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Abstract—Several domains are based on image processing and analysis. One of them is the radio-
graphic inspection which is used in Non Destructive Testing (NDT). Active contours, snakes or
deformable models are powerful techniques in image segmentation and restoration. According to the
term related to the input data (image to be treated) those functionals are ranked on two categories:
edge-based models and region-based models. Previous studies point out the advantages of the region-
based models over edge-based models. In this paper, we discuss and we summarize the strengths and
weaknesses of four implicit region-based active contour models named: Piecewise Constant PC,
Piecewise Smooth PS, Local Binary Fitting LBF and Global Local fitting energy GLF. After perform-
ing several experiments, we have concluded that all the models perform well with homogeneous
images. On the contrary when images are strongly inhomogeneous, the models based on global (PC)
or local (LBF) statistic intensity fail to segment such images. The PS model with its great advantage in
preserving the contours has, as a drawback, the high CPU time consuming. The combination of local
and global statistic image intensity gives to the GLF model the ability to better deal with such images
in less CPU time.

DOI: 10.1134/S1061830917100035

1. INTRODUCTION
Nowadays the visual information has being introduced in very large applications. The image processing

field becomes more and more important. The primordial task in image analysis is the segmentation. Seg-
mentation and restoration via active contours or deformable models have known greater use in different
domains. We distinguish, essentially, two classes of active contours (deformable models): edge-based
models [1–6] and region-based models [7–13]. We focus on models which are based on region due to
their advantages over the once based on contour. They do not use image gradient, are less sensitive to
noise, can successfully segment objects with weak edges or without edge, interior contours can be auto-
matically detected, and they are less sensitive to initial contour location.

In this context, the older and famous functional is the Mumford–Shah model [14], this one has limit
applications due to its high complexity. Later, several functional (weak formulation) had been proposed.
Generally speaking, all region-based models could be ranged in three classes as follows: Global region-
based models, Local region-based models, and Global Local (hybrid) region-based models. In the Global
region-based models category, we cite the one called piecewise constant approximation PC, proposed by
Chan and Vese [7], where the resulting image u is approximated by a set of constants. This model has
known great success in segmenting homogenous images especially when it was improved by introducing
multiphase level set. Even though, this model fails within inhomogeneous intensity distribution which is
the case for large real images. To overcome these limitations, the same authors proposed the piecewise
smooth approximation PS model where u is approximated by set of functions of C1 class [11]. Such

1 The article is published in the original.
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approximation allows the PS model to deal with inhomogeneous images. Generally, models based on
global statistic information ignored totally the intensity variation inside regions. Such works have been fol-
lowed by others models that are based on local statistic information, this local property is, more often,
assured by the Gaussian kernel function [15–19]. More recently, some papers have proposed an hybrid
functional, where the contour in evolution is attracted to the objects' boundaries via a combination
between global and local statistic image information [20, 21].

The rest of the paper is structured as follows: Section 2 is devoted to present the region-based models.
In Section 3, we detail and exhibit the outcomes of these models on radiographic images to show their per-
formance on segmentation and restoration; furthermore discussions on some influencing parameters are
presented. We end this paper with a conclusion and by giving some suggestions on the radiographic image
segmentation.

2. SOME REGION-BASED DEFORMABLE MODELS
This section is devoted to look over through the recent literature which is based on using image region

information to drive the curve in evolution through the objects’ boundaries. The very interesting property
of these models is that they solve two common image-processing tasks simultaneously: image denoising
or restoration and image segmentation. For the rest of the paper, we denote by Ω ∈ 5N a bound domain
and u0: Ω → 5 represents a grayscale image.

2.1. Mumford-Shah Model

The oldest and popular model in image region based segmentation is the one proposed by Mumford
and Shah [14]. Authors had formulated a functional capable to divide the image domain into non over-
lapping regions separated by contours C representing various limits of objects. Consequently, the follow-
ing energy was proposed:

(1)

where μ, ν > 0 are constants to penalize the different terms, u is the optimal approximation of the original
image u0, Ω is the image domain. The signification of the three terms in the functional is as follows: the
first integral represents fidelity to data, its minimization approximates the u to u0. The second integral is
the smoothing term which makes u smooth inside each region but not at the boundaries, and the last term
regularizes the contour. However, the minimization of FMS(u, C) gives an image u with minimum com-
plexity (cartoon image) and objects’ boundaries. In practice, it is so difficult to solve Eq. (1) due to two
serious problems: the different dimensions of C and u, and the non convexity of FMS(u, C) which can pro-
vide multiple local minima.

2.2. Piecewise Constant Approximation PC

The PC model was proposed by Chan and Vese [7] to overcome the difficulties in solving Eq. (1). The
first PC model is based on simplifying Mumford–Shah functional by approximating the image u to set of
constants (two constants). The functional to be minimized is given by Eq. (2):

(2)

where ν > 0, λ1, λ2 > 0; cin and cout are, respectively, the average image intensity inside and outside curve.
The Eq. (2) can be written via an implicit representation of the curve using level set function Φ introduced
by Osher [22] as follows:

(3)

( ) ( )2 2MS
0

/

, ,
C

E u C u u dx u dx C
Ω Ω

= − + μ ∇ + ν∫ ∫

( ) ( )
( )

( )
( )

2 2PC
in out 1 0 in 2 0 out

inside out

, , ,
C C

E c c C u c dx u c dx C= λ − + λ − + ν∫ ∫

( ) ( ) ( )( ) ( ) ( )( )( )

( )( )
Ω Ω

Ω

Φ = λ − Φ + λ − − Φ

+ ν ∇ Φ

∫ ∫

∫

2 2PC
in out 1 0 in 2 0 out, , 1

.

E c c u c H x dx u c H x dx

H x dx

e e

e



RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING  Vol. 53  No. 10  2017

THE PERFORMANCE OF SOME IMPLICIT REGION-BASED ACTIVE CONTOURS 733

The according Euler–Lagrange equation that allows the evolution of the curve is given by the following
Eq. (4)

(4)

When the minimization of the functional is reached, the restored image can be represented by the fol-
lowing formulation:

where Φ is the level set function,  is the regularized version of Heaviside function, used to identify
the inside and outside regions. It is formulated by Eq. (5) and its derivative  by Eq. (6).

(5)

(6)

The model has great success due to its multiple advantages such as its less sensitivity to initial condition,
its capacity to extract blurred boundaries and its ability to segment noisy images. Nevertheless, those suc-
cessful results are getting within images with homogenous intensity distributions, but the model fails when
the image intensities are inhomogeneous, this is explained by the fact that PC model compute the global
average intensity inside and outside the curve in evolution which can be far different from the original
image. The authors have improved their model by introducing multiphase level set [11] on which u is
approximated by more than two constants. Despite this, solving the problem of inhomogeneous images
remains to be determined.

2.3. Piecewise Smooth Approximation PS

In the aim to treat largest modalities of images, Chan and Vese proposed functional that approximate
u by two piecewise smooth functions u+ and u– [11]. The weak form of the Mumford-Shah functional with
such approximation of u, and via an implicit representation of the curve C is given by the Eq. (7).

(7)

where u+ and u– are two functions of C1 class that approximate smoothly the inside and outside of the
curve. To minimize the functional (7), we firstly, fix Φ to get the Euler–Lagrange equations of u+ and u–.

(8)

(9)

Now for u+ and u– fixed, we obtain the Euler–Lagrange Eq. (10) that allows the evolution of curve
(Level set).

(10)
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The restored image is the combination between the two smooth functions as follows:

The PS model has limited applications in practice, due to its algorithm complexity and time con-
suming [20]: we have to solve at least, in each iteration, five partial differential equations: Two equation
to get u+ and u–, followed by another two PDE equations to extend u+ to Φ < 0 and u– to Φ ≥ 0. Such
tasks are difficult to implement and increase strongly the computational cost. The fifth PDE (Eq. (10))
is to update the level set function. In addition a re-initialization step is often suggested to maintain the
stability of the evolution.

2.4. Local Binary Fitting Model LBF
Region-based segmentation has been efficiently improved by introducing the LBF model. C. Li et al. [17]

proposed a model based on approximating locally the image intensities inside and outside curve. The energy
functional is defined as follows:

(11)

where x and y are points of image, σ, λ1, and λ2 are positive constants, Kσ is a Gaussian kernel which is a
weighting function with a localization property. f1(x) and f2(x) are the two numbers that fit image intensities
near the centre point x. As it is known the Gaussian kernel Kσ(x – y) takes large values at the points y near
the center point x, and radically decreases to 0 as y goes away from x(Kσ(x – y) → 0 when |x – y| → ∞).
However, the value of  f1(x) and f2(x) for each point x are dominated by the image intensities near the cen-
tre point x. The functional ELBF(C, f1, f2) in Eq. (11) is rewritten via level set function as:

(12)

The functional in Eq. (12) needs to be improved in order to ensure stable evolution of level set function.
For that, and inspired from the work published by Li et al. [5], the authors add the distance regularizing
term to penalize the deviation of the level set function from a signed function. This term is characterized
by the following integral:

(13)

Another term is necessary to regularize the zero level set contour. This one is formulated as follows:

(14)

The final functional of LBF model to be minimized is the addition of the three integrals

(15)

Based on calculus of variation [23] we get the Euler-Lagrange equations that minimized FLBF(f1, f2, Φ).
For fixed level set Φ the f1(x) and f2(x) that minimize (15) satisfy the following equations:
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(17)

Now we keep f1(x) and f2(x) fixed and we compute the Euler–Lagrange equation that allows the update
of level set function

(18)

where e1 and e2 are given by:

These two equations should be developed to get:

(19)

(20)

Similarly to the above models, the restored image via the LBF model is given by:

2.5. Global and Local Gaussian Distribution Fitting Model GLF

The above discussed models are based on global fitting term or local one. Recently Wang et al. [21]
have proposed an hybrid model, where the fidelity term in the functional to be minimized is a combination
between global and local statistical image information. They have proposed the following functional:

(21)

where ER represents the regularization term, EL the local term and EG the global term. They are formulated
as follows:
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(24)

The indexes i = 1, 2 is used to identify the local statistical image informations, and j = 3, 4 is used for the
global ones. An additional term is necessary for maintaining the signed distance property of level set during
evolution, such term allows regular and stable LS evolution without the need to re-initialization step.

(25)

where p is the double-well potential function given by:

(26)

By the introduction of the regular version of Heaviside function (Eq. (5)), the whole functional of LGF
model is expressed as follows:
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As almost all deformable models (active contours) the minimization of the functional is ensured by the

gradient descent method, where in order to find each variable we fix the others then we use the calculus of
variations principle to get its equation. Then we obtain the local and global means and variances as follows:
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(34)

(35)

Minimizing the functional (27) with respect to Φ (keep all variables fixed except Φ); we get the updat-
ing equation as follows:

(36)

where

e1 and e2 are the local terms, they are given by:

(37)

The global terms e3 and e4 are formulated as follows:

(38)

Note that u1(x) and u2(x) (Eqs. (28) and (29)) are identical to f1(x) and f2(x) in Eqs. (16) and (17). In
addition, the global terms u3 and u4 are equivalent to cin and cout in the PC model. Such combination has
improved the performance on segmentation and speed up the convergence. Furthermore, the constant θ,
(0 ≤ θ ≤ 1) is a coefficient which adjusts the ratio between the local and global region fitting energies. In
the case of GLF model the restored image is

3. WELD RADIOGRAPHIC SEGMENTATION AND RESTORATION
The interpretation of radiographs takes place in three basic steps: detection, interpretation and evalu-

ation. The automatization of such tasks is based on image processing and analysis. Our team works on
weld radiographic images segmentation and restoration, in order to use them for radiographic inspection.
More often, such kind of images, have low contrast and inhomogeneous grayscale distribution. More
details about the x-rays image used in this work can be found in [24].

In this section, we are going to apply the four models discussed previously on some different x-ray
images to see the behaviour and performance of these models in restoring, extracting the boundaries of
weld joints and/or weld defects. We have implemented the four models via an implicit representation of
the contour using Level Set Function (LSF). For PC and PS models a Signed Distance Function SDF was
used (Fig. 1b). For LBF and GLF models we used a Binary Function BF (Fig. 1c). The implicit represen-
tation has many advantages over the explicit one. It is able to handle sharp corners and cusps in the prop-
agating solution, as well as topological changes. In addition it is defined in the grid image which ensure
the continuity of the extracted contours. In our context, the weld features calculated from the results of
segmentation will have an accuracy of a pixel.

Note that the space steps h = Δx = Δy = 1. We fix for all experiments λ1 = λ2 = 1,  ε = h. The time step
Δt = 0.1 for PC, LBF and GLF models and Δt = 3 for PS model. The parameter ν = α × 2552 where α
depends on the processed image as well as μ, σ, and θ.
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Fig. 1. Extracted contours (first column) and restoration (second column) of radiographic image with weak inhomoge-
neous intensity: First row PC model α = 0.004. Second one LBF model with α = 0.001, σ = 6, third one PS model with
α = 0.030, μ = 5 and last row GLF model with α = 0.0046, σ = 6 and θ = 0.5.
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The first experiment, shown in Fig. 1 concerns x-rays image of size [71 × 186], that presents low com-
plexity and weak inhomogeneity. In this case the four models give similar segmentation results. In term of
restoration the best restored image is the one obtained by PS model due to the high fidelity of the two func-
tions u+ and u– to the processed image and the smoothing of regions without affecting objects' boundaries.
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The second experiment is also an x-rays weld image of size [265 × 272] which presents strong inhomo-
geneity and more noise. The first row of Fig. 2 shows that PC model totally fails to segment this image.
The LBF gives better results than the PC one. Its drawback resides in the strongly dependence on the value
allocated to the Gaussian kernel size (σ). However, we have got different segmentation results for different
values. On the contrary, the combination of global and local image information (GLF model) decreases
considerably the influence of that parameter on the final results, where we have got the same segmenta-
tion results as the last row of Fig. 2 for large set of (from σ = 3 to σ = 50). The two last rows of Fig. 2 show
that the PS and GLF models deal much better with such kind of images. Both models extract correctly all
the well defects as well as the edges of weld joint. Note that the PS model provide more undesirable small

Fig. 2. Extracted contours (first column) and restoration (second column) of radiographic image with strong inhomoge-
neous intensity: First row PC model α = 0.001 Second one LBF model with α = 0.001, σ = 10, third one PS model with
α = 0.0045, μ = 10 and last row GLF model with α = 0.00016, σ = 3, θ = 0.001.

(a) Initialisation
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contours even though we have increased the parameter of smoothing (μ = 10). For the GLF we have set
θ = 0.001 in order to give more weight to the local term because of the nature of the image.

We introduce three metrics, often used, to evaluate the restoration algorithms [25]. The first one which
is the Mean Squared Error MSE is given by:

(39)

The second one is the Peak Signal-to-Noise Ratio PSNR. It estimates the quality of reconstructed
image compared with the original one.

(40)

where o and r represent the original and restored images respectively. s = 255 for an 8-bit images, [m × n]
is the size of the image. The proposal is that the higher the PSNR, the better degraded image has been
reconstructed to match the original image. The third metric is called Universal Image Quality Index UIQI
which is based on three comparisons: luminance, contrast, and structural of the original and restored
images [26] as follows:

(41)

(42)

(43)

where μo and μr denote the mean values of the original and restored images respectively. The σo and σr are
their standard deviation, and σor is the covariance of both images. The UIQI is calculated using the three
above equations according to Eq. (44). The UIQI metric is ranged in the interval –1 (lowest value) and
+1 (best value).

(44)
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Table 1. The performance of the four models in terms of quality of restoration

PC LBF PS GLF

MSE 1469.62 781.01 283.66 955.76

Exp. 1 PSNR(dB) 16.45 19.20 23.60 18.32

UIQI 0.87 0.92 0.98 0.89

MSE 1081 79.02 1045.76 38.29

Exp. 2 PSNR(dB) 17.79 29.15 17.93 32.29

UIQI 0.70 0.98 0.73 0.99

Table 2. The performance of the four models in CPU time consuming (Processor: core(TM) i7-2600 CPU 3.40
GHZ, RAM: 4 Go)

PC LBF PS GLF

Exp. 1 Iterations 

CPU(s)

10 80 250 30

1.12 8.48 15.10 3.66

Exp. 2 Iterations 

CPU(s)

200 200 1750 50

7.60 50.84 700.16 5.97
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In term of restoration and based on experiments displayed on the second column of Figs. 1 and 2, as
well as the obtained results summarized in the Table 1, we can say that the restoration quality is compa-
rable for the LBF, PS, GLF models. On the contrary, the PC model gives the worst results because the
intensity variation inside the regions is totally ignored. Now we focus on the performance of the four mod-
els in term of algorithm complexity and therefore time consuming. Consequently, we have summarized
the iteration numbers and CPU time necessary for the convergence for each model and for both experi-
ments shown in Figs. 1 and 2.

More than the good results obtained via GLF model, Table 2 reveals clearly its power in term of con-
vergence speed, where few iterations are enough to get the stationary state. Here we have to point out that
the results obtained are related to the location of the contour initialization on the image domain. In prac-
tice, it is preferable to make an automatic initialization (as in our experiments in Fig. 3) for two reasons:
reducing the user intervention and eliminating the dependence of results on initialization. Another
parameter which is the temporal discretization step Δt influences the convergence speed. More often it is
fixed to small value (0.001–0.5) to insure stable evolution; but it can be increased for the semi-implicit
temporal discretization which is the case of the algorithm used to implement the PS model (Δt = 3).

On the Fig. 3 we display more outcomes of GLF on other welding x-rays images. We use dashed green
line to present the contour initialization and the solid red line for final contour. We have chosen x-rays
images for different welded alloys that present different kind of welding defects. The GLF model segment
successfully the images by using the same parameters (α = 0.001, θ = 0.0091, σ = 5).

4. CONCLUSIONS

In this paper, a set of implicit region-based models for image segmentation and restoration has been
summarized and discussed. Similar to active contours, they are based on a variational analysis and Partial
Differential Equations. The differences between those models reside on the force that drives and attracts
the active contour toward the objects' boundaries. However the optimal approximation of the original
image u0 is different.

Fig. 3. Results on segmenting different kind of weld X-rays images by using GLF model.
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PC model is based on a global statistic image information inside and outside curve. The advantage of
PC model resides in its low algorithm complexity. It gives good results in homogenous image segmenta-
tion. The restoration with PC model consists just to label the foreground and background by two different
constants. Such approximation ignores totally the intensity variations inside regions. However, PC model
fails to segment inhomogeneous images which is the case of almost all real images.

On the contrary, the LBF model approximates the intensity locally by using a Gaussian kernel func-
tion, such approximation increases the ability of the model to deal with inhomogeneous images. In addi-
tion, the parameter σ has primordial influences in the final results, where small value makes model, on
the one hand, very sensitive to intensity variation which provides on same region several subregions. On
the second hand, the model will be very sensitive to initial contour location. On the contrary, large value
of σ could merge two different regions. Consequently, in term of restoration, strong filtered band appear
around extracted contours. LBF model deals better than PC model in the presence of weak inhomoge-
neous intensity variation; but it fails when the image is severely inhomogeneous.

The PS model, that approximates a given image by two functions of class C1, takes into consideration
also the slight intensity variation. With this approximation we get successful segmentation and restoration
without any smoothing crossing the edges. The strong drawback of PS model is its highest algorithm com-
plexity and time consuming, comparatively to other models.

The GLF model is an hybrid one; its functional is based on global and local statistic information
(means and variances). This combination gives the GLF model many advantages: it deals very well with
homogenous and inhomogeneous images, it is fast and less sensitive to initialization.

For industrial applications, a compromise between quality of treatments and execution time is needed.
For that and in order to ensure a good first step processing chain (segmentation, restoration) of large set
of radiographic images, we suggest to use the GLF. In the end we want to point out that even based-
regions active contours have proved their great advantages in segmentation and restoration, some weak-
nesses present always challenging points for image processing community, such as: local minimum instead
of global minimum (the non convexity of functionals), sensitivity to initial conditions (shape and location
of initial contour), sensibility of the model to the set of parameters.
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