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Abstract—In the first part of the article, the well-posedness of the problem of solving the fundamental
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INTRODUCTION
Constructing mathematical models of physical phenomena brings about the necessity for solving cer-

tain mathematical problems (differential or integral equations, extremum problems, etc.) that are formu-
lated using some initial data in the form of input (numerical, functional, geometrical, etc.) parameters that
determine the physical and geometrical characteristics of studied objects. However, these parameters are
usually found from experimental data and can be taken to be known only approximately; one, therefore,
needs to be confident that the problem solutions obtained with these parameters are close to the solutions
that would have been obtained using the exact initial data. Thus, it is important that small perturbations
in the initial data of the problem only cause small changes in the problem solution. These considerations
lead to the notion of the well-posedness of the mathematical problem. Even more important (and more
difficult) task is to derive particular estimates of errors in the problem solution depending on the inaccu-
racies in the input parameters.

When mathematical modeling is used to solve problems of magnetostatics for the needs of nondestruc-
tive magnetic testing of articles, examining the well-posedness of the relevant mathematical problem that
arises from the chosen mathematical model of the phenomenon being studied plays an important role and
is an integral part of the complete problem solution. In addition to the necessary requirement of the exis-
tence and uniqueness of the problem solution, the notion of correctness also includes the requirement of
the so-called stability of this solution with respect to distortions in setting the initial data, which are, as a
rule, obtained from measurements that have been taken to within a certain error. Proving the resilience of
the solution to inaccuracies in the initial data is of especial importance when studying the well-posedness
of the direct problem of magnetostatics (determining the resultant field strength outside and inside a mag-
net given the magnet shape, magnetic permeability, and external field strength), since the first two
requirements are automatically met, as will be mentioned in what follows, for a wide class of similar prob-
lems. The sources of errors in the initial data can be of different nature. Devices that measure parameters
of a current system that creates the external field produce results with a certain error. The magnet shape
can be somewhat different from the geometrically ideal one; its inaccuracy can also be due to the presence
of small internal or external f laws in the form of inclusions or cavities. Magnetic permeability (either con-
stant or coordinate-dependent) cannot be determined precisely either. Therefore, when studying direct
problems, of importance is not only the very fact of stability of the solution to the direct problem with
respect to various inaccuracies in the initial data, but also, as noted above, the ability to produce concrete
estimates for this stability that provide the possibility in principle for indicating what kind of maximum
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error may occur when obtaining the resultant magnetic-field strength within the employed mathematical
model depending on the value of various inaccuracies in the initial data.

In what follows, we derive these estimates related to errors in setting of both the external filed and mag-
netic permeability (in particular, this should encompass the emergence of small inclusion flaws) as well as
inaccuracy it setting the magnet shape due to its not being ideal or incorporating small cavities. In this
work, some upper-bound estimates are provided for the error in calculating the magnetic field strength
depending on the volume of inclusions or cavities that distort the shape.

The second part of this particle, which is being finalized for publication, is most important (and more
voluminous) and devoted to the issues of the well-posedness (the uniqueness of the solution) of more
complicated and topical inverse problems of magnetostatics that consist in reconstructing the “initial
data” such as geometrical (magnet shape, the shape and dimensions of f laws and cavities) and/or physical
characteristics, given the prescribed external and known (measured) resultant fields in a certain bounded
domain outside the magnet that is accessible for measurements. The second part will make use of the
results obtained in the present, first part of this work.

1. THE NOTION OF THE WELL-POSEDNESS OF PROBLEM
Physical models of actual phenomena are created based on generalized experience-based data, intui-

tive or logical inferences, that is, they are the product of human intellectual activity. Based on the physical
model of a phenomenon, its mathematical models are formulated, i.e. relationships (differential, integral,
or algebraic equations, inequalities, extremum problems, etc.) that link main parameters that characterize
the studied phenomenon. Studying a mathematical model with appropriate tools makes it possible to
enhance the understating of the phenomenon or to verify the adequacy of the model itself. Thus, the
mathematical model is, to a degree, an approximation of the real phenomenon and, hence, does not have
to inherit all of its properties (for example, the existence of the very phenomenon within this model, the
unique predetermination of its development over time, the stability to small perturbations in the parame-
ters that describe external conditions). Therefore, the first natural question to spring to mind when exam-
ining a mathematical model is that of the existence of a solution, as it does not make any sense to speak of
the model adequacy given the negative answer to this question. The next question to arise is the unique-
ness of the solution within the frame of the examined model. In the case of nonuniqueness, one needs
either to introduce some additional formalized information on the phenomenon into the mathematical
model or to develop an algorithm for selecting the wanted solution. The final important question to arise
is that of the stability of the solution of the mathematical problem with respect to small changes in the ini-
tial data since these data are most often based on practical measurements that are taken to within a certain
error. One thus needs to verify what is known in mathematics as the well-posedness (correctness of for-
mulation) of a mathematical problem.

Without going deeply into the formalism, we just remind the mathematical notion of the well-posed-
ness of a certain problem (see, for example, [1]). Any quantitative problem consists in finding a “solution”
z from “initial data” u and is most often reduced to solving a certain operator equation R(z) = u. The math-
ematical formulation of the problem assumes that z and u are elements of some metric spaces Z and U (i.e.,
sets in which the distances between the elements are defined), while the operator R acts from Z into U. In
this case, the problem (to be precise, the formulation of the problem) of finding z given u is called Had-
amard correct provided the following three conditions are fulfilled:

• existence (there exists a solution z ∈ Z for any u ∈ U);
• uniqueness (this is the only solution);
• stability [this solution continuously depends on the initial data, that is, small changes (perturbations)

in the initial data u bring about a small change in the solution z (the smallness being understood in the
sense of the distances in the above-mentioned metric spaces Z and U)].

The first two conditions guarantee the existence of an inverse operator R–1 that is defined on the entire
U, while the third ensures the inverse operator continuity.

2. POSING DIRECT AND INVERSE PROBLEMS OF MAGNETOSTATICS
Many problems of mathematical physics are conventionally split into direct and inverse. The former

are reduced to obtaining the consequences of a phenomenon based on its causes and the parameters of
participating objects, while the latter consist in finding the characteristics of the cause of the phenomenon
and/or the parameters of the objects given prescribed (measured) consequences. Inverse problems mainly



RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING  Vol. 53  No. 7  2017

ON THE WELL-POSEDNESS OF DIRECT AND INVERSE PROBLEMS 507

arise due to the fact that not every object is accessible for direct immediate examination, and its properties
can therefore be judged only from their indirect manifestations.

To solve direct and inverse problems of magnetostatics, we will use the relationship (see [2])

(1)

and the known link between the vector-functions H(r) and M(r) for r ∈ Ω
(2)

where Ω is a (singly connected or not) domain that has a boundary S and is occupied by a magnet; H0(r)
is the strength of an external field created by currents that occupy a certain closed domain T; H(r) is the
strength of the resultant field; M(r) is the magnetization that appears in the magnet; μ is the magnet per-
meability; and χ is the magnetic susceptibility of the magnet. Depending on the situation, the permeabil-
ity (and, consequently, the magnetic susceptibility) can be either constant (μ = const) or dependent on
the coordinates (μ = μ(r)) and on the strength or magnetization (μ = μ(r, H (r)) or μ = μ(r, M (r))]. Rela-
tions (1), (2) are fully equivalent to the system of Maxwell equations for the case of magnetostatics, but
they possess a number of undoubted advantages (discussed, for example, in [3–5]) that considerably facil-
itate both the examination and the very derivation of analytical formulae or numerical algorithms for solv-
ing direct and inverse problems of magnetostatics. In the present, first part of the work, we will only touch
upon the well-posedness of the direct problem of magnetostatics in the form of Eqs. (1), (2), with a sep-
arate publication (Part II) being devoted to the well-posedness of the inverse problem of magnetostatics
(which has been briefly formulated in the introduction).

The direct problem of magnetostatics consists in finding the resultant field strength H(r) both inside
the magnet (in this case, it will be denoted as Hi(r)) and outside it, in the domain 
(denoted by He(r)) for given “initial data”, which are the magnet shape Ω, the external field strength
H0(r), and the permeability μ. Hereinafter, the magnet shape is understood to indicate not only its geo-
metrical affiliation but also its dimensions and spatial position (localization). The well-posedness (in the
above sense) of the direct problem has been proved under fairly general conditions (see below).

The following equation for determining the magnetization M(r) can be derived from relations (1) and (2):

(3)
where the operator

(4)

Equation (3) and the operator A are considered in the real Hilbert space L2(Ω) of vector-functions with
the modulus that is square-integrable over the domain Ω and the scalar product that is defined by the for-
mula  This space proves to be most suitable for Eq. (3) as it contains a rather extensive

class of vector-functions while the solution of Eq. (3) from this space ensures the finiteness of the magnet’s
free energy in external field (see [6, p. 51])

which, of course, should always be the case.
It should be noted that after solving Eq. (3), the field Hi(r) inside the magnet is uniquely determined

from relation (2), and afterwards the field He(r) outside of the magnet is found from relation (1) in which
it should be assumed that r ∈ Ω1.

3. A BRIEF REVIEW OF THE PREVIOUSLY OBTAINED RESULTS
In [3], Eq. (3), for example, was studied in the case of isotropic magnets, when the magnetic permea-

bility (and, hence, susceptibility) depends only on the coordinates μ = μ(r), with the function μ(r) being
continuous in Ω along with its partial derivatives (i.e., it is a magnet without foreign inclusions) and
bounded 1 < μ1 < μ(r) ≤ μ2 < ∞. It was proved that for a linear operator R := χ−1(r) + A in the left-hand
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side of Eq. (3) there exists a bounded inverse operator R–1, with its norm . It then follows
that in this case, all the three conditions of the correctness of the direct problem for Eq. (3) are satisfied,
with the stability of the solution being understood with respect to the external field H0(r).

In [7], Eq. (3) was studied for the case in which the permeability μ is a bounded piecewise-linear func-
tion of coordinates, a case that corresponds to the possible presence of foreign inclusions in the magnet.
In addition, the magnet domain Ω can be both bounded and unbounded (for example, a half-space, an
infinite cylinder, etc.). In this paper, Eq. (3) is reduced to the operator equation TM = M with the oper-
ator TM := (μ − 1)/(μ + 1) (2H0 + M − 2AM), where the operator A is as defined in Eq. (4). It has been
proved that the operator T is contracting in L2(Ω), and, therefore, Eq. (3) has the unique solution in this
space; this satisfies the first two conditions of the well-posedness of the relevant direct problem. A similar
conclusion was drawn in [5, p. 160] for the case of anisotropic magnets in which the magnetic permeability
is a tensor.

A great deal of attention is being paid to the issue of the well-posedness of the direct problem for Eqs. (3),
(4) in [8–10] and in the references therein. In [8], Eq. (3) is considered in the more general form (includ-
ing anisotropic materials)

(5)
However, the domain Ω filled with the magnet is taken to be bounded and singly connected (i.e., with-

out “holes”). Equation (3) can be obtained from Eq. (5) at g(M(r),r) = χ−1(M(r),r) M(r). Under rather
weak and natural restrictions on the function g(M(r),r), the so-called strong monotonicity of the operator
in the left-hand side of Eq. (5) was proved in [8]. This ensures the presence of a continuous inverse oper-
ator, thereby guaranteeing the existence and uniqueness of the solution of Eq. (5) and its continuous
dependence on the external field H0(r), thereby satisfying the third condition of the correctness, viz., the
stability of the solution with respect to external field. In his subsequent works, Friedman [9, 10] derived
estimates for the perturbation of the solution of Eq. (5) depending on the perturbation in the external field
H0(r) for the case of an isotropic magnet. He also justified the convergence of approximate general meth-
ods of the Ritz and Galerkin type for numerical solution of this equation.

The works [11–14] also deal with the questions of the well-posedness of problems of magnetostatics.
However, they discuss the well-posedness (with respect to the solution uniqueness) of inverse problems of
magnetostatics, whereas the present, first part of this work is devoted to direct problems. The questions of
the well-posedness of inverse problems of magnetostatics are considered in the second part of this particle,
which is being finalized for publication.

4. ESTIMATING THE ERROR OF CALCULATING THE RESULTANT FIELD STRENGTH
When elucidating the well-posedness of the direct problem of magnetostatics, it is important not only

to establish the fact of the continuous dependence of the problem solution H(r) on the change (error) of
the external field H0(r) but also the continuous dependence of the solution on changes in other initial data
such as the magnetic permeability μ(r) and the shape of the magnet domain Ω. Moreover, for practical
applications it is not only establishing the stability of the problem solution with respect to one or other ini-
tial data that is of importance (the third condition of well-posedness) but also deriving concrete estimates
that demonstrate the maximum possible error of the solution depending on the errors in setting these data.
In this respect, of importance are the results of the theoretical work [15] (duplicated in the monograph
[5, pp. 167–174]) devoted to studying changes in the resultant field strength depending on changes in
either the external field strength or the magnet permeability or the magnet shape. Without going into any
comprehensive explanations, let us provide herein estimates (which can be obtained from the results of
this work by easy manipulations) for the error in the resultant field H(r) [obtained from the solution of
Eq. (3) with subsequent application of relations (2) and (1)] depending on the errors of the external field
H0(r) and magnetic permeability μ that are set in these equations as well as on the degree of change in the
magnet shape Ω due to, for example, the appearance of an internal or surface f law. The above error esti-
mates are of especial importance with respect to determining the resultant field Hi(r) inside the studied
magnet from Eqs. (1) or (3). The point is that instrument-assisted determination of this field inside the
magnet is impossible in practical terms, and, consequently, it can only be determined from the above-
indicated equations. This is why it is important to be able to estimate the resultant error in solving these
equations versus errors in the initial data used therein. The resultant field He(r) outside the magnet can,
in principle, be measured with a device. However, one needs to realize that the error in the thus-obtained
value of the resultant field is comprised of two components; these are the measurement error and the error

− <  μ −1
2 1R

( )( ) ( ) ( ) ( )+ = ∈ Ω0 , .Ag M r , r M r H r r
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due to the fact that, in reality, we measure the true resultant field that corresponds to the true initial data
rather than a field that corresponds to the declared initial data that contain certain errors. The instrumen-
tal error is usually known, whereas the second contribution to the error can only be derived from the esti-
mates given below.

The above error estimates will be, from the very beginning, obtained in the mean-square norm (i.e., in
the norm of the space L2 in the relevant domain). However, to interpret and understand the meaning of
the derived estimates, it is more convenient and familiar for practicians to formulate those in the language
of the average value of the error in the relevant domain rather than in the form of the above norm. For this
reason, the final estimates will be given precisely in this language. Let us recollect that in mathematics
(and physics), the average value of a certain function f(r) defined in some three-dimensional domain Ω of

volume V is the quantity . The mean-square norm of an arbitrary vector-function a(r) in the

space L2(Ω) can be represented in the form

(6)

The second multiplier in the right-hand side of this formula is the square root of the average value of
the square of the value (that is, the modulus) of the vector-function a(r) over the domain Ω; therefore, it
can be naturally interpreted as the average of the value (modulus) of the vector-function a(r) itself over the
domain Ω (the probability theory similarly introduces the root-mean-square of a random quantity as the
square root of its variance, which itself is defined as the average value of the squared deviation of the ran-
dom quantity from its average value). Thus, the determined average value of the modulus of the vector a(r)
over the domain Ω will be denoted as  and we have

Then we can use equality (6) to derive the following expression for the average value of the modulus of
the vector a(r) over the domain Ω in terms of the mean-square norm of the vector a(r) itself in the space
L2(Ω) and the volume V of the domain Ω:

(7)

It should be noted that if the vector a(r) stays constant within the domain Ω (and, hence, the modulus
of this vector is also constant), then calculation of the average value of the modulus of this vector by the
formula in Eq. (7) yields, as one should expect, this constant value of the modulus itself; in this case, this
indeed coincides with its average value.

Let μmin and μmax be the greatest lower and least upper bounds of the coordinate-dependent magnetic
permeability μ(r) of a magnet that occupies a domain Ω with a volume V, that is, 1 < μmin ≤ μ(r) ≤ μmax.
Let ΔH0(r) stand for the value of an error to within which the external field strength H0(r) is set in Eq. (1),
i.e., ΔH0(r) is essentially the pointwise difference between the approximate value of the external field
strength, which appears in the right-hand side of Eqs. (1) or (3) when they are solved, and its true value.
Then, the following upper and lower estimates hold true for the error ΔHi(r) induced in the value of the
resultant field strength inside the magnet when solving the direct problem:

(8)

Where the norms of the vector-functions are taken in the space L2(Ω). Taking Eq. (7) into account, let us
write down the obtained estimates (8) in terms of the average values of the modulus of errors in the form

(9)
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If the magnetic permeability μ stays constant inside the magnet, the estimates in Eq. (9) are signifi-
cantly simplified and become

(10)

This estimate shows that in this case, the average error in determining the resultant field inside the
magnet from the fundamental equation of magnetostatics does not exceed the average error in setting the
external field. The estimates in Eqs. (9) and (10) are helpful not only as error estimates but can be used
when allowing for the effect of any alterations to the device that generates the external field on the resultant
field inside the magnet (for example, when changing the number of turns in the coil that generates the
external field).

Let us turn to estimating the error ΔHe(r) in the resultant field outside the magnet. Let some domain
 contain the magnet domain Ω) (i.e., Ω ⊂ ), while we are only interested in the behavior of the resul-

tant field He(r) within the domain Ω2 := /Ω that has a volume V2, which is usually small. Then the fol-
lowing error estimate ΔHe(r) versus the error ΔH0(r) in setting the external field is valid:

where  denotes the norm in the space L2(Ω2). Taking Eq. (7) into account, this inequality entails the
following inequalities for the average error values:

(11)

The above estimates automatically imply continuous dependence of the solution to the direct problem
of magnetostatics on the external field.

The formulae in Eqs. (9) and (11) become especially transparent in the case of a constant external field.
Let a magnet be placed in a constant field H0 = const that can be measured (or calculated) only with a
certain accuracy ΔH0. For this reason, the fields inside and outside the magnet were calculated from
Eqs. (1), (2) not with the precise value of the field H0 but also with a constant field H0 + ΔH0that was
obtained as the result of the above measurements (or calculations). Then, according to (9) and (11), we
have the following visual estimates of the errors arising in the resultant fields inside and outside the magnet
in terms of the value of the error |ΔH0| in the external field H0 that also remains constant:

If the magnetic permeability μ remains constant too, the above estimates transform into the following
simple relationships:

Now let Δμ(r) denote the value of the error with which the true magnetic permeability μ(r) is set in
Eqs. (1), (2), with the external field H0(r) considered to be set precisely. Suppose that the magnetic perme-
ability μ = μ(r) + Δμ(r) set (with the error) in Eq. (2) stays within certain limits 1 < μmin ≤ μ(r) + Δμ(r) ≤ μmax
as before. The following estimates then hold for the error ΔHi(r) induced in the value of the resultant field
strength inside the magnet when solving the direct problem from the fundamental equation of magneto-
statics:

(12)

In order to rewrite relations (12) in terms of average errors, let us introduce, in a natural manner, a rel-
ative average error of determining a certain vector-function in the domain Ω as the ratio of the average
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value of the modulus of the error  in determining this quantity and the mean value of the modulus
of the vector-function , viz.

(13)

Taking this into account, inequality (12) can be rewritten as

(14)

Relation (14) demonstrates an estimate from above for the average relative error in determining the
resultant field inside the magnet from the fundamental equation of magnetostatics (1) or (3) in terms of
the maximum pointwise estimate of the error in setting the magnetic permeability in this equation.

The following estimate is valid for the induced ΔHe(r) error in the value of the resultant field within the
measurement domain Ω2 outside the magnet:

(15)

When expressed in terms of average errors, this estimate can be rewritten in the form

(16)

It then immediately follows that the solution of the fundamental equation of magnetostatics continu-
ously depends on the magnetic permeability with respect to both the internal resultant field and the exter-
nal field in the measurement domain Ω2.

Based on these inequalities, it is easy to derive an estimate for the change in the solution of the funda-
mental equation of magnetostatics Hi(r) [and then He(r) as well] induced by the appearance of a f law in
the magnet. Let a f law with a magnetic permeability μd(r) emerge in a domain ωd with a volume Vd that
belongs to the magnet domain Ω that has the magnetic permeability μ(r). The initial magnetic permeabil-
ity μ(r) inside Ω has thus changed into a magnetic permeability of the form

(17)

Such a transformation can be equivalently described by the emergence of an error Δμ(r) in setting the
magnetic permeability of the form

(18)

Now, allowing for Eq. (18), we can derive the following estimates for relevant changes ΔHi and ΔHe in
the initial resultant field Hi inside Ω and He in Ω2 induced by the emergence of the above-described f law:
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where μmax and μmin are the common upper and lower bounds for the “flawless” magnetic permeability
μ(r) and the “flawed” magnetic permeability (17) in the magnet domain Ω, while μd min is the lower bound
of the magnetic permeability of the f law within its domain ωd. When expressed in terms of average error,
these inequalities become

(21)

(22)

Equations (21) and (22) demonstrate the type of dependence of the change in the resultant fields Hi(r)
and He(r) inside and outside the magnet induced by the appearance of a f law versus both the degree of
change in the magnetic permeability inside this f law (due to the presence of the multiplier max|μ − μd|)
and the volume Vd of the f lawed domain.

If the magnetic permeabilities μ and μd remain constant, the estimates for relevant changes ΔHi and
ΔHe in the initial resultant fields Hi in Ω and He in Ω2 become much simpler. In this case, one can easily
obtain from Eqs. (19) and (20) that

where μmax{μ, μd} and μmin{μ, μd}. When expressed in terms of average errors, these estimates have the
form

Let us now consider perturbations in the resultant fields Hi and He caused by the appearance of a cavity
in the magnet (this can be a surface or internal f law). Let us assume that initially we had a magnet that
occupies a domain Ω and has a magnetic permeability μ(r). Let us consider perturbations in the above
fields caused by a cavity located inside a domain ωd with a volume Vd within the magnet domain Ω with
the volume V. Let the magnetic permeability inside the cavity be μd = 1. Let Ωc = Ω/ωd be the magnet
domain outside the cavity. Then the perturbation ΔHi in the resultant field Hi inside this domain satisfies
the inequality

where  is the norm in the space L2(Ω2), while μmin and μmax are the greatest lower and least upper
bounds of the initial permeability μ(r) of the magnet in the domain Ω. When expressed in domain-average
errors, this inequality can be rewritten in the form

While when expressed in terms of average relative errors, it becomes

These inequalities demonstrate dependence of the errors on the volume of the emerged cavity. The follow-
ing estimate can be produced for the field change outside the magnet (in the measurement domain Ω2):
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This estimate also indicates the type of dependence of the above error on the volume of the cavity ωd.

CONCLUSIONS
In conclusion, let us brief ly summarize the main results that have been obtained in this work.
1. The stability of the solution to the direct problem of magnetostatics [finding the strength H(r) of the

resultant magnetic field inside and outside a magnet from Eqs. (1), (2)] has been proved not only with
respect to the measurement error of the set external field H0(r) (this has already been done in other works
cited herein) but also with respect to errors in setting other initial data, including errors in setting the mag-
net shape due to possible (geometrical) imperfection of this shape or the appearance of small cavities that
distort the magnet shape and errors in setting the value of magnetic permeability that are induce, for
example, by the appearance of small inclusion-type f laws.

2. Formulae are provided for concrete estimates of the above stability. These formulae make it possible
to find out in principle what the maximum error can be within the frame of the used mathematical model
of the resultant magnetic-field strength depending on the values of various errors in the initial data that
have been enumerated in the item above. In this work, the upper estimates are also given for the errors in
calculating the resultant magnetic-field strength depending on the volume of possible inclusions or cavi-
ties that distort the magnet shape. All these estimates are provided in terms of both absolute and relative
errors, a representation that is more visual, common, and convenient in practical usage.
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