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Abstract. By equating to zero all components of the Kröner incompatibility tensor of rank
2n− 4 or of the Riemann tensor dual to the Kröner tensor, n2(n2 − 1)/12 independent con-
sistency equations for the stresses in an n-dimensional isotropic elastic medium are derived.
The problem concerning the equivalence of the system of these equations to systems follow-
ing from equating to zero either all n(n + 1)/2 components of the Ricci tensor or only one
curvature invariant is investigated. It is shown that the answer to this question depends on
the dimension of the space. Three cases are singled out: n = 2 (plane problem of elasticity
theory), n = 3 (spatial problem of elasticity theory), and n � 4.
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Consider the quasi-static deformation of an isotropic elastic medium belonging to Euclidean
space R

n with a Cartesian coordinate system chosen in the space. Small deformations εij(x) are
related in such a medium to stresses σij(x) by the inverse Hooke law

εij =
1

E

(
−νΘδij + (1 + ν)σij

)
, Θ = σkk, (1)

where E stands for Young’s modulus and ν for Poisson’s ratio. In (1) and below, the subscripts
take the values 1, 2, . . . , n; the summation from 1 to n is assumed over the Latin indices repeated
twice in any monomial.

A necessary condition for a medium to be contained in Euclidean space is the condition [1–3]
that all components of the Kröner incompatibility tensor η{2n−4}(ε

˜
) ≡ Ink ε

˜
of rank 2n− 4 vanish,

ηp1...pn−2q1...qn−2
(ε
˜
) ≡ εp1...pn−2li εq1...qn−2jk εij,lk = 0, (2)

where εp1...pn−2li stands for the n-index Levi–Civita symbol in R
n. A comma in the subscript stands

for the partial differentiation with respect to the corresponding coordinate. The Kröner tensor is
antisymmetric with respect to any pair of its n−2 first subscripts and of the n−2 other subscripts.
Moreover, it is symmetric under permutations of families of n−2 first subscripts and n−2 subscripts
among the last ones.

Let us multiply equation (2) by εmrp1...pn−2
εstq1...qn−2

and then perform the summation over the
2n− 4 subscripts p1, . . . , pn−2, q1, . . . , qn−2,

εmrp1...pn−2
εp1...pn−2li = εmrp1...pn−2

εlip1...pn−2
= (n− 2)!(δmlδri − δmiδrl)

εstq1...qn−2
εq1...qn−2jk = εstq1...qn−2

εjkq1...qn−2
= (n− 2)!(δsjδtk − δskδtj).

We obtain
2Rrmst(ε

˜
) ≡ εrs,mt + εmt,rs − εms,rt − εrt,ms = 0, (3)

where R{4}(ε
˜
) stands for the linearized Riemann tensor constructed on ε

˜
regarded as the metric

tensor of the space; the linearized Riemann tensor is more convenient for manipulations because
its rank is equal to four for any n. The numbers of independent (or, in the terminology of [4],
essential) components of the tensors R{4} and η{2n−4} are equal because these tensors are dual to
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each other, i.e., are obtained from each other using only contractions with the Levi–Civita symbols.
Taking into account the C4

n Ricci identities

Rrmst(ε
˜
) +Rrstm(ε

˜
) +Rrtms(ε

˜
) = 0, (4)

which become nontrivial for n � 4, we see that these numbers are equal to n2(n2 − 1)/12 = An.
First-order differential relations known in differential geometry as Bianchi identities do not make
the number of independent components of R{4} (and hence, the number of independent strain
compatibility equations, or Saint-Venant n-dimensional identities (3)) less than An [5].

Substituting relations (1) into (3), we obtain the desired stress consistency equations in the
multidimensional elastic medium

2Rrmst

(
ε
˜
(σ
˜
)
)
=σrs,mt + σmt,rs − σms,rt − σrt,ms

+
ν

1 + ν
(Θ,rtδms +Θ,msδrt −Θ,mtδrs −Θ,rsδmt) = 0,

(5)

among which there are also An independent equations.

Let us further form the traces of the tensor R{4}, namely, the symmetric Ricci tensor R
˜

with
n(n+ 1)/2 = an independent components and the curvature invariant R,

Rms = Rrmsr, R = Rmm = Rrmmr. (6)

Equating to zero all components Rms

(
ε
˜
(σ
˜
)
)
leads to an consequences of the general compatibility

equations (5),

Δσms +
1 + (3− n)ν

1 + ν
Θ,ms −

ν

1 + ν
ΔΘ δms − σmr,rs − σsr,rm = 0 (7)

and equating to zero the invariant R leads to a relationship for scalars,

ΔΘ =
1 + ν

1 + (2− n)ν
σmr,mr. (8)

Taking (8) into account, we can represent equations (7) as follows:

Δσms +
1 + (3− n)ν

1 + ν
Θ,ms −

ν

1 + (2− n)ν
σrt,tr δms − σmr,rs − σsr,rm = 0. (9)

Traditionally (although this is not necessary), in consistency equations reflecting the differential-
geometric structure of the dependence of σ

˜
on the coordinates, one takes into account the fact that

σ
˜
is a physical object that satisfies the postulates of continuum mechanics and, in particular, the

n equations of equilibrium with given volume forces X(x),

σij,j = −Xi. (10)

Their presence enables us to simplify the form of (9),

Δσms +
1 + (3− n)ν

1 + ν
Θ,ms +

ν

1 + (2− n)ν
divX δms +Xm,s +Xs,m = 0. (11)

For n = 3, equations (11) obviously coincide with the classical Beltrami–Michell equations of
elasticity theory.

Let us study the following problem: Is the system of an equations (9) (or (7)) equivalent to the
system of An equations (5) and for what n are these systems equivalent?
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Case n = 2. We have A2 = 1 and a2 = 3. In the planar problem, there is only one independent
compatibility equation, which can be taken in the form (8),

ΔΘ = (1 + ν)σmr,mr. (12)

It can readily be seen that (12) implies the triples of equations (7) and (9), into which one must
substitute n = 2, i.e., each of the systems (5), (7), and (9) is equivalent to a single equation,
namely, (12).

Case n = 3. The relation A3 = a3 = 6 enables one to replace the six equations (5) by a system
consisting of six arbitrary independent linear combinations of these equations, i.e., for example, by
systems (9) or (7) obtained by contractions (5). Each of these systems is equivalent to (5), and the
compatibility equations in stresses in R

3 can be represented in the form (9) or (7), after substituting
n = 3 in (9) and (7), respectively.1

Case n � 4. Beginning with n = 4, we have the inequality An > an, and therefore, no system
of an linear combinations An of equations (5), including systems (7) and (9), cannot be equivalent
to system (5) itself. System (7) is weaker than (5).

As a visible counterexample, we take the field of stresses

σms(x) = cx3x4(δ1mδ2s + δ1sδ2m), c = const, (13)

σms,rt = c(δ3rδ4t + δ3tδ4r)(δ1mδ2s + δ1sδ2m), (14)

and substitute this into systems (7) and (5). All summands in (7) are contractions of expressions
(14) with respect to some pair of indices, and thus vanish, whereas the nontrivial condition c = 0
occurs in (5) for m = 1, s = 2, r = 3, and t = 4. For c �= 0, the stress field (13) is incompatible.

Thus, with respect to the an components of the symmetric tensor σ
˜
(x), the statement of the

second boundary value problem of the isotropic elasticity theory in stresses [6, 7] in an n-dimensional
domain V (with boundary ∂V which has a unique outward pointing unit normal n at every point of
∂V ) is in the solution of An equations (5) and n equations (10) in V satisfying n boundary conditions
σijnj = P ◦

i (x) on ∂V , where P◦(x) stands for the vector of surface loads given on ∂V . The
replacement of An equations (5) by an generalized Beltrami–Michell equations (11) is nonequivalent
for n � 4 and weakens the system in V .
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1Certainly, after this, one can take into account also the equilibrium relations (10), which leads to the Beltrami–

Michell equations (11).

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 22 No. 1 2015


