domain and its behavior in time is not studied, we can set up a field theory
in the Euclidean (D + 1)-dimensional spacetime and then declare one of the dimensions closed,
S'. This procedure allows us to keep the correct number of spacetime dimensions, while removes
time from the spacetime variables. We now identify the length (volume) of the closed Euclidean
dimension with the inverse temperature expressed in Planck’s natural units [18]. Thus, Planck’s
inverse temperature, with the fundamental constants explicitly present, is

hv

IB: mTk:B’

(1.1)

where kp is the Boltzmann’s constant, A is the Planck’s constant. This is now the true variable
of the theory, there is no temperature, nor time, only 8. The characteristic velocity parameter v
enters (1.1), for the electronic component of heat it is the speed of light ¢, while for elastic waves
the velocity of sound. The value of the calibrating number m in (1.1) is defined from experiments.
The question of what is fundamental here, the temperature T or the closed time length parame-
ter 3, resembles the situation in gravity theory, where matter defines geometry (metric) through
the energy-momentum tensor. Here too, matter defines geometry (/) through energy (7°). This
means that, for different energy contributions (elastic, electronic), there are different geometrical
parameters ;. The question will be studied in more detail in the theory of thermal and electronic
properties of matter.

The definition (1.1) is common in the literature, with the standard choices of m = 1 and
v = c¢. This definition of the Planck inverse temperature is different from the common definition
B’ = 1/(Tkg) used in statistical physics [19], which scales as inverse energy J~!. The reason for
this choice of 3’ was to make energy dimensionless in the distribution functions because discrete
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FINITE TEMPERATURE QUANTUM FIELD THEORY 11

energy states are explicitly used in statistical mechanics. In a field theory, the only dimensional
quantity is length, which calls for the expression (1.1). The parameter 5 gives the characteristic
length at a given temperature, the thermal wavelength, which at room temperature is about 3.8
pm.

1.2. Laplacian

In (quantum) field theory, one usually starts with the Lagrangian which defines the action of the
theory (the Lagrangian approach began with P.A.M. Dirac’s work [20]). By making two variation
derivatives, the Hessian can be derived to obtain the Laplace operator from the theory’s action.
The Laplacian is the fundamental object of any field theory, and instead of appealing to the action,
one could define a field theory by its Laplacian. Most physically relevant theories can be specified
by the Laplace type operator [21],

F(V) =01+ P(z), (1.2)
which satisfies the equation on the field ¢ of arbitrary spin-tensor structure,

F(V)p =0. (1.3)
The Laplacian (Laplace—Beltrami operator) is constructed for the covariant derivatives,
O0=g"V,V,, (1.4)
that contain the metric and gauge field connections characterized by the commutator curvature,
(VuVy = VuV,0)e = R (1.5)

In the Abelian gauge field setting, this curvature tensor is proportional to the Maxwell’s elec-
tromagnetic tensor, which is not featured below due to the approximation used. The hat symbol

indicates matrix structures, like in the potential term P = P4y, which can be an arbitrary local
function of the background fields. The scalar Ricci tensor R is usually explicitly present in (1.2) to
work with gravity, we temporarily leave it out of consideration. Generically, any curvature tensor,
potential or field strength is denoted here as R. Theories that do not fit the class (1.2), e.g., whose
Lagrangians generate higher order and non minimal operators, can still be reduced to the given
form by algorithms presented in [21]. The Dirac operator should also be used as the Dirac Laplacian
(1.4), as widely studied in the mathematics literature. It was introduced first by Vladimir Fock [22],
and, on Riemannian manifolds, by Bryce DeWitt [23], nevertheless, it is known as the Lichnerowicz
operator.

This is all we need to know about the type of field theories. This is the setup developed in the
effective action method. It is very general and applicable to different areas of physics, including
ordinary thermal phenomena.

1.3. Topology

The key to building a condensed matter theory is topology; let us study a condensed matter
system as a field theory on a compact domain MP of the space R”, with a boundary B”~!. The
effects of boundary and edges of a spatial domain that the condensed matter is confined to should
be accounted for, because the boundary really defines condensed matter. From experiments, we
know that effects due to the size and the boundary of a condensed matter system on its physics
can be large, sometimes they can be the leading contributions. The geometrical formalism based
on the heat kernel naturally incorporates the boundary as shown in the next section. The topology
of the closed Euclidean time S! is already mentioned in the definition of temperature.

In the geometrical thermodynamics, where the only scale is the length, the field theory’s scale is
restricted at the upper length limit and may be restricted at the lower length limit. The upper limit
is due to the finite size of the system, it is naturally taken into account by the method of spectral
geometry that we use. In condensed matter, the lower limit for the elastic energy contribution is
introduced by the size of the lattice cell; this is the limit of validity of the continuous medium
model.
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12 GUSEV

2. HEAT KERNEL

The heat equation,

(;S - F(Vﬂ)i{(s\x,x') = 16(s)d(z, 2'), (2.1)
is a construct of mathematical physics [24] that can be applied to theories of fields of different
nature [25]. Its use is due to Fock [26], but it became popular after the works of Schwinger [10].
The parameter s is called the proper time and it has the dimensionality of m?. The heat equation
originated from the heat theory of J.B.J. Fourier [17], however, no temperature enters Eq. (2.1) and
s is not the time. The Fourier (‘thermal’) heat equation is the diffusion equation with the partial
derivative over the physical time. In contrast, the proper time is a parameter in the evolution
equation (2.1) that is set up for the kernel K (s|x,z’), which is a two-point functional.

In the context of field theory, the heat equation is used to obtain the kernel of a field opera-
tor (1.2). The fundamental solution for the heat kernel [21, 27],

1
(4ms)D/2

o(x,z")

R(sla,a’) =
(slz, ') "

DY?(x,2") exp ( - )dg(m,m’), (2.2)

is expressed through the world function o(z,z’), which was introduced by Harold Ruse [28] and
was made a working tool of general relativity by John Synge [29]. The two-point world function
is half the square of the geodesic distance between spacetime points = and z’ [29, 27]. ag(z,2’) in
(2.2) is the parallel transport operator [21], needed to transport the indexes of internal degrees of

freedom. Below it would only introduce the matrix trace trl in the final result. Finally, D(z, ')
is the van Vleck—Morette determinant [27] whose coincidence limit gives the metric determinant
g(z). Only the prefactor and the world function’s exponent depend on the proper time and will be
essentially used in our derivations. Starting from the fundamental solution, several computational
techniques for the heat kernel can be worked out [30], e.g., the Schwinger-Dewitt (short proper
time) expansion [23, 21], the Barvinsky—Vilkovisky (covariant perturbation) theory [31, 32|, etc.
Our problem is insensitive to the computational method in the approximation below.

It was shown [23, 21] that the effective action can be computed through the heat kernel. In fact,
to derive QFT free energy, which is a finite temperature equivalent of the effective action, one needs
only the functional trace of the heat kernel,

TrK(s) = /dD+1xtrK(s|x,x). (2.3)

It has the matrix trace over internal indexes tr, assumes the coincidence of spacetime points and
integration over the whole spacetime. The density of the integration measure g'/?(x) is included
in K(s|z,z). Obviously, TrK (s) is a dimensionless functional, in contrast to the heat kernel (2.2).
The zeroth order of the heat kernel trace is just the functional trace of the fundamental solution
(2.2) [21, 32].

Computational techniques for the heat kernel typically assume open, asymptotically flat space-
times, i.e., R” manifolds. But here we are interested in compact spaces with boundaries, the simplest
example could be the three-dimensional interior with a two-dimensional boundary. The heat kernel
trace TrK (s) in the compact manifold MP with the boundary BP~! can be calculated in the
covariant perturbation theory [32]. It is easy to write out fundamental solutions for the heat kernel
trace on M and on B, which are defined by the volume of the domain and by the volume (area) of
the boundary. Then we have the following truncated series for the kernel of the heat equation in a
compact manifold with boundary,

1 A 1 .
TrK(s) = (4s) D/ Vitrl+ (4ms)(D=1)/2 Strl + O[R]. (2.4)

This expression is valid at arbitrary proper time values, i.e., it is not a short proper time expansion.
Here the volume of the D-dimensional domain is denoted V and the area (in mathematics literature
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FINITE TEMPERATURE QUANTUM FIELD THEORY 13

both of these two terms are referred to as volume, we use the term ‘area’ of the convenience of
physicists) of its (D — 1)-dimensional smooth boundary is denoted S. The formal definitions are,

V= / dPxg? (), (2.5)
S = /dD L2gt/%(z), (2.6)

where g is the metric determinant of the boundary manifold. This is a covariant result even though
the curvatures and field strengths do no appear in (2.4) explicitly. However, they are present in the
heat trace remainder O[R].

It used to be popular [27, 21] to study the short proper time expansion around the exact series
(2.4). This expansion is called the Schwinger-DeWitt expansion in the physics literature and it
is really a series in powers of the dimensionless combination (Rs...Rs), where R denotes any
curvature tensor, because the s — 0 expansion is not allowed. The heat kernel is nonlocal starting
from the first order in the field strength [32, 33]. This expression has to be known at arbitrary
proper times, because the short proper time expansion is not acceptable in compact domains. It
is the late time (also called intermediate in other areas of physics) asymptotics [32, 34] that one
seeks.

3. FREE ENERGY IN FINITE TEMPERATURE FIELD THEORY

The concept of effective action was first introduced in quantum electrodynamics (QED) by Julian
Schwinger [10, 8]. Schwinger also pioneered the Euclidean spacetime formalism [35], which is the
natural setting for QFT [31]. The one-loop effective action (‘one-loop’ name being historical, as
there is no Feynman diagrams expansion here) embodies all relevant information about the field
theory [27]. The covariant effective action via the heat kernel in spacetime was developed by Bryce
DeWitt [23, 27] in order to extend the method to gravity and gauge field theories. In the Schwinger—
DeWitt formalism, quantum functionals are expressed in terms of mean (expectation value) fields.
This covariant effective action theory had been greatly advanced by Grigori Vilkovisky as outlined
in [36, 9]. More field theory definitions and explanations can be found in [27, 21].

In the Schwinger-DeWitt formalism, one starts with the Euclidean spacetime with dimension
D + 1 and specifies its topology. We assume that the Euclidean time dimension is the closed
manifold S'. The length of an orbit of St is denoted by 3. We make a product of the D-dimensional
space, R xS! and study geodesics in this spacetime. We cannot use the term ‘world line’ because it
is associated with the geodesic trajectory of a particle. In this geometrical picture without particles,
there is no direction of the geodesic, we only look for solutions of the differential equation (2.1).

To compute TrK”(s) in the prescribed geometry, the heat kernel could be (under conditions
specified below) factorized into the Euclidean time heat kernel, which is the one-dimensional flat
(2.2), and the spatial part TrK (P)(s). The procedure for computations is to make a geodesic loop
and then shrink it to a point, this is the coincidence limit = = x’ [23, 27, 21]. Here this cannot be done
because topology of S! prevents it. There is an incontractible geodesic loop (which topologically
translates to a hole), and any number of loops is allowed that yields the sum over n = 1,..., cc.
The world function in the one-dimensional coordinate 7 is trivially half the square of the geodesic
length,

o(r,7) = (r—1")2)2. (3.1)
The length of the closed geodesic is proportional to 3, and the factor n counts the windings.
Therefore, using Eq. (2.2), we can write out the heat kernel trace in the given spacetime as,

2,2
TrKP(s) = 471'8 12 Ze o /dDg;trK(D)(s\m,m), D >2. (3.2)

Now we define the functional of free energy F as the proper time integral of the trace of the
heat kernel obtained above,

_Ff = / TS kB (s), (3.3)
0 S
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14 GUSEV

This proper time integral is known in mathematics as the Mellin transform. The functional (3.3) is
dimensionless because both the integrated functional and the proper time integral are dimensionless.
The definition for the effective action [37] is not different from (3.3), only the topology of its
spacetime is different. Any available technique can supply a solution for Tr K(P)(s), but the heat
kernel trace should be known at arbitrary proper time in order to generate F? valid at arbitrary
B.

Computing (3.3) with the heat kernel trace (2.4) in a (3 + 1)-dimensional spacetime is easy.
It amounts to substituting the D = 3 heat kernel trace (2.4) into the finite temperature Eq. (3.2).
The subsequent computation of the proper time integral (3.3) can be done with the new dimen-
sionless variable y = 32 /4s. The two terms from TrK(P)(s) appear in F? as the standard integrals
and sums,

/ Tyt Y et = ((20)T(a), (3.4)

where ( is the Riemann zeta function, and I' is the gamma function.
For dimension three, the parameter a takes values 2 and 3/2. Then, Eq. (3.4) gives coefficients
74/90 and ((3)y/7/2 correspondingly, and we arrive at the following expression,

L1
B33 90 B2 27

It is easy to get a similar expression for the free energy in (2+1) dimensions,

1 ¢(3)
B2 2w

Here the upper indices indicate the dimension of the base manifold. In plain words, the boundary’s
area S corresponds to the length of an ‘edge’ while the volume V() is the ‘area.’ It is obvious
that, in dimension two, the free energy (finite temperature effective action) is also (UV and IR)
finite. This expression could describe thermal properties of genuine two-dimensional systems, if
they were present in Nature, i.e., graphene, even if suspended in vacuum, is still embedded in a 3D
space.

The spacetime may have the metric tensor (gravity) and the vector bundle (gauge fields) incor-
porated via the covariant derivative (1.4). By the proposed algorithm (3.3), the free energy can
be computed only in spacetimes whose gravitational field is specified by ultrastatic metrics, i.e.,
the global timelike Killing vector exists. The flat spacetime metric is trivial and so ultrastatic.
For spacetimes with such geometrical properties, Eq. (3.5) is valid at arbitrary temperature, in
flat or curved space, for any field theory with the operator (1.2). This is only a part of a general
expression whose other terms depend on gravity curvatures and gauge field strengths explicitly.
The missing terms O[R] are small in the ‘high temperature’ limit considered below, but they may
be not small in general. In the approximation above, the matrix trace trl may safely be discarded
as an unessential numerical factor. This is not the case for other terms not derived here.

This free energy is defined only by the system’s global geometrical properties, the space’s volume
and its boundary’s area. These contributions are arranged according to their geometrical properties,
not according to their magnitudes. As is seen from (1.1), the 1/4% term may become larger for some
physical conditions, or other terms, not displayed, may become dominant.

Since both sides of (3.5) are dimensionless, it is meaningless to talk about the high or low
temperature limits of free energy in terms of the units of absolute temperature K. An expansion
in F8 can only be made in a small dimensionless parameter. We introduce the effective size r of a
compact space as the ratio of its volume to its boundary’s area,

V
S )
e.g., the effective size of a sphere of radius b is 7 = b/3. Then the high temperature limit can be
understood as the asymptotic,

S®tri + O], D=3. (3.5)

—FF = V@l + ; gsm trl +O[R], D=2 (3.6)

r=

(3.7)

B/r < 1. (3.8)
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FINITE TEMPERATURE QUANTUM FIELD THEORY 15

This expression places a quantitative restriction on how large a body or a cavity should be compared
to its thermodynamic temperature for the high temperature limit to hold.

Similarly, we could formulate the low temperature limit as 5 > r. However, this asymptotics
cannot be derived from the displayed expression (3.5) because it is in O[R]. The low temperature
regime,

he

T 3.9
ke oD (3.9)

holds when the boundary’s area energy in F# is larger than the volume contribution.

However, the true low temperature asymptotics S > r is hidden in the unstudied remainder
O[R], which is specific of the physical system’s properties (material, surface curvatures, etc.). The
expression (3.5) is valid only for the ‘high temperature’ asymptotics (3.8). The discarded remain-
der is negligible in this limit, but not in the opposite ‘low temperature’ one (3.9). A universal low
temperature asymptotics for free energy and correspondingly for all its derivative functions does
not exist. One would see instead an infinite variety of condensed matter characteristics on the way
towards the absolute zero. In particular, we can foresee the ever growing number of quasiparticles
being introduced in condensed matter physics (the present stream includes polaron, exciton, polari-
ton, plasmon, etc.). As experimental devices are getting smaller and temperatures lower, physics
complexity is increasing. However, this only an asymptotic behavior as the limit of the absolute
zero temperature, T' = 0, is forbidden topologically, for otherwise topology would have to change
from the closed manifold S! to the open one R!.

The expression (3.5) is found up to a common factor; this constant can only be specified from
experiments. The term “free energy” really masks its true meaning. Free energy is a generating
functional for physical observables or effective equations whose solutions can deliver physical ob-
servables. It is similar to the classical action that produces the equations of motion or to the effective
action of quantum field theory that generates the effective equations [38]. Mathematically, by taking

the derivative of F'® over 3 as the theory’s true variable, we arrive at the following expression,

oFf 1 w2 . 1¢3) ., -
98 = p 30Vtr1+/83 - Strl. (3.10)
This expression is positive and can be interpreted as the rate of change of the (dimensionless) free
energy with the parameter 3 change. This quantity scales as m~! and should be calibrated to the
physical observables of our instruments. Physical observables are expressed in the units of the SI
system [39], with the help of the fundamental physical constants [40]. The power or energy flux
is an observable of physical measurements. Indeed, the terminal device of any physical apparatus
measures the power in an electric circuit, i.e., either the current with a known voltage or the voltage
with a fixed current. The expression (3.10) has limited use though, because the full structure of
free energy expressed via the field strengths, which was discarded in (2.4), should be obtained and
employed for radiation and electronic phenomena.

4. SUMMARY

In order to apply finite temperature quantum field theory to condensed matter physics, we had
to revisit some of its notions. Even though we have only begun working on this program, some of its
features are apparent. There is no need to use thermal fields or finite temperature Green functions
in finite temperature QFT. Free energy at arbitrary temperature has no (ultraviolet or infrared)
divergences because of the physical principle ‘There is no temperature without matter, and there
is no matter without temperature.’

Let us summarize the main points.

(1) The natural variable in thermodynamics is Planck’s inverse temperature.

(2) The zero absolute temperature limit is topologically forbidden.

(3) The thermal sum appears from the topology of spacetime.

(4) Free energy is a phenomenological functional defined by geometrical characteristics of the
domain and by Planck’s inverse temperature.

(5) Free energy is needed to generate effective equations on the physical system’s observables.
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5. DISCUSSION

Touching a bit of history, the method we used can be traced to the Kubo-Martin—Schwinger
(KMS) condition [41]. This is the condition of periodicity of finite temperature Green’s functions
(or field correlators) in the imaginary, i.e., Euclidean, time. This condition was discovered simul-
taneously by KMS physicists [42, 43] and by Efim Fradkin [44]. The KMS condition can be used
to express the ‘thermal’ Green’s function as the sum of the zero temperature Green’s functions
[45]. This ‘image sum’ (thermal sum) is also called the Matsubara sum [46]. The idea of the ‘image
sum’ technique was later adapted to the heat kernel method [47, 48]. However, this was done too
literally, since the zeroth mode is not present in the thermal sum for the heat kernel (3.2) as is
obvious from mathematics. This oversight is a legacy of the phase space formalism of the Green’s
functions, and it caused an apparent UV divergence in the finite temperature QFT, where there is
none.

An advantage of field theory is that it is a dimensionless theory. Equation (3.5) is one step
away from dimensionless QFT, but it is a necessary step because the temperature (1.1) introduces
the scale into the field theory. However, the field theory’s functionals remains dimensionless, e.g.,
[3%] = [V] in (3.5), because the theory is set up in a finite domain, which gives the natural length
scale, (3.7). It is obvious that finite temperature field theory can only be defined in compact spaces
with boundaries. That is, the space should be of finite volume, for otherwise the spatial integral of
the first term is not defined. The second term is defined by the boundary, which is required because
physically we aim at describing condensed matter, which is always bounded; mathematically, we
seek solutions (although implicitly) of the differential equations with certain boundary conditions.

Since the geometrical formalism uses the spacetime with the Euclidean metric signature, there is
no concept of motion, or of time for that matter. The physical time appears in other formulations
of QFT at finite temperature [2], but only at intermediate derivations, while final expressions for
physical observables are time independent. The closed Euclidean time method helps us to put a
field theory into a non relativistic form, while keeping the correct number of spacetime dimensions.
We accept Roger Penrose’s view on physics [49] that the derived algebraic relations are more
important than the geometrical interpretations that produced them. It means that the existence of
a nontrivial topology of the spacetime of our theories may be exhibited by the condensed matter
or other physical phenomena, but we are only interested in the physics that could follow from the
derived equations.

No chemical potentials enter finite temperature field theory, because they belong to a different
physical theory, the theory of thermodynamic ensembles [52, 14]. Their presence is not consistent
with the principles of quantum field theory. As the name says, the chemical potentials come from
the thermodynamics of systems with chemical reactions [53]. The grand canonical ensemble is used
to describe systems in a closed space, in contact with the external reservoir of particles and energy
[51, 52, 14]. Chemical potentials denote energy densities of particles supplied to the system from
this external reservoir. Therefore, chemical potentials are introduced in order to deal with the
variable number of particles. However, quantum field theory by its purpose deals with the creation
and annihilation of particles (or the production and backreaction of energy fluxes in the field
theory language). Any QFT should have a built-in mechanism for the particle creation and its
backreaction. In the effective action technique, the particle creation mechanism is in the nonlocal
effective equations [9]. Without such a mechanism, but with chemical potentials, quantum field
theory effectively becomes many body physics. However, the use of chemical potential is popular
[2] because being mass-like, chemical potentials suppress the UV divergences in other formulations
of QFT.

The statistical approach to the physics of condensed matter systems has been developed by
Victor Maslov, using combinatorics and probability theory [54]. The ‘undistinguishing statistics
of objectively distinguishable objects’ [55] and finite temperature field theory are theories built
on different concepts. Maslov answers the question [54], “How to translate measure, density, and
dimension to a discrete language,” while we aim at the opposite limit of avoiding any discrete
language at all. In this initial form, finite temperature field theory is applicable only to some
thermal properties of solid matter.

It is interesting to recall a physical theory called the ‘5-optics’ by Yuri Rumer [56]. His theory
was based on the ideas of Kaluza—Klein and Einstein-Bergman about extra dimensions of spacetime
and introduced the closed fifth dimension. This compactified dimension had physical dimensionality
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FINITE TEMPERATURE QUANTUM FIELD THEORY 17

of an action with a period equal to Planck’s constant [57]. This is only a curious similarity related
to the present work, but Rumer’s works should be useful for researchers in the extra dimensional
physics.

The heat kernel trace is used as a mathematical basis, and its advantage is that it can be
computed at once for many relevant field theories, [32, 33]. Only after taking the proper time integral
(3.3), one obtains the effective action or free energy, by this step going from geometry to physics.
This equation is taken as the definition of the quantum functional. In the heat kernel method, finite
temperature QFT looks similar to thermodynamics. Classical thermodynamics preceded quantum
theory and served a source of ideas and a technical tool for developing the quantum theory by Max
Planck [18, 58] and Albert Einstein [59, 60]. The deep relationship between statistical physics and
quantum theory has been explored extensively starting from the work of J.E. Moyal [61]. The present
work looks at the thermodynamics side of this relation from the field theory viewpoint.
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