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INTRODUCTION
The (Hadamard, see, for example, [1]) well-posedness of a certain mathematical problem presupposes

the existence and uniqueness, as well as the stability (that is, continuous dependence in one or another
metric) of its solution with respect to its initial data. In Part 1 of this paper [2], it was demonstrated that
the direct problem stated in the form of the basic equation of magnetostatics [3] is well-posed. The direct
problem is to determine the strength of the resultant magnetic field inside and outside an arbitrarily
shaped magnet, given the following set of initial data: the shape and dimensions of the magnet, its mag-
netic permeability, and the magnitude and direction of an external field. An important feature of the
results obtained in [2] is that in proving the stability of the field strength derived from this equation, spe-
cific estimates have been given that indicate the maximum possible error in the field strength calculated
from the basic equation versus the initial error in setting the above-mentioned input data obtained as a
result of measurement experiments. However, magnetic nondestructive testing is mostly concerned with
the inverse problems of magnetostatics, viz. to restore the “input data”, i.e., the geometrical (the shape of
the article and the shape and dimensions of defects and cavities) and/or physical (magnetic permeability)
characteristics of the magnet, given an external field and a known (measured) resultant field in some finite
region outside the magnet available for measurements. Various approaches to the practical solution of the
inverse problem are discussed, for example, in [4–11]. Most of them are based on repeatedly solving direct
problems (either by original numerical-analytical methods or using universal software packages such as
ANSYS, ELCUT, or FEMM) in order to reveal regularities in the behavior of resultant magnetic fields
depending on the shape and dimensions of both the magnetic article itself and internal or external defects
in it. Other approaches use either the method of minimizing the functional of the deviation of the mea-
sured magnetic-field distribution from the calculated (again by repeated solution of the direct problem)
fields of a “standard” defect or the construction of interpolation formulas (based on the solution of direct
problems or data from actual full-scale experiments) that express the dependence of the resultant field on
those or other defect parameters. In many respects, however, an important question remains about the
possibility (or impossibility) in principle of unambiguous determination of the shape and dimensions of
defects in a product based on measuring the reaction field outside it, that is, the question of unique solv-
ability (included in the notion of well-posedness) of the inverse problem of magnetostatics. In this respect,
of importance are the discussion papers [12–14], which informally consider various examples of single-
and multiple-valued solutions to the inverse problem. Coming to the conclusion that the problem is mul-
tifaceted and complex, Pechenkov and Shcherbinin [13] infer that “for the practice of f law detection, it is
important to provide (and accumulate) examples of the geometrical shapes of bodies (with or without
687



688 DYAKIN et al.
defects) that have a unique or ambiguous solution to the inverse problem of magnetic defectoscopy and
mathematical proofs of this fact for these examples”. It is this topic (but not only!) that the present article
is concerned with.

POSING INVERSE PROBLEMS OF MAGNETOSTATICS
To solve the direct and inverse problems of magnetostatics, we use the so-called basic equation of mag-

netostatics, defined by the relation [3, p. 16]

(1)

and the well-known connection between vector functions  and  for 

(2)

where Ω is the (simply connected or not) domain, with a boundary , occupied by the investigated mag-
net;  is the strength of an external field created by currents concentrated within a certain closed
domain ;  is the intensity of the resultant field;  is a magnetization arising in the magnet;  is
its magnetic permeability; and  is its magnetic susceptibility. Depending on the situation, the permeabil-
ity (and, accordingly, susceptibility) may be constant ( ) or depend on the coordinates [ ]
or the intensity or magnetization [  or ]. In what follows, for convenience,
the intensity of the resultant field  inside (when ) and outside [when

] the magnet will be denoted, respectively, as  and .
Relations (1) and (2) are fully equivalent to the system of Maxwell’s equations for the case of magne-

tostatics; however, they have a number of undoubted merits, discussed, for example, in [15, 16], that
greatly facilitate both the study and derivation per se of analytical formulas or numerical algorithms for
solving the direct and inverse problems of magnetostatics.

The following equation for determining the magnetization  is derived from relations (1) and (2)
to study and solve direct problems:

(3)

where the operator

(4)

Equation (3) and operator  are considered in a real Hilbert space  of vector-valued functions

square integrable over domain Ω, with the scalar product defined by the formula 

The statement (in the form of the basic equation of magnetostatics) of the direct problem of magneto-
statics and the study of its well-posedness are discussed in detail in [2]. In the present paper, the well-
posedness is investigated for the inverse problem of magnetostatics stated in the same form, viz., to restore
the “input data”, i.e., the geometrical (magnet shape Ω) and/or physical (magnet permeability ) char-
acteristics given an external field  and a known (measured) resultant field  in some finite
domain  outside the magnet accessible for measurement. Hereinafter, the shape of the magnet is under-
stood to be not only its geometrical affiliation but also its relevant dimensions and position in space (local-
ization). Depending on what characteristics are subject to reconstruction, we will distinguish between the
following three types of inverse problems:

problem A—given a known shape of the magnet domain Ω, find the distribution of magnetic permea-
bility  in it;

problem B—given a known model of the distribution of magnetic permeability  in a magnet, deter-
mine its shape Ω (thereby determining the shape of possible defects in the form of a cavity);

problem C—determine both the shape Ω of a magnet and the distribution of magnetic permeability
in it.
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ON THE WELL-POSEDNESS OF THE DIRECT AND INVERSE PROBLEM 689
We note that whereas the problem of the well-posedness of the direct problem of magnetostatics has
been positively solved for a wide class of practically important problems, the issues of the well-posedness
of the above inverse problems are much more sophisticated, and the relevant theory is still in its infancy.
In the present paper, we will touch on only one of the three well-posedness conditions mentioned in the
introduction, namely, the uniqueness of the solution to the above-formulated inverse problems, a ques-
tion that is important in magnetic nondestructive testing, since for cases of the positive answer to this
question, there exists at least the possibility in principle for unambiguously reconstructing the distribution
of magnetic permeability in an article and/or detecting various types of f laws in it and describing their
shapes and locations.

WEYL DECOMPOSITION AND ITS CONNECTION WITH THE OPERATOR 
IN THE BASIC EQUATION OF MAGNETOSTATICS

When studying and practically solving the direct and inverse problems of magnetostatics, the so-called
Weyl decomposition of the space  into the sum of three orthogonal subspaces plays an important
role [17]

(5)

where U(Ω) is the closure [in the metric of space ] of the gradients of harmonic functions smooth
in ;  is the closure of the gradients of functions that are smooth in  and vanish at the boundary 
of domain Ω; and  is the closure of solenoidal vector-valued functions that are smooth in  and have
zero normal component at the boundary . The Weyl expansion (5) turns out to be closely related to
Eq. (3) and the operator (4) appearing in it, namely, the subspace  coincides with the kernel of oper-
ator  (the set of functions turned into the zero function by the operator ),  is a proper subspace of
operator  corresponding to eigenvalue 1, and the subspace  is invariant under operator , that is,

 for all . The proof of these assertions can be found, for example, in [18] or [16].
Moreover, in the monograph [16], the Weyl expansion (5) was obtained precisely in the way of investigat-
ing the properties of operator . According to this decomposition, any vector  is unique rep-
resented as the sum of three orthogonal [in the sense of the scalar product in ] vectors

(6)

that belong to , , and , respectively, and are the orthogonal projections of the vector M
on these subspaces. Note that if the vector M is sufficiently smooth in Ω, its projections MU, MG, and MJ
have the same degree of smoothness [17].

REASONS FOR POSSIBLE NONUNIQUENESS OF SOLUTION TO INVERSE PROBLEMS
OF MAGNETOSTATICS

Let us turn to the question of the uniqueness of solution to inverse problem A, which consists in recon-
structing the magnetic permeability μ based on a known (measured) resultant field  in some region
Ω' accessible for measurement outside the magnet. The following approach to solving this problem seems
most natural [19]. Assuming that  in Eq. (1), we arrive at the following integro-differential equation
for determining magnetization :

(7)

with the right-hand side of it known and the operator , of the form defined in Eq. (4), treated as an oper-
ator from  into . After finding the distribution of the magnetization vector  from this

equation, we assume that  in (1) and by direct calculation find the field  inside Ω as

(8)

Finally, knowing M(r) and , from relation (2) we find the magnetic permeability .
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690 DYAKIN et al.
When deciding on the uniqueness of determining the magnetic permeability  with such an approach,
the question of the uniqueness of solution to Eq. (7) arises in a natural way. Let us prove, however, that
such uniqueness does not take place.

First of all, we derive a more convenient expression for operator  in Eq. (4) when  (in particular,
for ). Let  be a function sufficiently smooth in Ω, with all of its projections in (6) being there-
fore smooth, too. Substituting the expansion in Eq. (6) for operator  in Eq. (4) and using the correspond-
ing integral formulas, we can obtain the following expression for this operator for  (in particular,

) after a series of natural transformations:

(9)

where  is the normal component (more precisely, its limiting value from within Ω) on the
surface  of projection MU, where n is the vector of the unit outer normal to .

Let us prove that the kernel of operator  [i.e., the set of vectors that this operator translates into the
zero vector, denoted by ] acting from L2(Ω) into  according to formula (4) coincides with the
subspace 

(10)

Indeed, if , then it follows from the single-valuedness of the expansion in Eq. (6)
that , and therefore from (9) we obtain , that is, . Conversely, let 
and let us then prove that , which will complete the proof of relation (10). If  for

, then it follows from Eq. (9) that the simple-layer potential, appearing under the gradient sign in
Eq. (9),

(11)

is a constant  for all . Since the simple-layer potential is harmonic in the domain  and

, it follows from the uniqueness theorem for harmonic functions that this potential is the con-

stant  in the entire unbounded domain . However, since the simple-layer potential in Eq. (11)

tends to zero as  [20, p. 208], i.e., , we have  for all . Considering the con-

tinuity of the simple-layer potential in the entire space , we conclude that this potential vanishes at the
surface  of domain Ω, too. The function , harmonic in domain Ω, thus vanishes at the boundary 
of this domain, and, therefore, it follows from the uniqueness theorem for the solution of the internal Dir-
ichlet problem for the Laplace equation [20, p. 274] that  for all . We thus obtain that the

simple-layer potential  in . In this case, the limiting (at ) values of the normal derivatives
 and  also turn zero both from inside and outside of Ω. Since the jump in the normal

derivative of the simple-layer potential  upon passage through the surface  is described by the for-
mula [20, p. 267]

we obtain that  at . Since , MU is a solenoidal function, and therefore the fact that
 at  entails . However, since the zero vector is the only intersection of the sub-

spaces U(Ω) and , we have , which completes the proof of (10).

It follows immediately from (10) that Eq. (7) has an infinite set of solutions. Next, let us determine
their structure. First of all, we prove that the projection MU of any solution M of Eq. (7) onto the sub-
space U(Ω) is the same, and therefore uniquely determined by Eq. (7) itself. Indeed, if M is a solution
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ON THE WELL-POSEDNESS OF THE DIRECT AND INVERSE PROBLEM 691
of Eq. (7), then, taking Eqs. (6) and (10) into account, we obtain the following equation for the projec-
tion MU from (7):

(12)

Let us prove that the solution of this equation for the function MU is unique. To do this, it suffices to
show that the corresponding homogeneous equation

(13)

has only the zero solution. In the above, after formula (10), it was proved that if  for  is
satisfied for some vector M, then the projection of this vector . This implies that Eq. (13) has only
the zero solution, and the projection MU of any solution to Eq. (12) is, therefore, uniquely defined. As
shown in [15], one of the possibilities for actually finding this projection reduces to successive solution of
some classical integral equation at surface  (that has a unique solution) and the internal Neumann prob-
lem for the Laplace equation in domain Ω. However, the described path requires that the area Ω' in which
the resultant field  is measurable be “in contact” with the entire surface  of domain Ω (i.e.,

). If this condition is not fulfilled, then, using the uniqueness theorem for harmonic functions, it
is theoretically possible to continue  in a unique manner from Ω ' on , which will resume access
to the surface .

The foregoing allows the conclusion that all solutions M(r) of Eq. (7) have the form

(14)

where  is a function from  uniquely defined by the external field , while  and
 are arbitrary functions from  and . Equation (7) thus has a nonunique solution, which

can be the reason for the nonuniqueness (in the general case) of solution to inverse problem A, which con-
sists in reconstructing the magnetic permeability  of a magnet given its shape Ω and a known resultant
field  outside it, in accordance with the above scheme for solving this problem.

SOME CASES OF UNAMBIGUOUS AND AMBIGUOUS DETERMINATION
OF THE CHARACTERISTICS OF MAGNETIC SYSTEMS

In some cases, the nonuniqueness of determining the magnetization  of a magnet from Eq. (7)

based on the resultant field  does not prevent the unambiguous determination of a number of
important characteristics of investigated magnetic systems, namely, those determined only by the projec-
tion  (uniquely defined, as shown above) of magnetization  onto the subspace . One of
such characteristics is, for example, the free energy of the magnet in an external field, calculated from the
formula , which can be reduced to the form  [as follows

from the orthogonality of the subspaces on the right-hand side of Eq. (5) and from ], while
 is uniquely defined by the resultant field.

In addition, one can assert the uniqueness of determining the magnet permeability  based on the
resultant field μ in the case where this permeability is in advance known to be constant ( ). Let
us prove this. The magnetization  of the magnet must satisfy Eq. (3). Replacing the vector  in
this equation with its Weyl expansion (6), we arrive at
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692 DYAKIN et al.
, , and , respectively. Therefore, Eq. (16) can be regarded as a Weyl expansion for .

Since the external field , the uniqueness of the Weyl decomposition implies that the last two
terms in Eq. (16) become zero, and therefore . Then, we find from Eq. (16) that the
magnetization  coincides with its projection , which is uniquely defined, as shown above.
This leads to an important conclusion about the uniqueness of the solution to inverse problem A in the
case of a constant permeability  of the magnet.

Note that the conclusion about the uniqueness of determining permeability in the case of its constancy
was drawn because multiplication of vector functions , , and  by  (which is also
constant, together with ) in the first three terms of Eq. (15) did not withdraw these functions from the
corresponding subspaces , , and . Let us show that this property holds only in the case of
constant permeability, and, therefore, susceptibility, implying that any dependence of permeability on
coordinates may prove to be a mathematical reason for the possible ambiguity of its reconstruction. Let
us find out, for example, in which case multiplying projection  by  does not withdraw it from

, that is, . If the latter is satisfied, then  and

. Using formulas for the divergence and rotor of this combination, we obtain

 and . Considering

that  and , we have , and therefore , that is,
.

It was shown above that if the magnetization  is an irrotational and solenoidal vector-function
 in Ω and, hence, in the expansion in Eq. (14) , it can be uniquely recon-

structed. As proved above, such a situation arises, for example, in the case of a constant permeability in a
magnet. The following suspicion arises. Maybe, being a solution to Eq. (3), the magnetization  in
any case has only the projection  in the expansion in Eq. (14) that is nonzero. In other words, is it
not the common property that a solution  to Eq. (3) belongs to  in the case where the right-

hand side of the equation ? With the positive answer to this question, inverse problem A
would always have a unique solution. Unfortunately, it is not the case. It was shown in [19] that if, for
example, the magnet is a ball centered at the coordinate origin that has a model permeability of the form

 ( , , and α are parameters), then, even in the case of a constant external field

, the solution  of Eq. (3) has (of course, with ) nonzero projections 
and  on subspaces  and  and, as shown above, these projections, clearly, cannot be
uniquely reconstructed. This may be the main reason for the possible ambiguity of solution to inverse
problem A. It has already been rigorously proved in [19] that in a constant external field, unique recon-
struction of the ball’s magnetic permeability  of the indicated model type, based on the measured
resultant field is, indeed, impossible. This is due to the fact that for a constant external field

, the so-called (measured) reaction field  is calculated at an
arbitrary point r outside the spherical magnet of radius  by the formula [19]

(17)

where the parameter a is expressed as follows in terms of the parameters  and α of magnetic permeability
and the ball radius :
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ON THE WELL-POSEDNESS OF THE DIRECT AND INVERSE PROBLEM 693
while  stands for an expression that is obtained after switching from Cartesian  to
spherical  coordinates in the expression , using the known formulas ,

, and . If the domain Ω' where the reaction field  is measured contains at
least one point, then given a known radius  of the ball magnet, Eq. (17) only allows one to determine the
value of the parameter , i.e., of a combination of the unknown parameters  and  of permeability 
that has the form in Eq. (18), and it is impossible to find the values of individual parameters  and  from
the value of this combination. However, if the magnetic-permeability parameters  and  are known, and
it is required to determine the size  of the ball magnet (this case corresponds now to inverse problem B),
with the position of its center known, then this problem, in principle, is solvable since it reduces to solving
Eq. (18) for , given known values of , , and .

It follows from the above that, as expected, in the general case, inverse problem C (simultaneous recon-
struction of both the shape of a magnet and its permeability based on the measured resultant field) has no
unique solution. However, in this sense, the situation is far from clear in every specific case.

A typical example of the equivocality of the discussed situation is given in [15]. Consider a ball of
radius  with a constant magnetic permeability  placed in a constant external field . In
this case, passing to the limit  in formulas (17) and (18), it is easy to obtain that the measured reac-
tion field  has the following form in the spherical coordinate system :

(19)

where the gradient is calculated in the spherical coordinate system. The same expression was also derived
in [15]. Thus, based on the measured reaction field, one can uniquely reconstruct only the parameter

combination  using formula (19) but not  and  separately. Consequently, two different concen-

tric balls with parameter pairs ,  and ,  that produce the same value for the combination 

yield the same reaction field at the same distance from their center. Therefore, with a limited access to the
ball surface for field measurements, it is impossible to uniquely reconstruct both the permeability and
radius of the ball simultaneously. However, there are some encouraging circumstances here. If the resul-
tant field  [and, hence, the reaction field ] can be measured at least at one point located
immediately at the ball surface (i.e., if the measurement domain Ω' touches the surface of the ball at least
at one point), separate determination of  and  becomes possible. Indeed, from (19) it is easy to obtain
an expression for the -component  of the reaction field in the spherical coordinate system as

(20)

At the ball surface [when passing to the limit  in Eq. (20)], the component  coincides with
the normal component of the field at this surface, and its value can be calculated by the formula

which no longer incorporates the ball radius. The magnetic permeability  can therefore be determined
based on the measured reaction field at some point at the ball surface. After taking the second measure-
ment of the reaction field at some point outside the magnet (for ), one can obtain the ball radius 
from Eq. (20). Thus, it is still sometimes possible to resolve the issue of the nonuniqueness of solution to
inverse problem C for simply shaped magnets by means of specially selected repeated measurements or (as
will be shown below) a well-chosen external field .

As for the above example of a ball magnet of radius  with a model permeability of the form
, here again there exists a fundamental opportunity for uniquely reconstructing this permea-

bility based on the measured reaction field outside the magnet (that is, for separately determining the val-
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ues of parameters  and ) if we place the magnet in an inhomogeneous external field  (as shown
above, this is impossible in the case of a homogeneous external field). Let us demonstrate this. As we
know, the external field  outside domains bearing currents that create it is always solenoidal and

irrotational and can therefore be represented as the gradient of a harmonic function ,

. Since the function  is harmonic outside the current-bearing domains, it can be repre-
sented in the spherical coordinate system inside the investigated ball Ω as an expansion in terms of solid
spherical harmonics as

with known coefficients  (  are classical spherical harmonics). The external field thus has
the form

(21)

It can be shown [21] that the reaction field  outside the ball magnet can be calculated in this case
using the formula

(22)

where the numbers  are expressed as follows in terms of the parameters  and  of magnetic perme-
ability and the ball-magnet radius :

(23)

In the above case of a constant external field , in Eq. (21) we have ,

with the rest of ; therefore,  and the remaining  ( ). There-
fore, formulas (22) and (23) transform, as it should be, into formulas (17) and (18) for a constant external
field and, as shown above, separate determination of the parameters  and  of magnetic permeability
becomes in this case impossible. This is due to the fact that for a constant magnetic field 

in the expression (21) for , only the function  is nonzero in the sum, and, therefore, only the

value of parameter  [expressed as in (18)] can be determined from the measured reaction field 
using Eq. (22); as indicated, this parameter does not allow one to determine the inidividual values of
parameters  and , i.e., to reconstruct the magnetic permeability. If the external field  is chosen

not constant and such that, at least, two of the system of functions  in Eq. (21) are nonzero,
separate determination of  and  becomes fundamentally possible. For example, if, at least,  and

 are different from zero, then it will be possible to determine the values of, at least, two parameters
 and  using Eq. (22). Then from Eq. (23) we find that the ratio of these parameters

contains only one unknown , which can be determined from this equation, and, hence, will make
it possible to determine the value of parameter . After this, the parameter  can be immediately
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determined from Eq. (23) for , and the magnetic permeability in the considered model 
can therefore be reconstructed completely.

Note that for the considered ball magnet, separate determination of permeability and ball radius  (this
now refers to inverse problem C) is impossible whatever the configuration of the external field . This
follows from the fact that formulas (22) and (23) contain parameters  and  only in the form of their
product, . Therefore, only the value of this product can be determined but not the values of  and

 individually. This confirms one more time that in the general case, inverse problem C is not uniquely
solvable.

TRICKS THAT ALLOW ONE TO OBTAIN UNIQUE SOLUTIONS 
OF INVERSE PROBLEM IN CERTAIN CASES

Here is a brief description of some interesting examples containing well-founded algorithms for the
unambiguous determination of the position, the dimensions, and the value of constant magnetic perme-
ability for ball-shaped magnets, the detailed description being available in the recent monograph [16]. The
first example concerns the possibility of uniquely determining the coordinates of the center of a ball with
known radius  and permeability , placed in a constant external field in such a way that it cannot
be observed visually. Let us only suppose that we know that this ball is located somewhere inside a certain
domain, with the measurement of the reaction field being available only outside this domain. As indicated
above, the reaction field in this case is of the form in Eq. (19) and is inhomogeneous, since the gradient
appearing in this formula has the following form in the Cartesian coordinate system:

In [16, pp. 279, 280], it is shown how this inhomogeneity can be utilized to allow unique reconstruction
of the coordinates of the ball magnet center by measuring the reaction field at two points.

As proved above, if the position of the center of the ball is known but the ball is inaccessible for visual
observation (i.e., no measurements can be taken at the ball surface), then in a constant external field

, by measuring the reaction field it is impossible to simultaneously reconstruct the unknown radius
 of the ball and its unknown magnetic permeability μ even if it is constant. However, even here the right

choice of the inhomogeneous external field can save the situation. In [16, pp. 281–289], algorithms are
specified for the unique reconstruction of unknown parameters  and  in the cases where the inhomo-
geneous external field  is created either by a specially oriented magnetic dipole or by a thin-walled
solenoid of finite length, with its center hosting the ball with unknown radius  and unknown constant
magnetic permeability .

In cases that are more challenging for closed-form analysis, the possibility of uniquely solving inverse
problems similar to A, B, and C can sometimes be investigated by in-depth study of the behavior of the
solution to the direct problem of determining the reaction field as a function of numerical parameters
characterizing the model form of magnetic permeability and/or the localization and dimensions of a
model defect. In this case, the character of the dependence of various components of the reaction field on
the mentioned numerical parameters (monotonicity, typical arrangement of extrema, inflection points,
etc.) is studied. For example, in [22], based on the algorithm for solving the direct problem of determining
the reaction field due to a ball-shaped article with an arbitrary internal defect in an arbitrary external field,
curves have been derived and investigated for the dependence of various components of the reaction field
on the parameters characterizing the center position and radius of a homogeneous spherical defect within
a nonmagnetic ball-shaped article. This analysis showed how, by rotating this article in a constant external
field, one can determine the direction from the defect center to the article center based on the position of
a maximum in the measured tangential component of the reaction field on its surface. Further, by pointing
the constant external field in this direction, it is possible to uniquely determine the distance from the
defect center to the center of the article based on the position of the maximum of the -component of the
reaction field, and hence the position of the defect center inside the article. Then, from the measured nor-
mal component of the reaction field at the top pole of the article, one can also find the radius of the ball-
shaped defect.

In [23–26], based on a similar analysis of the graphs of the dependence of the reaction-field compo-
nents on numerical parameters characterizing the position and size of internal defect, an algorithm is pro-
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posed for the unambiguous determination (based on the measured reaction field) of the depth and radius
of a spherical cavity inside a magnetic half-space for cases of a constant external field, as well as the exter-
nal field created by a current loop or a current coil.

MAIN RESULTS
In conclusion, let us brief ly formulate the main results of this paper.
The uniqueness of solution has been investigated for the proposed statements of the inverse problems

of magnetostatics, which are to restore the “input data”, i.e., the geometrical (the shape of a magnet and
the shape and dimensions of defects and cavities) and/or physical (magnetic permeability) characteristics
of the magnet, given an external field and a known (measured) resultant field in some finite region outside
the magnet available for measurements. It has been shown that the main reason for the possible (in the
general case) nonuniqueness of the solution of this problem is the presence of a whole subspace constitut-
ing the kernel of operator (AM)(r) in Eq. (7); this implies the nonuniqueness (in the general case) of deter-
mining the magnetization M(r)of the magnet from this equation based on the resultant field measured
outside it. A class of this nonuniqueness is described that the determined magnetization can be (addi-
tively) correctly attributed to. It has been proved that in the case of the constancy of the magnetic perme-
ability of the investigated magnet, the above-mentioned class of nonuniqueness reduces to zero, and this
permeability can therefore be reconstructed unambiguously.

Various examples are provided of both unique and (fundamentally) nonunique solution to the inverse
problem of magnetostatics stated as discussed.

Some techniques of eliminating the nonuniqueness of solution to the inverse problem have been
demonstrated for a number of cases, including ensuring the possibility of measurement of resultant field
in the close proximity to the magnet; choosing “correct” points for taking measurements of this field;
using specially configured external fields; and taking advantage of regularities revealed when solving the
direct problems of magnetostatics for the configuration at hand.
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