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Abstract—We study the Fredholm property of regular hypoelliptic operators with special variable
coefficients. In this paper, necessary and sufficient conditions are obtained for a priori estimates for
differential operators acting in multianisotropic Sobolev spaces. Fredholm criteria are obtained for a
wide class of regular hypoelliptic operators in multianisotropic weighted spaces in R
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1. INTRODUCTION, BASIC NOTIONS AND DEFINITIONS

The class of regular hypoelliptic operators is a special subclass of Hyormander’s hypoelliptic op-
erators (see [11]) and they are a natural generalization of elliptic and quasielliptic operators. These
operators were introduced in the late 1960-70s and studied by many authors: Nikolsky [17], Mikhailov
[16], Friberg [10], Volevich and Gindikin [23], and others. The analysis of regular hypoelliptic operators
has certain difficulties as corresponding characteristic polynomials are neither homogeneous as in the
elliptic case nor generalized homogeneous as in the quasielliptic case.

The Fredholm properties have been studied for some of the classes of hypoelliptic operators in different
functional spaces but most of the result are for elliptic and quasielliptic operators.

For elliptic operators the Fredholm property is studied on various scales of weighted spaces in R
n in

the papers by Bagirov [1], Lockhartand and McOwen [14, 15], Schrohe [19], and many others.
Bagirov [2], Karapetyan and Darbinyan [12] studied the Fredholm property of special classes of

quiasielliptic operators in the weighted spaces in R
n. Isomorphism properties are obtained in Demi-

denko’s papers (see [6–8]) for quasielliptic operators with constant coefficients on the special scales of
weighted spaces. Darbinyan and Tumanyan [4, 20] studied a priori estimates and Fredholm criteria for
quasielliptic operators with special variable coefficients in anisotropic weighted Sobolev spaces. Index
stability of quasielliptic operators on the special scales of weighted spaces is studied in [5, 21].

Rodino, Boggiatto, and Buzano (see [3]) studied the Fredholm properties and the spectrum of
special classes of pseudodifferential operators acting in multianisotropic spaces with special polynomial
weights. In Tumanyan’s paper [22], Fredholm criteria are obtained for the special subclass of regular
hypoelliptic operators.

In this paper, we obtain necessary and sufficient conditions for a priori estimates for differential oper-
ators acting in multianisotropic Sobolev spaces (Theorems 2.2 and 2.3). A regularizer is constructed for
regular hypoelliptic operators with special variable coefficients and Fredholm criteria are established for
the considered class of operators on the scale of weighted multianisotropic spaces in R

n (Theorems 2.5
and 2.6). The considered class of operators is more general than in the previous works (see, for example,
[4, 20, 22]).
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Definition 1.1. A bounded linear operator A, acting from a Banach space X to a Banach space Y ,
is called an n–normal operator if the following conditions hold:

1. The image of operator A is closed
(
Im(A) = Im(A)

)
;

2. The kernel of operator A is finite dimensional (dim Ker(A) < ∞).

An operator A is called a Fredholm operator if conditions 1 and 2 hold and

3. The cokernel of the operator A is finite-dimensional
(dim coker(A) = dimY/Im(A) < ∞).

Definition 1.2. For a bounded linear operator A, acting from a Banach space X to a Banach
space Y , bounded linear operators R1 : Y → X and R2 : Y → X are called respectively left and right
regularizers if the following holds: R1A = IX + T1, AR2 = IY + T2, where IX , IY – are the identity
operators, T1 : X → X and T2 : Y → Y are compact operators. A bounded linear operator R : Y → X
is called a regularizer for operator A if it is a left and right regularizer.

Let n ∈ N and R
n be the Euclidean n-dimensional space, Z

n
+, N

n be the sets of n-dimensional multi-
indices and multi-indices with natural components respectively. Let N ⊂ Z

n
+ be a finite set of multi-

indices, R = R(N) be a minimum convex polyhedron containing all the points N.

Definition 1.3. A polyhedron R is called completely regular if the following holds: a) R is a complete
polyhedron: R has a vertex at the origin and further vertices on each coordinate axes in R

n; b) all
components of the outer normals of (n − 1)–dimensional non-coordinate faces of R are positive.

Let R be a completely regular polyhedron. Denote by Rn−1
j (j = 1, . . . , In−1) (n − 1)-dimensional

noncoordinate faces of R with the corresponding outer normals μj such that all multi-indices α ∈ Rn−1
j

satisfy

(α : μj) =
α1

μj
1

+ ... +
αn

μj
n

= 1, ∂R =
In−1⋃
j=1

Rn−1
j .

For k > 0 denote by

kR := {kα = (kα1, kα2 . . . , kαn) : α ∈ R}.

Consider the differential operator

P (x, D) =
∑
α∈R

aα(x)Dα, (1)

where Dα = Dα1
1 ...Dαn

n , Dj = i−1 ∂
∂xj

, x = (x1, ..., xn) ∈ R
n, aα(x) ∈ C(Rn).

Denote by

P (x, ξ) =
∑
α∈R

aα (x) ξα. (2)

For each (n − 1)-dimensional noncoordinate face Rn−1
j , 0j = 1, . . . , In−1, we denote

Pj (x, D) =
∑

α∈Rn−1
j

aα (x) Dα, Pj (x, ξ) =
∑

α∈Rn−1
j

aα (x) ξα.

For ξ ∈ R
n, we put

|ξ|R =
∑
α∈R

|ξα|, |ξ|∂R =
∑

α∈∂R

|ξα|.

SIBERIAN ADVANCES IN MATHEMATICS Vol. 33 No. 2 2023



A PRIORI ESTIMATES AND FREDHOLM CRITERIA 153

Definition 1.4. A differential operator P (x, D) is called regular at a point x0 ∈ R
n if there exists a

constant δ > 0 such that

1 + |P (x0, ξ)| ≥ δ|ξ|R, ∀ξ ∈ R
n.

An operator P (x, D) is called regular in R
n if P (x, D) is regular at each point x ∈ R

n. An operator
P (x, D) is called uniformly regular in R

n if there exists a constant δ > 0 such that:

1 + |P (x, ξ)| ≥ δ|ξ|R, ∀ξ ∈ R
n, ∀x ∈ R

n.

Example 12. Examples of regular differential operators:

1. Let m ∈ N and R be a Newton polyhedron for the set of points

(0, 0, . . . , 0), (m, 0, . . . , 0), . . . , (0, 0, . . . ,m).

In this case conditions from definition 1.4 coincide with ellipticity conditions.
2. Let ν ∈ N

n and R be a Newton polyhedron for the set of points

(0, 0, . . . , 0), (ν1, 0, . . . , 0), . . . , (0, 0, . . . , νn).

In this case, the conditions from definition 1.4 coincide with quasiellipticity conditions.
3. Let n = 2 and R be a Newton polyhedron for the points (0, 0), (8, 0), (0, 8) and (6, 4). Then

P (x, D) = a1D
8
1 + a2D

6
1D

4
2 + a3D

8
2 + q(x)

is a regular differential operator in R
2 with some a1, a2, a3 > 0 and q ∈ C(R2).

4. Let n = 3 and R be a Newton polyhedron for the points (0, 0, 0), (8, 0, 0), (0, 8, 0), (6, 4, 0),
(6, 0, 6), (0, 6, 6) and (0, 0, 12). Then

P (x, D) = D8
1 + D6

1D
4
2 + D8

2 + D6
1D

6
3 + D6

2D
6
3 + D12

3 + q(x)

is a regular differential operator in R
3 with q ∈ C(R3).

Let the sequence {ai}∞i=0 ⊂ R+ be such that the series
∑∞

i=0 ai diverges and the inequality ai+1 <
γai holds, where γ > 0 and i = 0, 1, . . .. Let’s define a sequence {bi}∞i=0 the following way: b0 = 0,

bi =
i∑

j=0
aj , i = 1, 2, . . .. Consider a system of intervals

V0 =
{

r : |r − b0| <
2γ + 1
γ + 1

a0

}
,

Vi =
{

r : |r − bi| <
γ

γ + 1
ai

}
, i = 1, 2, . . . .

The system {Vi}∞i=0 is an open covering for R+. Let us also consider a system of open sets
Uj (j = 1, . . . , l), which covers a unit sphere |x| = 1. Similarly to the paper by Bagirov [1] we construct
a system {Wp}∞p=1 and the corresponding partition of unity. We define {Wp}∞p=1 as follows:

Wp = V[ p−1
l ] × Up−[p−1

l ]l, p = 1, 2, . . . .

It is obvious that the system of sets {Wp}∞p=1 is an open covering for R
n and min

x∈W p

|x| → ∞when p → ∞.

Let θ1, θ2 ∈ C∞(R) be nonnegative functions defined as follows: θ1(t) = 1 if |t| ≤ γ

2(γ + 1)
, θ1(t) =

0 if |t| ≥ γ

γ + 1
, θ2(t) = 1 if |t| ≤ γ

γ + 3
4

, θ2(t) = 0 if |t| ≥ γ

γ + 1
2

. Obviously, θ2(t)θ1(t) = θ1(t) for all

t ∈ R. Consider the functions

θ1
0(t) = θ1

(
t

2γ+1
γ a0

)
, θ1

i (t) = θ1

(
t − bi

ai

)
, i = 1, 2, . . . ;

SIBERIAN ADVANCES IN MATHEMATICS Vol. 33 No. 2 2023



154 TUMANYAN

κ1
i (t) = θ1

i (t)

⎛
⎝

∞∑
j=0

θ1
j (t)

⎞
⎠

−1

, i = 0, 1, 2, . . . ;

κ2
0(t) = θ2

(
t

2γ+1
γ a0

)
, κ2

i (t) = θ2

(
t − bi

ai

)
, i = 1, 2 . . . .

These functions have the following properties:

1. At each point t ∈ R+, the values of only one or two functions κ1
i (t) and κ2

i (t) are nonzero;

2. suppκ1
i ⊂ suppκ2

i ⊂ {t : |t − bi| ≤ γ
γ+ 1

2

ai};

3. κ2
i (t)κ

1
i (t) = κ1

i (t) for all t ∈ R+;

4. For any r ∈ N, there exists a constant Cr > 0 such that
∣∣Drκ1

i (t)
∣∣ ≤ Cra

−r
i ,

∣∣Drκ2
i (t)

∣∣ ≤ Cra
−r
i , i = 0, 1, 2, . . . ;

5.
∞∑
i=0

κ1
i (t) ≡ 1.

Consider the unity partition {v1
j }l

j=1, subordinated to {Uj}l
j=1:

l∑
j=1

v1
j (ω) ≡ 1, where ω =

x

|x| . Let

us also consider {v2
j }l

j=1 system of functions, which satisfies suppv2
j ⊂ Uj and v2

j (ω)v1
j (ω) = v1

j (ω) for
j = 1, . . . , l.

Let functions {ϕp}∞p=1 and {ψp}∞p=1 be such that

ϕp(x) = κ1
[ p−1

l ](|x|)v
1
p−[ p−1

l ]l

(
x

|x|

)
,

ψp(x) = κ2
[ p−1

l ](|x|)v
2
p−[ p−1

l ]l

(
x

|x|

)
, p = 1, 2, . . . .

These systems of functions have the following properties:

1. suppϕp ⊂ suppψp ⊂ Wp;

2. ψp(x)ϕp(x) = ϕp(x) for all x ∈ R
n;

3. For any α ∈ Z+ exists a constant Cα > 0 such that:

|Dαψp(x)| ≤ Cα

(
a[ p−1

l ]

)−|α|
, |Dαϕp(x)| ≤ Cα

(
a[ p−1

l ]

)−|α|
, ∀x ∈ R

n, p = 1, 2, . . . ;

4.
∞∑

p=1
ϕp(x) ≡ 1.

Denote

Q := {g ∈ C (Rn) : ∃c > 0 such that g(x) ≥ c > 0, ∀x ∈ R
n} .

For m ∈ Z+ and a completely regular polyhedron R, we denote by Qm,R a set of weight functions
g ∈ Q, which satisfy the following conditions:

1. 1
g(x) ⇒ 0 as |x| → ∞;

2. For β ∈ mR, β �= 0 Dβg(x) ∈ C(Rn) and there exists Cβ > 0 such that |Dβg(x)|
g(x)1+(β:μj)

≤ Cβ for all

x ∈ R
n, j = 1, . . . , In−1;
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3. For any ε > 0, there exists δ = δ(ε) > 0 and p0 = p0(ε) > 0 such that, for all p > p0, under the
condition max

j=1,...,l
diamUj < δ the following holds:

max
x,y∈Wp

|g(x) − g(y)|
g(y)

< ε, max
x,y∈Wp

1

g(x)
1

μmax a[ p−1
l ]

< ε,

where μmax = max
1≤i≤In−1

max
1≤s≤n

{
μi

s

}
.

The considered class Qm,R includes polynomial functions and special exponential functions such as
(1 + |x|R)l, exp (1 + |x|R)r, with l, r > 0.

For k ∈ R and a completely regular polyhedron R, denote

Hk,R (Rn) :=

{
u ∈ S

′
: ‖u‖k,R :=

(∫
|û (ξ)|2 (1 + |ξ|∂R)2k dξ

) 1
2

< ∞
}

,

where S
′

is the set of tempered distributions, û is a Fourier transformation of u. For k ∈ Z+, q ∈ Q, a
completely regular polyhedron R, and Ω ⊂ R

n, denote

Hk,R
q (Rn) :=

{
u : ‖u‖

Hk,R
q (Rn)

:= ‖u‖k,R,q :=
∑

α∈kR

∥∥∥∥Dαu · qk−max
i

(α:μi)
∥∥∥∥

L2(Rn)

< ∞
}

,

Hk,R
q (Ω) :=

{
u : ‖u‖

Hk,R
q (Ω)

:=
∑

α∈kR

∥∥∥∥Dαu · qk−max
i

(α:μi)
∥∥∥∥

L2(Ω)

< ∞
}

.

2. MAIN RESULTS

Let k ∈ Z+ and q ∈ Q. Consider the differential operator P (x, D) (see (1)) with the coefficients that
satisfy the following conditions:

P (x, D) =
∑
α∈R

aα(x)Dα =
∑
α∈R

(
a0

α(x)q(x)
1−max

i
(α:μi)

+ a1
α(x)

)
Dα, (3)

where aα(x) = a0
α(x)q(x)

1−max
i

(α:μi)
+ a1

α(x), Dβ(a0
α(x)) = O

(
q(x)

min
i

(β:μi)
)

, and

Dβ(a1
α(x)) = o

(
q(x)

1−max
i

(α−β:μi)
)

as |x| → ∞ for all α ∈ R, β ∈ kR.

It is easy to check that P (x, D) generates a bounded linear operator acting from Hk+1,R
q (Rn) to

Hk,R
q (Rn).

For N > 0 and x0 ∈ R
n, denote

KN (x0) := {x ∈ R
n : |x − x0| ≤ N},KN := KN (0).

Further we will use the following result, which is a consequence of Theorem 7.1 in [13].

Theorem 2.1. Let k ∈ Z+, q ∈ Q and P (x, D) be the differential operator (3). Then the differential
operator P (x, D) : Hk+1,R

q (Rn) → Hk,R
q (Rn) is an n-normal operator if and only if there exist constants

κ > 0 and N > 0 such that

‖u‖k+1,R,q ≤ κ
(
‖Pu‖k,R,q + ‖u‖L2(KN )

)
, ∀u ∈ Hk+1,R

q (Rn) .
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Theorem 2.2. Let k ∈ Z+, q ∈ Qk,R and P (x, D) be the differential operator (3) with coefficients
satisfying the condition lim

p→∞
max

x,y∈Wp

|a0
α(x) − a0

α(y)| = 0 for all α ∈ R. Let there exist a constant κ > 0

such that

‖u‖k+1,R,q ≤ κ
(
‖Pu‖k,R,q + ‖u‖L2(Rn)

)
, ∀u ∈ Hk+1,R

q (Rn). (4)

Then P (x, D) is regular in R
n and there exist constants δ > 0 and M > 0 such that

∣∣∣∣∣
∑
α∈R

a0
α(x)λ

1−max
i

(α:μi)
ξα

∣∣∣∣∣ ≥ δ(λ + |ξ|∂R), ∀ξ ∈ R
n, λ > 0, |x| > M. (5)

Proof. From Theorem 2.1 and [22] it follows that P (x, D) is regular in R
n, so it remains to prove the

lower bound (5). Let {xm}∞m=1 ⊂ R
n be such a sequence that |xm| → ∞ as m → ∞. Without loss of

generality we assume that xm ∈ Wm.

Let m0 ∈ N and ϕ ∈ C∞
0 (Rn), with suppϕ ⊂ R

n \
(

m0⋃
i=1

Wi

)
, ‖ϕ‖L2(Rn) = 1. Denote ϕ̃m = ϕmϕ.

Let j ∈ {1, . . . , In−1} and ξ ∈ R
n. Consider the function

ũj(x) = exp
(

i

(
q(xm)

1

μj ξ, x

))
ϕ̃m(x),

where μj is an outer normal of noncoordinate face Rn−1
j such that, for all α ∈ Rn−1

j , the equality

(α : μj) = 1 is satisfied.

Denote Rj = {α ∈ R : (α : μj) = max
1≤i≤In−1

(α : μi)}. Since q ∈ Qm,R, then for any ε > 0 there exist

δ(ε) > 0 and m0(ε) > 0 such that, for all m > m0 and max
j=1,...,l

diamUj < δ,

|q(x) − q(y)| ≤ εq(y), ∀x, y ∈ Wm.

Then for any r > 0 the following holds

|q(x)r − q(xm)r| ≤ τr(ε)q(xm)r, ∀x ∈ Wm, (6)

where τr(ε) → 0 as ε → 0.
From inequality (6) and the inclusion suppũj,m ⊂ Wm it follows that there exists τ(ε) such that

τ(ε) → 0 as ε → 0 and the following inequalities hold:

‖ũj,m‖k+1,R,q ≥ (1 − τ(ε)) ‖ũj,m‖k+1,R,q(xm), (7)

‖Pũj,m‖k,R,q ≤ (1 + τ(ε)) ‖Pũj,m‖k,R,q(xm). (8)

Then for m0 ∈ N large enough and a sufficiently small max
j=1,...,l

diamUj for m > m0 the following holds:

‖ũj,m‖k+1,R,q ≥ 1
2
‖ũj,m‖k+1,R,q(xm), (9)

‖Pũj,m‖k,R,q ≤ 1
2
‖Pũj,m‖k,R,q(xm). (10)

Taking into account the conditions on the functions {ϕm}∞m=1 and the weight function q ∈ Qk,R, we
conclude that, for all γ ∈ kR and ε > 0, there exist δ(ε) > 0 and m0(ε) > 0 such that for all m > m0 and
max

j=1,...,l
diamUj < δ the following inequality holds:

|Dγϕm(x)|
q(x)(γ:μi)

=
|Dγϕm(x)|a|γ|[m−1

l ]

q(x)(γ:μi)− |γ|
μmax q(x)

|γ|
μmax a

|γ|
[m−1

l ]

≤ ωγ(ε), (11)
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where ωγ(ε) → 0 as ε → 0. Then it is easy to derive the lower estimate

‖ũj,m‖k+1,R,q(xm) ≥
∑

β∈(k+1)Rj

|ξβ|q(xm)k+1‖ϕ̃m‖L2(Rn)

− ω1(ε)
∑

γ∈(k+1)(R\Rn−1
j )

|ξγ |q(xm)k+1‖ϕ‖Hk+1,R (Wm), (12)

where ω1(ε) → 0 as ε → 0.
Similarly to the proof of Theorem 2.4 in [22] it can be shown that for β ∈ k(R \ Rj) and all m > m0,

with m0 large enough, the following holds:
∥∥∥Dβ(P (x, D)ũj,m)

∥∥∥
L2(Rn)

q(xm)
k−max

i
(β:μi)

≤ ω2(ε)
∑

γ∈(k+1)(R\Rn−1
j )

|ξγ |q(xm)k+1‖ϕ‖Hk+1,R (Wm), (13)

where ω2(ε) → 0 as ε → 0. For β ∈ kRj we have
∥∥∥Dβ (P (x, D)ũj,m)

∥∥∥
L2(Rn)

q(xm)k−(β:μj)

≤
∥∥∥∥∥Dβ

(∑
α∈R

a0
α(x)q(x)1−(α:μj )Dαũj,m

)∥∥∥∥∥
L2(Rn)

q(xm)k−(β:μj)

+

∥∥∥∥∥Dβ

(∑
α∈R

a1
α(x)Dαũj,m

)∥∥∥∥∥
L2(Rn)

q(xm)k−(β:μj). (14)

Taking into account that, for all fixed α ∈ R and β ∈ kR, one has Dβ
(
a1

α(x)
)

= o

(
q(x)

1−max
i

(α−β:μi)
)

as |x| → ∞, it is easy to check that for β ∈ kRj and m > m0, with a sufficiently large m0, the following
holds:

∥∥∥∥∥Dβ

(∑
α∈R

a1
α(x)Dαũj,m

)∥∥∥∥∥
L2(Rn)

q(xm)k−(β:μj)

≤ ω3(ε)
∑

γ∈(k+1)R

|ξγ | q(xm)k+1‖ϕ‖Hk+1,R (Wm), (15)

where ω3(ε) → 0 as ε → 0.

From conditions (3), the estimate lim
p→∞

max
x,y∈Wp

|a0
α(x) − a0

α(y)| = 0 for all α ∈ R and q ∈ Qk,R, and

from inequality (6) we obtain that, for α ∈ R and β ∈ kR with a sufficiently large m0 and small
max

j=1,...,l
diamUj for m > m0, the following holds:

∣∣∣Dβ
(
a0

α(x)q(x)1−(α:μj ) − a0
α(xm)q(xm)1−(α:μj )

)∣∣∣ ≤ τα,β(ε)q(xm)1−(α:μj )+(β:μj), (16)

where τα,β(ε) → 0 as ε → 0.
Using (16), similarly to the proof of Theorem 2.4 in [22], it can be shown that, for a large enough m0

and for any m > m0, the following estimate holds:
∥∥∥∥∥Dβ

(∑
α∈R

a0
α(x)q(x)1−(α:μj )Dαũj,m

)∥∥∥∥∥
L2(Rn)

q(xm)k−(β:μj)
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≤

∣∣∣∣∣∣
∑

α∈Rj

a0
α(xm)ξα

∣∣∣∣∣∣
∣∣∣ξβ

∣∣∣ q(xm)k+1‖ϕ̃m‖L2(Rn)

+ ω4(ε)
∑

γ∈(k+1)(R\Rn−1
j )

|ξγ | q(xm)k+1‖ϕ‖Hk+1,R (Wm), (17)

where ω4(ε) → 0 as ε → 0.
From estimates (13)–(17) for all m > m0 we get

‖Pũj,m‖k,R,q(xm) ≤

∣∣∣∣∣∣
∑

α∈Rj

a0
α(xm)ξα

∣∣∣∣∣∣
∑

β∈kRj

∣∣∣ξβ
∣∣∣ q(xm)k+1‖ϕ̃m‖L2(Rn)

+ ω5(ε)
∑

γ∈(k+1)R

|ξγ | q(xm)k+1‖ϕ‖Hk+1,R (Wm), (18)

where ω5(ε) → 0 as ε → 0. Then from (4), (12), and (18) we get
∑

β∈(k+1)Rj

∣∣∣ξβ
∣∣∣ q(xm)k+1‖ϕ̃m‖L2(Rn)

− ω1(ε)
∑

γ∈(k+1)(R\Rn−1
j )

|ξγ | q(xm)k+1‖ϕ‖Hk+1,R (Wm)

≤ κ

⎛
⎝

∣∣∣∣∣∣
∑

α∈Rj

a0
α(xm)ξα

∣∣∣∣∣∣
∑

β∈kRj

∣∣∣ξβ
∣∣∣ q(xm)k+1‖ϕ̃m‖L2(Rn)

+ ω5(ε)
∑

γ∈(k+1)R

|ξγ | q(xm)k+1‖ϕ‖Hk+1,R(Wm) + ‖ϕ̃m‖L2(Rn)

⎞
⎠ .

Since
{
a0

α(x) : α ∈ Rj

}
are bounded functions and xm → ∞ as m → ∞, there exist convergent

subsequences of sequences
{
a0

α(xm) : α ∈ Rj

}
. Without loss of generality we assume that the

sequences
{
a0

α(xm) : α ∈ Rj

}
are convergent, so for each α ∈ Rj there exists a constant ã0

α such that
a0

α(xm) ⇒ ã0
α as m → ∞. Then for a large enough m0 and for m > m0 we get
∑

β∈(k+1)Rj

∣∣∣ξβ
∣∣∣ q(xm)k+1‖ϕ̃m‖L2(Rn) − ω6(ε)

∑
γ∈(k+1)R

|ξγ | q(xm)k+1‖ϕ‖Hk+1,R (Wm)

≤ κ

∣∣∣∣∣∣
∑

α∈Rj

ã0
αξα

∣∣∣∣∣∣
∑

β∈kRj

∣∣∣ξβ
∣∣∣ q(xm)k+1‖ϕ̃m‖L2(Rn),

where ω6(ε) → 0 as ε → 0. Let us divide the last inequality by q(xm)k+1 and sum up it over m > m0.
Taking into account that each set Wm intersects with a fixed number of other sets, for some constant
C1 > 0, we get

C1

∑
β∈(k+1)Rj

∣∣∣ξβ
∣∣∣ − ω7(ε)

∑
γ∈(k+1)R

|ξγ |

≤

∣∣∣∣∣∣
∑

α∈Rj

ã0
αξα

∣∣∣∣∣∣
∑

β∈kRj

∣∣∣ξβ
∣∣∣ ,

where ω7(ε) → 0 as ε → 0. Choosing an appropriate ε and tending m0 → ∞, for some constant C2 > 0,
we get the inequality
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C2

∑
α∈(k+1)Rj

|ξα| ≤

∣∣∣∣∣∣
∑

α∈Rj

ã0
αξα

∣∣∣∣∣∣
∑

β∈kRj

∣∣∣ξβ
∣∣∣ .

Using the last inequality and estimates (2.4) from the proof of Theorem 2.1 in [22], we get that for
j ∈ {1, . . . , In−1} there exists a constant δj > 0 such that

∣∣∣∣∣∣
∑

α∈Rj

ã0
αξα

∣∣∣∣∣∣
≥ δj(1 + |ξ|Rn−1

j
),

where |ξ|Rn−1
j

=
∑

β∈Rn−1
j

∣∣ξβ
∣∣.

For λ > 0, substituting λ
− 1

μj ξ =
(

λ
− 1

μ
j
1 ξ1, . . . , λ

− 1

μ
j
n ξn

)
for ξ = (ξ1, . . . , ξn), we obtain

∣∣∣∣∣∣
∑

α∈Rj

ã0
αξαλ1−(α:μj)

∣∣∣∣∣∣
≥ δj(λ + |ξ|Rn−1

j
).

The same can be done for all j ∈ {1, . . . , In−1}. Then, using Theorem 6.1 in [16], we get the following
inequality:

∣∣∣∣∣
∑
α∈R

ã0
αξαλ

1−max
i

(α:μi)

∣∣∣∣∣ ≥ δ(λ + |ξ|∂R), ∀λ > 0, ∀ξ ∈ R
n.

Since the last inequality holds for all partial limits of sequences
{
a0

α(xm) : α ∈ R
}

, where xm → ∞,
we conclude that there exist constants δ > 0 and M > 0 such that∣∣∣∣∣

∑
α∈R

a0
α(x)ξαλ

1−max
i

(α:μi)

∣∣∣∣∣ ≥ δ(λ + |ξ|∂R), ∀λ > 0, ∀ξ ∈ R
n, ∀|x| > M.

Remark 5. For q ∈ Q based on Theorem 2.1 in [22] uniform regularity in R
n is a necessary condition

for the fulfillment of the a priori estimate (4). From Theorem 2.2 it follows that in the spaces Hk,R
q (Rn)

with a weight function from the class Qk,R, the condition (5) is also necessary along with uniform
regularity in R

n for fulfillment of the a priori estimate (4). Theorem 2.3 shows that these conditions
on the symbol of operator are also sufficient conditions for a priori estimate (4) in the spaces under
consideration.

Theorem 2.3. Let k ∈ Z+, q ∈ Qk,R and let P (x, D) be the differential operator (3) with coefficients
satisfying the relations lim

p→∞
max

x,y∈Wp

|a0
α(x) − a0

α(y)| = 0 for all α ∈ R. Let P (x, D) be regular in R
n and

let there exist constants δ > 0 and M > 0 such that∣∣∣∣∣
∑
α∈R

a0
α(x)λ

1−max
i

(α:μi)
ξα

∣∣∣∣∣ ≥ δ(λ + |ξ|R), ∀ξ ∈ R
n, λ > 0, |x| > M. (19)

Then there exist constants κ > 0 and N > 0 such that

‖u‖k+1,R,q ≤ κ
(
‖Pu‖k,R,q + ‖u‖L2(KN )

)
, ∀u ∈ Hk+1,R

q (Rn). (20)

Proof. Let m0 ∈ N. Using properties of the functions {ϕm}∞m=0, it is easy to check that, for some
constant C > 0, the following estimate holds:

‖u‖2
k+1,R,q ≤ C

(
m0∑

m=0

‖ϕmu‖2
k+1,R,q +

∞∑
m=m0+1

‖ϕmu‖2
k+1,R,q

)
, ∀u ∈ Hk+1,R

q (Rn). (21)
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From a priori estimates for bounded domains in [18], for some constants C1 > 0 and N1 > 0, we have

m0∑
m=1

‖ϕmu‖2
k+1,R,q ≤ C1

(
‖Pu‖2

k,R,q + ‖u‖2
L2(KN1

)

)
,∀u ∈ Hk+1,R

q (Rn), (22)

where N1 is such that
m0⋃
i=0

Wi ⊂ KN1 .

Denote

P0(x, D) :=
∑
α∈R

a0
α(x)Dα,

L(x, D) :=
∑
α∈R

a1
α(x)Dα,

Pm(x, D) :=
∑
α∈R

[
ψm(x)

(
a0

α(x)q(x)
1−max

i
(α:μi) − a0

α(xm)q(xm)
1−max

i
(α:μi)

)

+a0
α(xm)q(xm)

1−max
i

(α:μi)
]

Dα, m = 1, 2, . . . .

Using properties of the functions {ψm}∞m=0, the conditions lim
p→∞

max
x,y∈Wp

|a0
α(x) − a0

α(y)| = 0 for α ∈ R,

q ∈ Qk,R, and inequality (6), it is easy to check that, for α ∈ R and β ∈ kR, by choosing m0 large enough
and max

j=1,...,l
diamUj small enough (for m > m0), we obtain the following estimate:

∣∣∣Dβ
(
ψm(x)

(
a0

α(x)q(x)1−maxi(α:μi) − a0
α(xm)q(xm)1−maxi(α:μi)

))∣∣∣
≤ τα,β(ε)q(xm)1−maxi(α−β:μj),

where τα,β(ε) → 0 as ε → 0.

From the last estimate and Theorem 2.2 in [12] it follows that, for m0 large enough and for m > m0,
the operators Pm(x, D) : Hk+1,R

q (Rn) → Hk,R
q (Rn) have bounded inverse operators. Since (19) holds,

we conclude that they have uniformly bounded norms and, for some constant C2 > 0, the following upper
bound is valid:

‖ϕmu‖2
k+1,R,q ≤ C2‖Pm(ϕmu)‖2

k,R,q, ∀u ∈ Hk+1,R
q (Rn),

where C2 does not depend on m.

Taking into account that Pm(ϕmu) = P0(ϕmu) for all u ∈ Hk+1,R
q (Rn) and m = 1, 2, . . ., we get

‖ϕmu‖2
k+1,R,q ≤ C2‖Pm(ϕmu)‖2

k,R,q ≤ C2‖P0(ϕmu)‖2
k,R,q, ∀u ∈ Hk+1,R

q (Rn).

Using properties of the functions {ϕm}∞m=1 and estimate (11), it can be shown that for a sufficiently
large m0 and a small max

j=1,...,l
diamUj for m > m0, and some constants C3, C4 > 0, the following estimate

holds:
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‖ϕmP0u − P0(ϕmu)‖2
k,R,q

≤ C3

∥∥∥∥∥∥
∑
α∈R

∑
β+γ=α,|γ|>0

a0
α(x)DβuDγϕmq(x)

1−max
i

(α:μi)

∥∥∥∥∥∥

2

k,R,q

≤ C4

∥∥∥∥∥∥
∑
α∈R

∑
β+γ=α,|γ|>0

a0
α(x)DβuDγϕm

1

q(x)
min

i
(γ:μi)

q(x)
1−max

i
(β:μi)

∥∥∥∥∥∥

2

k,R,q

≤ ω(ε)‖u‖2
Hk+1,R

q (Wm)
,

where ω(ε) → 0 as ε → 0. From the last two estimates, for some constant C5 > 0, we get

‖ϕmu‖2
k+1,R,q ≤ C5

(
‖ϕmP0u‖2

k,R,q + ω(ε)‖u‖2
Hk+1,R

q (Wm)

)
, ∀u ∈ Hk+1,R

q (Rn).

Summing up over all m > m0 both sides of this inequality and taking into account the properties of
{Wm}∞m=1, for some constant C6 > 0, we obtain

∞∑
m=m0+1

‖ϕmu‖2
k+1,R,q ≤ C6

(
‖P0u‖2

k,R,q + ω(ε)‖u‖2
k+1,R,q

)
, ∀u ∈ Hk+1,R

q (Rn). (23)

From (21), (22), and (23) we deduce the following estimate:

‖u‖2
k+1,R,q ≤ CC1

(
‖Pu‖2

k,R,q + ‖u‖2
L2(KN1

)

)

+ CC6

(
‖P0u‖2

k,R,q + ω(ε)‖u‖2
k+1,R,q

)
,∀u ∈ Hk+1,R

q (Rn).

We can choose m0 large enough and max
j=1,...,l

diamUj small enough such that

CC6ω(ε) <
1
2
.

Then, for some constant C7 > 0, the following holds

‖u‖2
k+1,R,q ≤ C7

(
‖Pu‖2

k,R,q + ‖u‖2
L2(KN1

) + ‖P0u‖2
k,R,q

)
, ∀u ∈ Hk+1,R

q (Rn). (24)

We have P0(x, D) = P (x, D) − L(x, D). Then

‖P0u‖k,R,q ≤ ‖Pu‖k,R,q + ‖Lu‖k,R,q,∀u ∈ Hk+1,R
q (Rn).

Since Dβ(a1
α(x)) = o

(
q(x)

1−max
i

(α−β:μi)
)

as |x| → ∞, for any α ∈ R and β ∈ kR, it is easy to

check that for N2 > 0 we have

‖Lu‖2
k,R,q ≤ τ(N2)‖u‖2

k+1,R,q + C8‖u‖2
Hk+1,R(KN2

), ∀u ∈ Hk+1,R
q (Rn),

where τ(N2) → 0 as N2 → ∞ and C8 = C8(N2) > 0. Then, using an a priori estimate similar to (22),
with some constant C9 = C9(N2) > 0, we have

‖Lu‖2
k,R,q ≤ τ(N2)‖u‖2

k+1,R,q + C9

(
‖Pu‖2

k,R,q + ‖u‖2
L2(KN2

)

)
.

Substituting the last estimates in (24), we get

‖u‖2
k+1,R,q ≤ C7

(
‖Pu‖2

k,R,q + ‖u‖2
L2(KN1

)

)
+ 2C7‖Pu‖2

k,R,q

+2C7τ(N2)‖u‖2
k+1,R,q + 2C7C9

(
‖Pu‖2

k,R,q + ‖u‖2
L2(KN2

)

)
,∀u ∈ Hk+1,R

q (Rn).

We can take N2 such that C7τ(N2) < 1/4. Then, for some C10 > 0 and N = max(N1, N2) > 0, we
obtain the following estimate:

‖u‖k+1,R,q ≤ C10

(
‖Pu‖k,R,q + ‖u‖L2(KN )

)
,∀u ∈ Hk+1,R

q (Rn).

In what follows, we need the following result (see Theorem 3.14 [9]):
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Theorem 2.4. Let A be a bounded linear operator acting from a Banach space X to a Banach space
Y . Then the following holds:

1. If operator A has a left regularizer, then kernel of operator A in X is finite dimensional;

2. If operator A has a right regularizer, then the image of operator A is closed in Y and the cokernel
is finite dimensional;

3. The operator A has left and right regularizers if and only if A is a Fredholm operator.

The following assertion is valid.

Theorem 2.5. Let k ∈ Z+, q ∈ Qk,R and P (x, D) be the differential operator (3) with the coefficients
that satisfy lim

p→∞
max

x,y∈Wp

|a0
α(x) − a0

α(y)| = 0 for all α ∈ R.

Then the operator P (x, D) : Hk+1,R
q (Rn) → Hk,R

q (Rn) is a Fredholm operator if and only if P (x, D)
is regular in R

n and there exist constants δ > 0 and M > 0 such that
∣∣∣∣∣
∑
α∈R

a0
α(x)λ

1−max
i

(α:μi)
ξα

∣∣∣∣∣ ≥ δ(λ + |ξ|∂R),∀ξ ∈ R
n, λ > 0, |x| > M. (25)

Proof. Let us first prove the sufficiency. Let m0 ∈ N and xm ∈ Wm,m = 1, 2 . . .. For m ≤ m0,
denote

Pm(x, D) :=
∑
α∈R

(ψm(x) (aα(x) − aα(xm)) + aα(xm)) Dα,

Pm,0(x, D) :=
∑

α∈∂R

(ψm(x) (aα(x) − aα(xm)) + aα(xm)) Dα,

Rm,0 := F−1 |ξ|∂R

(1 + |ξ|∂R)Pm,0 (xm, ξ)
F.

Since P (x, D) is regular in R
n, for sufficiently small diameters of {Wm}m0

m=1, from Lemma 3.1 in [22] it
follows that for m ≤ m0 the following representation holds:

Pm(x, D)Rm,0 = I + Tm
1 + Tm

2 , (26)

where Tm
1 : Hk+1,R(Rn) → Hk+1+σ,R(Rn), with σ = σ(R) > 0, and the operator Tm

2 : Hk+1,R(Rn) →
Hk+1,R(Rn) satisfies the inequality ‖Tm

2 ‖ < 1. Denote

Rm := Rm,0(I + Tm
2 )−1.

Then we have

PmRm = I + Tm, (27)

where Tm : Hk,R(Rn) → Hk+σ,R(Rn), with some σ = σ(R) > 0.

For m > m0, denote

Pm(x, D) :=
∑
α∈R

[
ψm(x)

(
a0

α(x)q(x)
1−max

i
(α:μi) − a0

α(xm)q(xm)
1−max

i
(α:μi)

)

+a0
α(xm)q(xm)

1−max
i

(α:μi)
]

Dα.

Taking into account that q ∈ Qk,R and lim
p→∞

max
x,y∈Wp

|a0
α(x) − a0

α(y)| = 0, from Theorem 2.2 in [12] we

can choose a number m0 such that, for all m > m0, the operators Pm : Hk+1,R
q (Rn) → Hk,R

q (Rn) have
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the inverse operators Rm : Hk,R
q (Rn) → Hk+1,R

q (Rn). Since (25) holds, the inverse operators have
uniformly bounded norms. Consider

Rf :=
∞∑
l=0

ψlR
l(ϕlf), f ∈ Hk,R

q (Rn).

Taking into account that the norms of the operators Rl acting from Hk,R
q (Rn) to Hk+1,R

q (Rn)
have uniformly bounded norms, the properties of the function q and the functions {ϕm}∞m=1 and
{ψm}∞m=1, it is easy to check that R is a bounded linear operator acting from Hk,R

q (Rn) to Hk+1,R
q (Rn).

Similarly to the proof of Theorem 2.6 in [22] it can be checked that R : Hk,R
q (Rn) → Hk+1,R

q (Rn)
is a right regularizer. Then, applying Theorem 2.4, we get that cokernel of the operator P (x, D) :
Hk+1,R

q (Rn) → Hk,R
q (Rn) is finite-dimensional. From Theorem 2.3 it follows that the operator

P (x, D) : Hk+1,R
q (Rn) → Hk,R

q (Rn) is n-normal. So, P (x, D) : Hk+1,R
q (Rn) → Hk,R

q (Rn) is a Fred-
holm operator.

Let us prove the necessity of the theorem. Since a Fredholm operator is n-normal, Theorem 2.1
implies the fulfillment of the a priori estimate (4). Applying Theorem 2.2, we get that P (x, D) is regular
in R

n and (25) holds.

Theorem 2.6. Let k ∈ Z+, q ∈ Qk,R and P (x, D) be differential operator (3) with the coefficients
that satisfy lim

p→∞
max

x,y∈Wp

|a0
α(x)− a0

α(y)| = 0 for all α ∈ R. Then the following statements are equivalent:

1. The operator P (x, D) : Hk+1,R
q (Rn) → Hk,R

q (Rn) is a Fredholm operator.
2. There exist constants κ > 0 and N > 0 such that

‖u‖k+1,R,q ≤ κ
(
‖Pu‖k,R,q + ‖u‖L2(KN )

)
,∀u ∈ Hk+1,R

q (Rn). (28)

3. P (x, D) is regular in R
n and there exist constants δ > 0 and M > 0 such that

∣∣∣∣∣
∑
α∈R

a0
α(x)λ

1−max
i

(α:μi)
ξα

∣∣∣∣∣ ≥ δ(λ + |ξ|∂R), ∀ξ ∈ R
n, λ > 0, |x| > M. (29)

Proof. Let P (x, D) : Hk+1,R
q (Rn) → Hk,R

q (Rn) is a Fredholm operator, then it is n-normal. By
Theorem 2.1, the a priori estimate (28) is valid. So it is proved that condition 2 follows from
condition 1. Since the a priori estimate is valid, from Theorem 2.2 it follows that a) P (x, D) is regular
in R

n, and b) condition (29) holds for the symbol of operator, which means that condition 2 implies
condition 3. Having the condition for the symbol of P (x, D) and applying Theorem 2.5, we conclude
that P (x, D) : Hk+1,R

q (Rn) → Hk,R
q (Rn) is a Fredholm operator, which means that condition 1 follows

from condition 3. Thus, the equivalence of all of the conditions is proved.
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