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Abstract—We study the Fredholm property of regular hypoelliptic operators with special variable
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1. INTRODUCTION, BASIC NOTIONS AND DEFINITIONS

The class of regular hypoelliptic operators is a special subclass of Hyormander’s hypoelliptic op-
erators (see [11]) and they are a natural generalization of elliptic and quasielliptic operators. These
operators were introduced in the late 1960-70s and studied by many authors: Nikolsky [17], Mikhailov
[16], Friberg [10], Volevich and Gindikin [23], and others. The analysis of regular hypoelliptic operators
has certain difficulties as corresponding characteristic polynomials are neither homogeneous as in the
elliptic case nor generalized homogeneous as in the quasielliptic case.

The Fredholm properties have been studied for some of the classes of hypoelliptic operators in different
functional spaces but most of the result are for elliptic and quasielliptic operators.

For elliptic operators the Fredholm property is studied on various scales of weighted spaces in R™ in
the papers by Bagirov [1], Lockhartand and McOwen [14, 15], Schrohe [19], and many others.

Bagirov [2], Karapetyan and Darbinyan [12] studied the Fredholm property of special classes of
quiasielliptic operators in the weighted spaces in R™. Isomorphism properties are obtained in Demi-
denko’s papers (see [6—8]) for quasielliptic operators with constant coefficients on the special scales of
weighted spaces. Darbinyan and Tumanyan [4, 20] studied a priori estimates and Fredholm criteria for
quasielliptic operators with special variable coefficients in anisotropic weighted Sobolev spaces. Index
stability of quasielliptic operators on the special scales of weighted spaces is studied in [5, 21].

Rodino, Boggiatto, and Buzano (see [3]) studied the Fredholm properties and the spectrum of
special classes of pseudodifferential operators acting in multianisotropic spaces with special polynomial
weights. In Tumanyan’s paper [22], Fredholm criteria are obtained for the special subclass of regular
hypoelliptic operators.

In this paper, we obtain necessary and sufficient conditions for a priori estimates for differential oper-
ators acting in multianisotropic Sobolev spaces (Theorems 2.2 and 2.3). A regularizer is constructed for
regular hypoelliptic operators with special variable coefficients and Fredholm criteria are established for
the considered class of operators on the scale of weighted multianisotropic spaces in R (Theorems 2.5
and 2.6). The considered class of operators is more general than in the previous works (see, for example,
(4, 20, 22]).
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Definition 1.1. A bounded linear operator A, acting from a Banach space X to a Banach space Y,
is called an n—normal operator if the following conditions hold:

1. The image of operator A is closed (Im(A) = Im(A));

2. The kernel of operator A is finite dimensional (dim Ker(A4) < co).

An operator A is called a Fredholm operator if conditions 1 and 2 hold and

3. The cokernel of the operator A is finite-dimensional
(dim coker(A) = dimY/Im(A) < o).

Definition 1.2. For a bounded linear operator A, acting from a Banach space X to a Banach
space Y, bounded linear operators Ry : Y — X and Ry : Y — X are called respectively left and right
regularizers if the following holds: R1A = Ix + 11, ARy = Iy + T, where Ix, Iyy— are the identity
operators, 71 : X — X and T, : Y — Y are compact operators. A bounded linear operator R : Y — X
is called a regularizer for operator A if it is a left and right regularizer.

Letn € Nand R” be the Euclidean n-dimensional space, Z” , N™ be the sets of n-dimensional multi-
indices and multi-indices with natural components respectively. Let N C Z'} be a finite set of multi-
indices, R = R(N) be a minimum convex polyhedron containing all the points N.

Definition 1.3. A polyhedron R is called completely regular if the following holds: a) R is a complete
polyhedron: R has a vertex at the origin and further vertices on each coordinate axes in R™; b) all
components of the outer normals of (n — 1)—dimensional non-coordinate faces of R are positive.

Let R be a completely regular polyhedron. Denote by 32?_1 (j=1,...,1,-1) (n—1)-dimensional

noncoordinate faces of R with the corresponding outer normals p# such that all multi-indices o € 3%?_1
satisfy

Infl
M= ar= YR

() =)
Hy Hrn j=1
For k > 0 denote by

ER = {ka = (kaq,kay ... kay) : a € R}
Consider the differential operator

P(x,D) =) an(z)D, (1)

aeR

where D% = D{*...D&», D; =i~} 8‘zj, r = (x1,....,2n) € R", aq(x) € C(R"™).

Denote by
P(x,8) =) aq(z)&" (2)
a€R
For each (n — 1)-dimensional noncoordinate face 9%?_1, 0j =1,...,I,_1, we denote
Pj (l‘,D) = Z G, (ZL‘) D*, Pj (a:,&) = Z (0269 (l.)ga‘
aEfR§Hl aEfR?il

For ¢ € R™, we put

g =D 1% Klom= > 1%

acR acdR
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Definition 1.4. A differential operator P (z, D) is called regular at a point zp € R™ if there exists a
constant 6 > 0 such that

1+ |P (20,8)| > 6l¢|x, VE € R™.

An operator P (z,D) is called regular in R™ if P (x, D) is regular at each point z € R™. An operator
P (z,D) is called uniformly regular in R™ if there exists a constant 6 > 0 such that:

1+|P(2,8)| > 6¢|x, VE € R, Vo € R™.

Example 12. Examples of regular differential operators:
1. Let m € Nand R be a Newton polyhedron for the set of points
(0,0,...,0),(m,0,...,0),...,(0,0,...,m).
In this case conditions from definition 1.4 coincide with ellipticity conditions.
2. Let v € N™ and R be a Newton polyhedron for the set of points

(0,0,...,0), (¥1,0,...,0),...,(0,0,...,vp).
In this case, the conditions from definition 1.4 coincide with quasiellipticity conditions.
3. Letn =2 and R be a Newton polyhedron for the points (0, 0), (8,0), (0,8) and (6,4). Then

P(x,D) = a1 D% + as DY D3 + a3 D§ + ¢(x)
is a regular differential operator in R? with some a1, as, a3 > 0 and ¢ € C(R?).

4. Let n =3 and R be a Newton polyhedron for the points (0,0,0), (8,0,0), (0,8,0), (6,4,0),
(6,0,6), (0,6,6) and (0,0,12). Then

P(z,D) = D} + D§Dj + D3 + DY D§ + D§DS + D3> + q()
is a regular differential operator in R3 with ¢ € C(R3).

Let the sequence {a;}°, C Ry be such that the series >"7° a; diverges and the inequality a;+1 <

~va; holds, where v >0 and ¢ =0,1,.... Let’s define a sequence {b;}:2, the following way: by = 0,

b =Y aj,i=1,2,.... Consider a system of intervals

j=0
2v+1
Vo = lr—b
0 {7" |7 0|<fy+1a0},
Vi = {r: Ir —b;| < i ai}, i1=1,2,....

7+1
The system {V;}2, is an open covering for R;. Let us also consider a system of open sets
Uj (j =1,...,1), which covers a unit sphere |z| = 1. Similarly to the paper by Bagirov [1] we construct

a system {W},}72 | and the corresponding partition of unity. We define {W),}2, as follows:
Wp = ‘/[pyl] X Up_[p;l]l, p = 1,2, e

Itis obvious that the system of sets {W},}7°; is an open covering for R™ and min |z| — oo whenp — oo.

zeW,
Let 61,62 € C°°(R) be nonnegative functions defined as follows: 81 (t) = 1if [t| < 2(7’:_ 1y 0 (t) =
: v 2 : v 2 : v : 2101 1
0if [t] > , e =1if |t < , 0°t) =0if |t| > . Obviously, 64(t)0*(t) = 6 (t) for all
||_nyrl (t) |t] b (t) t] il Y, 0°(1)0°(t) = 6°(t)

t € R. Consider the functions
1y gl t Ly ot (E—bi . '
oh(t) = 0 (mHaO),ei(t)—e (") i
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-1
k() = 0X(t) (Ze;(t)) L i=0,1,2,...;

j=0

t t—b; )
KE(t) = 62 (27“&0) ,/@?(t):92< o >,z:1,2....

gl
These functions have the following properties:

1. Ateach point t € Ry, the values of only one or two functions }(t) and x?(t) are nonzero;
2. suppk} C suppr? C{t: |t — b < 711 a;};
2
3. K2(t)k}(t) = ki(t) forallt € Ry;
4. Forany r € N, there exists a constant C,. > 0 such that

|D"k}(t)] < Cra; ", |D"I()| < Cra; ", i =0,1,2,...;

7 Y

5. f kHt) = 1.
i=0

I
Consider the unity partition {v}}!_,, subordinated to {U;}._;: 3 v}(w) = 1, where w = ;‘. Let
i=1

us also consider {v]2 321 system of functions, which satisfies suppvjz- c Uj and vjz-(w)vl(w) = v}(w) for
j=1,...,1

Let functions {¢, }52; and {4, };2, be such that

These systems of functions have the following properties:

1. suppy, C suppyy, C Wp;
2. Yp(x)pp(x) = @p(x) forall z € R™,
3. Forany a € Z exists a constant C, > 0 such that:

~Jo] ~Ja]
1D, (z)] < Cy (a[pﬂ) | 1D, ()| < C4 (a[pfl])  VreR%Np=1,2 ...

l

4. f op(z) = 1.
p=1

Denote

Q:={g € C(R"): 3¢ > O0suchthatg(z) > ¢ >0, Vr € R"}.

For m € Z, and a completely regular polyhedron R, we denote by Q™% a set of weight functions
g € @, which satisfy the following conditions:

Ly = 0asz] — oo

2. For 8 € mR, B+# 0 DPg(x) € C(R") and there exists C > 0 such that g(gff((;)ij) < Cgforall
zeR"j=1,...,I,1;
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3. For any ¢ > 0, there exists 6 = §(g) > 0 and py = po(e) > 0 such that, for all p > pg, under the
condition max diamU; < ¢ the following holds:

7j=1,...,0
— 1
max l9(z) = ()| <&, max L <,
z,yeWyp g(y) z,yeWp g(;lj) Hmax a[pfl]
l
where pimaxy = max max {,u’s}

1<i<Ip—1 1<s<n

The considered class Q™™ includes polynomial functions and special exponential functions such as
(14 |z|r)" exp (1 + |z|x)", with I, > 0.
For k € R and a completely regular polyhedron R, denote

HA (RY) = {u €5 fullon = ( [P A+l d§>2 < oo},

where S’ is the set of tempered distributions, @ is a Fourier transformation of u. Fork € Z,, ¢ € Q, a
completely regular polyhedron R, and €2 C R", denote

k—max(a:pt
HA (R = {u ol g gy = g = 3 [ D-g" ) <oo},
ackR La(R™)
k,R a,, . ke-max(am’)
Hp () == qu: ||u||H§’R(Q) = Z D% -q i <00 .
ackR La(Q2)

2. MAIN RESULTS

Let k € Z, and g € Q. Consider the differential operator P(x, D) (see (1)) with the coefficients that
satisfy the following conditions:

Pe.D) = Y an(@)D* = 3 (a3<x>q<x>

aER acR

1—max(a:u’)
1

n aa@:)) e, 3)

0 l—m?x(a:pi)

where ao(z) = @ (2)q(z) +al(z), DA (z)) = O <q(ac)miin(ﬁ:“i)>, and

(67

Db(al(x)) =0 <q(a:)1_mgx(a_ﬂ:“2)> as |z| — coforalla € R, B € kR.

[t is easy to check that P(z,DD) generates a bounded linear operator acting from Hg“m (R™) to
kR (mom
Hy™ (R™).
For N > 0 and zg € R"”, denote
Ky(zg) :={x € R": |x — x| < N}, Ky := Kn(0).
Further we will use the following result, which is a consequence of Theorem 7.1 in[13].

Theorem 2.1. Letk € Zy, q € Q and P (x,D) be the differential operator (3). Then the differential

operator P(x,D) : Hf“’y (R") — Hf;“’gQ (R™) is ann-normal operator if and only if there exist constants
k > 0and N > 0 such that

k R
ullks1,%q < & (1Pullk,mg + Ul rary)) » Yu € HyTHR(R™).
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Theorem 2.2, Letk € Z,,q € Q®% and P(x,D) be the differential operator (3) with coefficients

satisfying the condition lim max |ad(z) — a2 (y)| = 0 for all« € R. Let there exist a constant r > 0
P—00 ¢ yeW,

such that
Jullks1,2q < & (1PUllkrg + lullpy@ny), Yue HEFLRR™). (4)

Then P (x,D) is regular inR™ and there exist constants § > 0 and M > 0 such that
> ag(:r)kl_miax(a:wﬁa

a€eR

> 0(A + [€loxr), YVEER", A >0, [z| > M. (5)

Proof. From Theorem 2.1 and [22] it follows that P (z, D) is regular in R™, so it remains to prove the
lower bound (5). Let {z,,}>°_; C R™ be such a sequence that |z,,| — co as m — co. Without loss of
generality we assume that x,,, € W,,,.

mo
Let mp € Nand ¢ € C§°(R"™), with suppp C R™\ (U WZ> s [lellLy@ny = 1. Denote G = .
i=1
Letje{l,...,I,—1} and £ € R™. Consider the function

i;(z) = exp (2 <q(acm)u1j ga:>> P (1),

where 47 is an outer normal of noncoordinate face 3%;7”_1 such that, for all a € 3%?_1, the equality
(a: p?) = 1is satisfied.

Denote Rj = {a € R: (a: pf) = | max (o : p*)}. Since g € Q™®, then for any € > 0 there exist
St lpn—1

d(e) > 0 and mg(e) > 0 such that, for all m > mg and mlaxldiamUj < 6,
J=L

l9(2) — q(y)| < eqly), Yo,y € Wi,
Then for any r > 0 the following holds
lg(x)" — q(zp)"| < 7r(e)q(Tm)", Y € Wpy, (6)
where 7,.(¢) — 0 ase — 0.

From inequality (6) and the inclusion suppu;., C Wy, it follows that there exists 7(¢) such that
7(e) — 0 as ¢ — 0 and the following inequalities hold:

lumlli1mg = (1= 7() [l 1,200 ()
1P mllimg < (1 4+ 7)) 1Pitjmlli mggen: (8)

Then for mg € N large enough and a sufficiently small max diamUj for m > my the following holds:

J=1,...,
~ 1 ~
||Uj7m||k+17fR7q 2 2 ||Uj,m||k+1,91,q(wm)’ (9)
~ 1 ~

1PEjamlema < I Pjamlb R (10)

Taking into account the conditions on the functions {(,,}°_; and the weight function ¢ € Q%X we
conclude that, forall v € kR and € > 0, there exist () > 0 and mg(e) > 0such that for all m > mg and

max diamU; < ¢ the following inequality holds:
7j=1,...,

DY m "Y‘_
Dign@) ey )
CONERY SO g T
q q(l’) HMmax q(l’) Hmax (

[
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where w, () — 0 as e — 0. Then it is easy to derive the lower estimate

- L -
lijmllertRa@n) = Y, 16%1a@m) T 1 Gml Ly @n)
56(1@"1‘1)3%‘

—wi(e) > €7 la(@m) Il iz s,y (12)
ve(R+1)(R\R; )

where wi(e) — 0ase — 0.

Similarly to the proof of Theorem 2.4 in [22] it can be shown that for 5 € k(R \ R;) and all m > my,
with mg large enough, the following holds:

k—max(3:u')
q(zm) ¢ 8

Hfo(P(x,D)aj,m)‘ -

< wa(e) > €7 la(@m) el iz, (13)
ve(k+1)(R\R; )

where wy(e) — 0as e — 0. For 3 € kR; we have

|P? (P D), o))
aeR Lo (R™)
+ (D" <Zaé<x>D“aj,m) g(@m)" =) (14)
aeR

LQ(R”)

Taking into account that, for all fixed o« € R and 8 € kR, one has D? (al(z)) = o <q(g;)1_m?x(a_ﬁ:w)

as |z| — oo, it is easy to check that for 8 € kR; and m > my, with a sufficiently large my, the following
holds:

(S )

aeR

Lo(R™)

<wse) D> 1€la@n) el grnar,), (15)
~ve(k+1)R

where w3(e) — 0ase — 0.

From conditions (3), the estimate lim max |a%(z) — al(y)| = 0 for all & € R and ¢ € Q**, and
P—00 1 yeW,

from inequality (6) we obtain that, for a € R and g € kR with a sufficiently large my and small

‘miaxl diamUj for m > my, the following holds:
7j=1,...,

‘DIB (ag(l‘)q(l‘)l_(a:uj) o ag(l‘m)Q(Zﬂm)l_(a:Hj))‘ < Taﬁ(E)Q(ZL'm)1_(a:uj)+(ﬁ:uj)7 (16)

where 7, g(6) = 0ase — 0.

Using (16), similarly to the proof of Theorem 2.4 in [22], it can be shown that, for a large enough mg
and for any m > my, the following estimate holds:

aeR

LQ(R”)
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< Z ag(xm)fa

OcEij

&°| a(@m) @l oo

+ wa(e) > 1€ g(@m) el prrer vy, (17)
ve(k+1)(R\R! )

where wy(e) — 0ase — 0.
From estimates (13)—(17) for all m > mg we get

1Pl Rty < | 3 aQ@m)€| 3 [€%] alam)*H 1Gmll e
aEij ﬁEkij

+ws(e) Y 1 a(@m) el grra oy, (18)
vE(k+1)R

where wg(¢) — 0 as e — 0. Then from (4), (12), and (18) we get

> €] e@n) Bl ey

Be(k+1)R;

—wie) D € am) el s n,)
YEk+D) (R\RT )

< ( > al@n)é?] 3 (€] aten) Il e

aER; BELR;

+ws() Y 18 a@m) T el s gy + [ Bmll o) | -
ve(k+1)R

Since {al(z): a € R;} are bounded functions and z,,, — co as m — oo, there exist convergent
subsequences of sequences {ad(zm): o € R;}. Without loss of generality we assume that the
sequences {ad(zy,) : a € R;} are convergent, so for each a € R; there exists a constant a2, such that

al(z,,) = @2 as m — oo. Then for a large enough mg and for m > mg we get

S|P awn)  iemla e —ws@) D 17 al@m) el e,
Be(k+1)R; yE(k+1)R

<K Z &gfa Z ‘fﬁ‘Q(«Tm)k—i_lH@m”LﬂR")’

aEij ﬁEkij

where wg(g) — 0 as € — 0. Let us divide the last inequality by q(z,,)**! and sum up it over m > my.

Taking into account that each set W, intersects with a fixed number of other sets, for some constant

C1 > 0, we get
o Y | e Y
Be(k+1)R; yE(k+1)R
<| S ase| 3 el
OcEij ﬁEkij

where wy(e) — 0 as e — 0. Choosing an appropriate € and tending mg — oo, for some constant Cy > 0,
we get the inequality

SIBERIAN ADVANCES IN MATHEMATICS Vol.33 No.2 2023
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Y el Y e X ¢

a€(k+1)R; a€R; BEER;

Using the last inequality and estimates (2.4) from the proof of Theorem 2.1 in [22], we get that for
j€{l,...,I,_1} there exists a constant §; > 0 such that

D G| 2 01+ [€lgn-),

OlEij

where [¢|gn-1 = Y |€F].
! peRy !
_ 1 1

1 _—
For A > 0, substituting A » £ = <)\ MEL LAk §n> foré = (&1,...,&,), we obtain

D LN > (0 [l gp).

OcEij

The same can be doneforall j € {1,...,I,_1}. Then, using Theorem 6.1 in[16], we get the following
inequality:

Z ga)\l maxau)

a€eR

> 5(>\ + |£|8fR)7 VA>0, V€ € R™.

Since the last inequality holds for all partial limits of sequences {a(zm) : @ € R}, where 2,,, — o0,
we conclude that there exist constants § > 0 and M > 0 such that

Za 1 max(au)

aeR

> 5(A + |€]om), VA >0, V& € R™, V]a| > M.

Remark 5. Forgq € @ based on Theorem 2.1 in[22] uniform regularity in R™ is a necessary condition
for the fulfillment of the a priori estimate (4). From Theorem 2.2 it follows that in the spaces Hg’R(R”)

with a weight function from the class Q®X, the condition (5) is also necessary along with uniform
regularity in R™ for fulfillment of the a priori estimate (4). Theorem 2.3 shows that these conditions
on the symbol of operator are also sufficient conditions for a priori estimate (4) in the spaces under
consideration.

Theorem 2.3. Letk € Zy, q € QFR and let P(x, D) be the differential operator (3) with coefficients

satislying the relations lim max |a®(x) — al(y)| =0 foralla € R. Let P (z,D) be regular in R™ and
P00 4 yeW,

let there exist constants § > 0 and M > 0 such that

Sl @ T e

aeR

> 6(A + [¢]x), VEE R, A >0, [a] > M. (19)

Then there exist constants k > 0 and N > 0 such that
[uller1,2q < £ (1PUllkrg + 1wl oxy)) » Yu € HIFERR™Y). (20)

Proof. Let my € N. Using properties of the functions {¢p, }5°

o _o, it is easy to check that, for some
constant C' > 0, the following estimate holds:

[ullfs1mq < (Z lmullf1,z.q + Z lomullfi qu) Vue HFVRR?).  (21)

m=0 m=mgo+1

SIBERIAN ADVANCES IN MATHEMATICS Vol.33 No.2 2023
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From a priori estimates for bounded domains in [ 18], for some constants C; > 0 and N; > 0, we have

mo
> lemultirmg < Cr (IPulf sy + 0l k) ) Vo € HEFRRRT), (22)

m=1

mo
where Ny is such that | W; C Kn;.
i=0

Denote

Ry(eD) == 3 (@)D"
aeR

L(z,D) := Z al (z)D?,

aeR

P"(z,D) := Z [me(x) <ag($)q($)1—m?>c(a:m)

1—max(c:u?)
- ag(l‘m)Q(mm) ‘ 8 >
aeR

DY m=1,2,....

(e )an) (ﬂ

Using properties of the functions {1, }°_,, the conditions lim max |a%(z) — a2 (y)| = 0 for a € R,
POz yeW,

q € Q"R and inequality (6), it is easy to check that, fora € R and 3 € kR, by choosing m large enough

and 'mlaxldiamUj small enough (for m > myg), we obtain the following estimate:
J=L

‘Dﬁ <¢m(z) (ag(x)q(x)l—maxi(atui) _ ag(xm)q(a;m)l—m%(a:ui)))‘
< Ta,g(e)q(xm)1—maXi(a—ﬁ:/ﬂ')7

where 7, g(6) = 0ase — 0.

From the last estimate and Theorem 2.2 in [12] it follows that, for mg large enough and for m > my,

the operators P™(x,D) : H§+1’R(R”) — Hg’R(R”) have bounded inverse operators. Since (19) holds,
we conclude that they have uniformly bounded norms and, for some constant Co > 0, the following upper
bound is valid:

lomulfsrmg < CollP™ (0mw)lizg Yu € HyBXR™),
where Cy does not depend on m.
Taking into account that P™(yppu) = Py(pmu) forall u € HgH’R(R”) andm =1,2,..., we get
lomulz 1, mg < CollP™ (Pmu)l| gg < CollPol@mu)llf g g, Yu € Hy M HR™).

Using properties of the functions {¢,, }5°_; and estimate (11), it can be shown that for a sufficiently
large mp and a small max diamU); for m > my, and some constants C3, Cy > 0, the following estimate

7j=1,....
holds:

SIBERIAN ADVANCES IN MATHEMATICS Vol.33 No.2 2023
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HSDmPOU - PO(SDmU)Hz,R,q

2
<Cj3 Z Z ag(a:)DﬁuDvgomq(x)l_m?X(a'u )
a€R B+vy=ay,|y|>0 k,R.q
2
0 B. vy 1 1—max(B:u") 2
<Cd. Y a@)D uDlpy, min(ri) 48 < wEllullyrera gy, )
a€R B+y=a,|v|>0 q(x) ‘ k,R,q '

where w(e) — 0 as € — 0. From the last two estimates, for some constant C5 > 0, we get
lemtlEer.mq < Cs (lomPoull g + w(Nullny, ) » V€ HETLERY),

Summing up over all m > mg both sides of this inequality and taking into account the properties of
{Wy,}5°_,, for some constant Cs > 0, we obtain

[e.e]

Yo lemullfiimg < Co (1Poullf gy + w(@lulfirmg) » Yu € HyTHH(R). (23)

m=mo+1

From (21), (22), and (23) we deduce the following estimate:
Jul 1.2 < CC1 (IPulmg + lul icy,)
+CCs (I1Poullf zq +w(@)lullfsrmg) - Yu € Hy HHH(R).

We can choose my large enough and max diamU; small enough such that
J=L

CCg(e) < ;
Then, for some constant C; > 0, the following holds
el 1. < C7 (1Pl g + [0l sy, + 1PoulE g ) Vi€ HEFRR™). (24)
We have Py(z,D) = P(z,D) — L(x,D). Then

[ Poullr,zq < 1Pullk,q + | Lullk,z,q, Vu € H5+1’R(Rn)-

Since DA(al(z)) = o <q(m)1_miax(a_ﬁ:w)> as |z| — oo, for any v € R and € kR, it is easy to
check that for Ny > 0 we have
”Luui,ﬂa,q < T(N2)HU”%+1,R,q + C8”“H§{k+1,ﬂz(KN2)a Vu € HQ“H’R(R”),

where 7(Ng) — 0 as Ny — oo and Cg = Cg(NN2) > 0. Then, using an a priori estimate similar to (22),
with some constant Cg = Cy(N3) > 0, we have

|Eul g < (N2l 1.3+ Co (1Pl g + 10y, )
Substituting the last estimates in (24), we get
lull 1.2 < Cr (IPulmg + 1013 0y, ) + 2C7 1 PullE
20 (N2) [0l 1,3 + 2C1Co (1Pl g + 10l iy, ) - Yoo € HEFERR™).

We can take Ny such that C77(Ny) < 1/4. Then, for some C1p > 0 and N = max(N1, Ny) > 0, we
obtain the following estimate:

lullis1,20 < Cro (I1Pullk,rg + lullzo(icy)) Y € Hy FHXR™).

In what follows, we need the following result (see Theorem 3.14 [9]):
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Theorem 2.4. Let A be a bounded linear operator acting from a Banach space X to a Banach space
Y. Then the following holds:
1. Ifoperator A has a left regularizer, then kernel of operator A in X is finite dimensional;
2. Ifoperator A has a right regularizer, then the image of operator A is closed inY" and the cokernel
is finite dimensional;
3. The operator A has left and right regularizers if and only if A is a Fredholm operator.

The following assertion is valid.
Theorem 2.5. Letk € Z,q € Q"® and P(x,D) be the differential operator (3) with the coefficients
that satisfy lim max |a%(z) — al(y)| = 0 foralla € R.

p—oo T,Yy€ p

Then the operator P(x,D) : Héf“’92 (R™) — Hf’y (R™) is a Fredholm operator if and only if P (x, D)
is regular in R™ and there exist constants § > 0 and M > 0 such that

S @A T o) > (0 4 [¢lom), VE € BT, A > 0, 2] > M. (25)
aER
Proof. Let us first prove the sufficiency. Let mg € N and z,, € W,,,m =1,2.... For m < my,

denote

Pm(ZL‘vD) = Z (me(l‘) (aa(x) - aa(l‘m)) + aa(xm)) D,

aeR

P™(z,D) := Y (¢m(@) (aa(7) — aa(m)) + aa(zm)) D*,

a€IR
€lom ,
(1 + [£lom) P™0 (2, €)

Since P(z,D) is regular in R™, for sufficiently small diameters of {W,,, },»2,, from Lemma 3.1 in [22] it
follows that for m < my the following representation holds:

P™(2,D)R™® = I + T{" + T3, (26)

R™0 .= p~!

where T : HFFLR(R?) — gFH1+0R(R?) with o = o(R) > 0, and the operator 73" : H¥+1LR(R?) —
HF+1LR(R™) satisfies the inequality |757|| < 1. Denote

R™:= R™0(I + Tym)~L.
Then we have
P"R™ =14T™, (27)
where T : HER(R™) — HFoR(R?), with some o0 = o(R) > 0.
For m > my, denote

1—mlax(0c:;ﬂ) B ag(xm)q(xm)l—mzax(a:;ﬂ)>

PreD) =% ) (2ot

+a8¢ (mm)Q(mm)l_mgx(a:ul)] D“.

Taking into account that ¢ € Q*® and lim max |a2(x) — al(y)| = 0, from Theorem 2.2 in [12] we
P 4 e,

can choose a number mg such that, for all m > my, the operators P : H§+1’R(Rn) — Hg’R(IR”) have
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the inverse operators R™ : Hg’R(IR") — Hé““’R(R”). Since (25) holds, the inverse operators have
uniformly bounded norms. Consider

Rf =Y iR (af), f € HY*(R").
=0

Taking into account that the norms of the operators R' acting from Hg’R(R”) to H§+1’R(R”)
have uniformly bounded norms, the properties of the function ¢ and the functions {¢,,}5°_; and

{m }5°_,, it is easy to check that R is a bounded linear operator acting from Hg’m (R™) to Hf“’y (R™).

Similarly to the proof of Theorem 2.6 in [22] it can be checked that R : Hg’R(R”) — HgH’R(R”)
is a right regularizer. Then, applying Theorem 2.4, we get that cokernel of the operator P(z,D) :
H§+1’R(R”) — Hf’R(R”) is finite-dimensional. From Theorem 2.3 it follows that the operator
P(z,D) : HF® (R?) — HF® (R™) is n-normal. So, P(z,D) : Hi TV (R") — HF® (R") is a Fred-
holm operator.

Let us prove the necessity of the theorem. Since a Fredholm operator is n-normal, Theorem 2.1

implies the fulfillment of the a priori estimate (4). Applying Theorem 2.2, we get that P(z, D) is regular
in R™ and (25) holds.

Theorem 2.6. Let k € 7, q € Q*® and P(x,D) be differential operator (3) with the coefficients

that satisfy lim max |ad(z) — a%(y)| = 0 foralla € R. Then the lollowing statements are equivalent:
P=00 3 yeW,

1. The operator P(x,D) : Hé““’g{ (R™) — H(’;“’gz (R™) is a Fredholm operator.
2. There exist constants k > 0 and N > 0 such that

lulli1.2g < 5 (IPullkgg + lullLary)) » Vu € HHHRT). (28)
3. P(x,D) is regular inR™ and there exist constants 6 > 0 and M > 0 such that

S @A T e > (0 4 [¢lom), VE € R, AS 0, o] > M. (29)
aceR

Proof. Let P(z,D) : H§+1’R(R”) — Hg’R(R”) is a Fredholm operator, then it is n-normal. By
Theorem 2.1, the a priori estimate (28) is valid. So it is proved that condition 2 follows from
condition 1. Since the a priori estimate is valid, from Theorem 2.2 it follows that a) P(z, D) is regular
in R™, and b) condition (29) holds for the symbol of operator, which means that condition 2 implies
condition 3. Having the condition for the symbol of P(z,D) and applying Theorem 2.5, we conclude
that P(z,D) : Hf“’y (R") — Hf;“’gQ (R™) is a Fredholm operator, which means that condition 1 follows
from condition 3. Thus, the equivalence of all of the conditions is proved.
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