On the Boundedness of Integral Operators in Morrey-Type Spaces with Variable Exponents

N. A. Bokayev1* and Zh. M. Onerbek1**

1L.N. Gumilyov Eurasian National University, Nur-Sultan, 010008 Kazakhstan Received February 4, 2022; revised February 13, 2022; accepted April 29, 2022

Abstract—We consider the global Morrey-type spaces $GM_{p(\cdot),\theta(\cdot),w(\cdot)}(\Omega)$ **with variable exponents** $p(x)$, $\theta(x)$, and $w(x, r)$ defining these spaces. In the case of unbounded sets $\Omega \subset \mathbb{R}^n$, we prove the boundedness of the Hardy–Littlewood maximal operator and potential-type operator in these spaces. We prove Spanne-type results on the boundedness of the Riesz potential I^{α} in global Morrey-type spaces with variable exponents $GM_{p(\cdot),\theta(\cdot),w(\cdot)}(\Omega)$.

DOI: 10.1134/S1055134422020018

Keywords: *boundedness, Riesz potential, fractional maximal operator, global Morrey-type space with variable exponents.*

INTRODUCTION

In this paper we consider the global Morrey-type spaces $GM_{p(\cdot),\theta(\cdot),w(\cdot)}(\Omega)$ with variable exponents $p(\cdot), \theta(\cdot)$ and a general function $w(x, r)$ defining a Morrey-type norm. The Morrey spaces $M_{p,\lambda}$ are introduced in [1] in the frames of the study of partial differential equations. Many classical operators of harmonic analysis (e. g., maximal, fractional maximal, potential operators) were studied in the Morrey-type spaces with constant exponents p, θ [2–4]. The Morrey spaces also attracted attention of researchers in the area of variable exponent analysis; see [5–10]. The Morrey spaces $\mathcal{L}_{p(\cdot),\lambda(\cdot)}$ with variable exponent $p(\cdot)$, $\lambda(\cdot)$ were introduced and studied in [5]. The general versions $M_{p(\cdot),w(\cdot)}(\Omega)$, $\Omega \subset \mathbb{R}^n$, were introduced and studied in [11, 12]. The boundedness of maximal and potential type operators in the generalized Morrey-type spaces with a variable exponent were considered in [11] in the case of bounded sets $\Omega \subset \mathbb{R}^n$, in [12] in the case of unbounded sets $\Omega \subset \mathbb{R}^n$.

Let $f \in L_{loc}(\mathbb{R}^n)$. The Hardy–Littlewood maximal operator is defined as

$$
Mf(x) = \sup_{r>0} \frac{1}{|B(x,r)|} \int_{\tilde{B}(x,r)} |f(y)| dy,
$$

where $B(x,r)$ is a ball in \mathbb{R}^n centered at a point $x \in \mathbb{R}^n$ and of a radius $r, \tilde{B}(x,r) = B(x,r) \cap \Omega, \Omega \subset \mathbb{R}^n$.

The fractional maximal operator of variable order $\alpha(x)$ is defined as

$$
M^{\alpha(\cdot)}f(x) = \sup_{r>0} |B(x,r)|^{-1+\frac{\alpha(x)}{n}} \int_{\tilde{B}(x,r)} |f(y)| dy, \quad 0 \leq \alpha(x) < n.
$$

In the case $\alpha(x) = \alpha = \text{const}$, this operator coincides with the classical fractional maximal operator M^{α} . If $\alpha(x)=0$ then $M^{\alpha(\cdot)}$ coincides with the operator M.

The Riesz potential $I^{\alpha(x)}$ of variable order $\alpha(x)$ is defined by the following equality:

$$
I^{\alpha(x)}f(x) = \int_{\mathbb{R}^n} \frac{f(y)}{|x - y|^{n - \alpha(x)}} dy, \quad 0 < \alpha(x) < n.
$$

In the case $\alpha(x) = \alpha$ = const, this operator coincides with the classical Riesz potential I^{α} .

 $\rm ^*E$ -mail: bokayev@mail.ru

^{**}E-mail: 93@mail.ru

1. LEBESGUE SPACES WITH VARIABLE EXPONENT. GENERALIZED MORREY-TYPE SPACES WITH VARIABLE EXPONENTS

Let $p(x)$ be a measurable function on an open set $\Omega \subset \mathbb{R}^n$ with values in $(1,\infty)$. Put

$$
1 < p_- \leqslant p(x) \leqslant p_+ < \infty,\tag{1}
$$

where $p_-=p_-(\Omega)=\text{ess inf}_{x\in\Omega} p(x)$ and $p_+=p_+(\Omega)=\text{ess sup}_{x\in\Omega} p(x)$. We denote by $L_{p(\cdot)}(\Omega)$ the space of all measurable functions $f(x)$ on Ω such that

$$
J_{p(\cdot)}(f) = \int_{\Omega} |f(x)|^{p(x)} dx < \infty,
$$

where the norm is defined as

$$
||f||_{p(\cdot)} = \inf \bigg\{ \eta > 0: J_{p(\cdot)}\left(\frac{f}{\eta}\right) \leq 1 \bigg\}.
$$

This is a Banach space. The conjugate exponent p' is defined by the formula

$$
p'(x) = \frac{p(x)}{p(x) - 1}.
$$

Hölder's inequality for the variable exponents $p(\cdot)$ and $p'(\cdot)$ is of the form

$$
\int_{\Omega} f(x)g(x)dx \leqslant C(p) \|f\|_{L_{p(\cdot)}(\Omega)} \|g\|_{L_{p'(\cdot)}(\Omega)},
$$

where $C(p) = \frac{1}{p_-} + \frac{1}{p'_-}$. The Lebesgue spaces $L_{p(\cdot)}$ with variable exponents $p(\cdot)$ were introduced in [13] and studied in [14, 15].

Define $\mathcal{P}(\Omega)$ as the set of measurable functions $p : \Omega \to [1,\infty)$. Denote by $\mathcal{P}^{\log}(\Omega)$ the set of measurable functions $p(x)$ satisfying the local log-condition

$$
|p(x) - p(y)| \leq \frac{A_p}{-\ln|x - y|}, \text{ with } |x - y| \leq \frac{1}{2} \forall x, y \in \Omega,
$$

where A_p is independent of x and y. Next, put $\mathbb{P}^{\log}(\Omega)$ for the set of measurable functions $p(x)$ meeting both (1) and the log-condition. In the case of Ω is an unbounded set, we denote by $\mathbb{P}^{\log}_\infty(\Omega)$ the set of exponents which is a subset of the set of $\mathbb{P}^{\log}(\Omega)$ and satisfying the decay condition

$$
|p(x) - p(\infty)| \leq A_{\infty} \ln(2 + |x|), \quad x \in \mathbb{R}^n.
$$

Put $\mathbb{A}^{\log}(\Omega)$ for the set of bounded exponents $\alpha : \Omega \to \mathbb{R}$ satisfying the log-condition.

Let Ω be an open bounded set, $p \in \mathbb{P}^{\log}(\Omega)$, and $\lambda(x)$ be a measurable function on Ω with values in [0, n]. The variable Morrey space $\mathcal{L}_{p(\cdot),\lambda(\cdot)}(\Omega)$ with the norm

$$
||f||_{\mathcal{L}_{p(\cdot),\lambda(\cdot)}(\Omega)} = \sup_{x \in \Omega, t > 0} t^{-\frac{\lambda(x)}{p(x)}} ||f||_{L_{p(\cdot)}(\tilde{B}(x,t))}.
$$

was introduced in [3]. Let $w(x, r)$ be nonnegative measurable function on Ω , where $\Omega \subset \mathbb{R}^n$ is an open bounded set. The generalized Morrey-type space $M_{p(\cdot),w(\cdot)}(\Omega)$ with variable exponent and the norm

$$
||f||_{M_{p(\cdot),w(\cdot)}(\Omega)} = \sup_{x \in \Omega, r > 0} \frac{r^{-\frac{n}{p(x)}}}{w(x,r)} ||f||_{L_{p(\cdot)}(\tilde{B}(x,r))}.
$$

is defined in [11]. Let $w(x, r)$ be nonnegative measurable function on Ω , where $\Omega \subset \mathbb{R}^n$ is an open unbounded set. The generalized Morrey-type space $M_{p(\cdot),w(\cdot)}(\Omega)$ with variable exponent with the norm

$$
||f||_{M_{p(\cdot),w(\cdot)}(\Omega)} = \sup_{x \in \Omega, r > 0} \frac{||f||_{L_{p(\cdot)}(\tilde{B}(x,r))}}{w(x,r)}.
$$

SIBERIAN ADVANCES IN MATHEMATICS Vol. 32 No. 2 2022

is defined in [12]. Put

$$
\eta_p(x,r) = \begin{cases} \frac{n}{p(x)} & \text{if } r \leq 1; \\ \frac{n}{p(\infty)} & \text{if } r > 1. \end{cases}
$$

Definition 1.1. Let $p \in P^{\log}(\Omega)$, $w(x, r)$ be a positive function on $\Omega \times [0, \infty]$, where $\Omega \in \mathbb{R}^n$. The global Morrey-type space $GM_{p(\cdot),\theta(\cdot),w(\cdot)}(\Omega)$ with variable exponents is defined as the set of functions $f\in L^{\rm loc}_{p(\cdot)}(\Omega)$ with the finite norm

$$
||f||_{GM_{p(\cdot),\theta(\cdot),w(\cdot)}(\Omega)} = \sup_{x \in \Omega} ||w(x,r)r^{-\eta_p(x,r)}||f||_{L_{p(\cdot)}(\tilde{B}(x,r))} ||_{L_{\theta(\cdot)}(0,\infty)}.
$$

We assume that the positive measurable function $w(x, r)$ satisfies the condition

$$
\sup_{x\in\Omega} \|w(x,r)\|_{L_{\theta(\cdot)}(0,\infty)} < \infty.
$$

Then this space contains at least any bounded functions and thereby is nonempty. In the case $w(x, r)$ = $r^{-\frac{\lambda(x)}{p(x)}+\eta_p(x,r)},$ the corresponding space is denoted by $GM^{\lambda(\cdot)}_{p(\cdot),\theta(\cdot)}$:

$$
GM^{\lambda(\cdot)}_{p(\cdot),\theta(\cdot)}(\Omega) = GM_{p(\cdot),w(\cdot),\theta}\Big|_{w(x,r)=r^{-\frac{\lambda(x)}{p(x)}+\eta_p(x,r)}},
$$

and

$$
||f||_{GM^{\lambda(\cdot)}_{p(\cdot),\theta(\cdot)}(\Omega)} = \sup_{x \in \Omega} \left||w(x,r)r^{-\frac{\lambda(x)}{p(x)}}||f||_{L_{p(\cdot)}(\tilde{B}(x,r))}\right||_{L_{\theta(\cdot)}(0,\infty)}.
$$

In the case $\theta = \infty$, the space $GM_{p(\cdot),\infty,w(\cdot)}(\Omega)$ coincides with the generalized Morrey space with variable exponent $M_{p(\cdot),w(\cdot)}(\Omega)$ with the finite quasi-norm

$$
||f||_{M_{p(\cdot),w(\cdot)}(\Omega)} = \sup_{x \in \Omega} \Big\{ w(x,r)r^{-\eta_p(x,r)} ||f||_{L_{p(\cdot)}(\tilde{B}(x,r))} \Big\}.
$$

If $p(\cdot) = p = \text{const}$ and $\theta(x) = \theta = \text{const}$ then the space $GM_{p(\cdot),\theta(\cdot),w(\cdot)}(\Omega)$ coincides with the ordinary global Morrey space $GM_{p,\theta,w}(\Omega)$, considered by V.I. Burenkov and others [2–4]. Some Spanne- and Adams-type theorems were proved in [5] for bounded sets Ω . Also, various results on the boundedness of operators are obtained in [11, 12, 16].

We need the following results from [12] for our arguments.

Lemma 1.2. *Assume that* $p \in \mathbb{P}_{\infty}^{\log}(\Omega)$ *and* $f \in L_{\text{loc}}^{p(\cdot)}(\mathbb{R}^n)$ *.Then*

$$
||f||_{L_{p(\cdot)}(B(x,t))} \leq C t^{\eta_p(x,t)} \int_t^{\infty} r^{-\eta_p(x,r)-1} ||f||_{L_{p(\cdot)}(B(x,r))} dr.
$$

Theorem 1.3. *Suppose that* $p \in \mathbb{P}^{\log}_\infty(\Omega)$ *. Then for each* $f \in L_{p(\cdot)}(\Omega)$ *we have*

$$
||Mf||_{L_{p(\cdot)}(\tilde{B}(x,t))} \leq C t^{\eta_p(x,t)} \sup_{r>2t} \Big\{ r^{-\eta_p(x,r)} ||f||_{L_{p(\cdot)}(\tilde{B}(x,r))} \Big\},\,
$$

where C is independent of $f, x \in \Omega$ *and* $t > 0$ *.*

Let us prove the next necessary inequality.

Theorem 1.4. Assume that $p \in \mathbb{P}^{\log}_{\infty}(\Omega)$. Then

$$
\|Mf\|_{L_{p(\cdot)}(\tilde{B}(x,t))} \leq C t^{\eta_p(x,t)} \int_t^{\infty} s^{-\eta_p(x,s)-1} \|f\|_{L_{p(\cdot)}(\tilde{B}(x,s))} ds,
$$
\n(2)

where C is independent of f, x, t .

SIBERIAN ADVANCES IN MATHEMATICS Vol. 32 No. 2 2022

Proof. Using Theorem 1.3 and Lemma 1.2, we deduce

$$
||Mf||_{L_{p(\cdot)}(\tilde{B}(x,t))} \leq C t^{\eta_{p}(x,t)} \sup_{r>2t} \Big\{ r^{-\eta_{p}(x,r)} ||f||_{L_{p(\cdot)}(\tilde{B}(x,r))} \Big\}
$$

\n
$$
\leq C t^{\eta_{p}(x,t)} \sup_{r> t} \Big\{ r^{-\eta_{p}(x,r)} ||f||_{L_{p(\cdot)}(\tilde{B}(x,r))} \Big\}
$$

\n
$$
\leq C t^{\eta_{p}(x,t)} \sup_{r> t} \Big\{ \int_{r}^{\infty} s^{-\eta_{p}(x,s)-1} ||f||_{L_{p(\cdot)}(B(x,s))} ds \Big\}
$$

\n
$$
= C t^{\eta_{p}(x,t)} \int_{t}^{\infty} s^{-\eta_{p}(x,s)-1} ||f||_{L_{p(\cdot)}(\tilde{B}(x,s))} ds.
$$

\nThe theorem is proved.

The theorem is proved.

The next result generalizes an inequality proved in [12].

Theorem 1.5. Let $p \in \mathbb{P}^{\log}_{\infty}(\Omega)$ and let the function $\alpha(x)$ and $q(x)$ satisfy the condition $\frac{1}{q(x)} =$ $\frac{1}{p(x)} - \frac{\alpha(x)}{n}$. Then, for each $x \in \mathbb{R}^n$ and $t > 0$,

$$
\left\| \frac{1}{(1+|y|)^{\gamma(y)}} I^{\alpha(\cdot)} f \right\|_{L_{q(\cdot)}(\tilde{B}(x,t))} \leq C t^{\eta_q(x,t)} \int_t^{\infty} r^{-\eta_q(x,r)-1} \|f\|_{L_{p(\cdot)}(\tilde{B}(x,r))} dr.
$$
 (3)

Proof. We represent the function f as $f(x) = f_1(x) + f_2(x)$, where $f_1(x) = f(x)\chi_{\tilde{B}(x,2t)}$ and $f_2(x) = f(x) \chi_{\Omega \setminus \tilde{B}(x,2t)}$. Then

$$
\frac{1}{(1+|y|)^{\gamma(y)}}I^{\alpha(\cdot)}f(y)=\frac{1}{(1+|y|)^{\gamma(y)}}I^{\alpha(\cdot)}f_1(y)+\frac{1}{(1+|y|)^{\gamma(y)}}I^{\alpha(\cdot)}f_2(y).
$$

From the results obtained in [16] it follows that

$$
\left\| \frac{1}{(1+|y|)^{\gamma(y)}} I^{\alpha(\cdot)} f_1 \right\|_{L_{q(\cdot)}(\tilde{B}(x,t))} \leq \left\| \frac{1}{(1+|y|)^{\gamma(y)}} I^{\alpha(\cdot)} f_1 \right\|_{L_{q(\cdot)}(\mathbb{R}^n)} \leq C \|f_1\|_{L_{p(\cdot)}(\mathbb{R}^n)} = C \|f\|_{L_{p(\cdot)}(B(x,2t))}.
$$

Lemma 1.2 implies

$$
\left\| \frac{1}{(1+|y|)^{\gamma(y)}} I^{\alpha(\cdot)} f_1 \right\|_{L_{q(\cdot)}(\tilde{B}(x,t))} \leq C t^{\eta_q(x,t)} \int_{2t}^{\infty} r^{-\eta_q(x,r)-1} \|f\|_{L_{p(\cdot)}(\tilde{B}(x,r))} dr.
$$
 (4)

If $|x-z|\leqslant t$ and $|z-y|\geqslant 2t$, we have $\frac{1}{2}|z-y|\leqslant |x-y|\leqslant \frac{3}{2}|z-y|.$ Since $\frac{1}{(1+|y|)^{\gamma(y)}}\leqslant 1,$ we infer

$$
\left\| \frac{1}{(1+|y|)^{\gamma(y)}} I^{\alpha(\cdot)} f_2 \right\|_{L_{q(\cdot)}(\tilde{B}(x,t))} \leq \left\| \int_{\mathbb{R}^n \backslash B(x,2t)} |z-y|^{\alpha-n} f(y) dy \right\|_{L_{q(\cdot)}(\tilde{B}(x,t))}
$$

$$
\leq C \int_{\mathbb{R}^n \backslash B(x,2t)} |x-y|^{\alpha-n} |f(y)| dy \cdot \left\| \chi_{B(x,t)} \right\|_{L_{q(\cdot)}(\mathbb{R}^n)}.
$$

Choosing $\beta > \frac{n}{q_-}$, we obtain

$$
\int_{\mathbb{R}^n \backslash B(x,2t)} |x-y|^{\alpha-n} |f(y)| dy = \beta \int_{\mathbb{R}^n \backslash B(x,2t)} |x-y|^{\alpha-n+\beta} |f(y)| \left(\int_{|x-y|}^{\infty} s^{-\beta-1} ds\right) dy
$$

$$
= \beta \int_{2t}^{\infty} s^{-\beta-1} \left(\int_{y \in \mathbb{R}^n : 2t \leq |x-y| \leq s} |x-y|^{\alpha-n+\beta} |f(y)| dy\right) ds
$$

SIBERIAN ADVANCES IN MATHEMATICS Vol. 32 No. 2 2022

$$
\leqslant C \int_{2t}^{\infty} s^{-\beta-1} \| f \|_{L_{p(\cdot)}(B(x,s))} \cdot \| |x-y|^{\alpha-n+\beta} \|_{L_{p'(\cdot)}(B(x,s))} \, ds \\ \leqslant C \int_{2t}^{\infty} s^{\alpha-\eta_p(x,s)-1} \| f \|_{L_{p(\cdot)}(B(x,s))} \, ds.
$$

Therefore,

$$
\left\| \frac{1}{(1+|y|)^{\gamma(y)}} I^{\alpha(\cdot)} f_2 \right\|_{L_{q(\cdot)}(\tilde{B}(x,t))} \leq C t^{\eta_p(x,t)} \int_{2t}^{\infty} s^{-\eta_q(x,s)-1} ||f||_{L_{p(\cdot)}(B(x,s))} ds.
$$

The latter together with (4) yields (3). The theorem is proved.

Let u and v be positive measurable functions. The dual Hardy operator is defined as

$$
\tilde{H}_{v,u}f(x) = v(x) \int_x^{\infty} f(t)u(t) dt, x \in \mathbb{R}^n.
$$

Suppose that a is a positive fixed number. Put $\theta_{1,a}(x) = \operatorname{ess\,inf}_{y \in [x,a)} \theta_1(y)$,

$$
\tilde{\theta}_1(x) = \begin{cases} \theta_{1,a}(x) & \text{if } x \in [0, a], \\ \overline{\theta}_1 = \text{const} & \text{if } x \in [a, \infty). \end{cases}
$$

Moreover, we denote $\theta_1 = \text{ess inf}_{x \in \mathbb{R}_+} \theta_1(x)$ and $\Theta_2 = \text{ess sup}_{x \in \mathbb{R}_+} \theta_2(x)$ for $\theta_1(x)$ and $\theta_2(x)$.

The next theorem is proved in [17].

Theorem 1.6. *Let* $\theta_1(x)$ *and* $\theta_2(x)$ *be measurable functions on* \mathbb{R}_+ *. Suppose that there exists a* positive number a such that $\theta_1(x) = \overline{\theta}_1 = \text{const}$, $\theta_2(x) = \overline{\theta}_2 = \text{const}$ holds for all $x > a$, and $1 < \theta_1 \leqslant \tilde \theta_1(x) \leqslant \theta_2(x) \leqslant \Theta_2 < \infty$ almost everywhere. If

$$
G = \sup_{t>0} \int_0^t \left[v(x) \right]^{\theta_2(x)} \left(\int_t^\infty u^{\tilde{\theta}'_1(x)}(\tau), d\tau \right)^{\frac{\theta_2(x)}{(\theta_1)'(x)}} dx < \infty
$$

then the operator $\tilde{H}_{v,u}$ *from* $L_{\theta_1(\cdot)}(\mathbb{R}^+)$ *to* $L_{\theta_2(\cdot)}(\mathbb{R}^+)$ *is bounded.*

2. MAIN RESULTS

Theorem 2.1. *Assume that* $p(\cdot) \in \mathbb{P}_{\infty}^{\log}(\Omega)$, and $\theta_1(x)$ and $\theta_2(x)$ are measurable functions on \mathbb{R}_+ *. Suppose that there exists a positive number a such that we have* $\theta_1(x) = \overline{\theta}_1 = \text{const}$, $\theta_2(x) =$ $\overline{\theta}_2 = \text{const}$ for all $t > a$, and $1 < \theta_1 \leqslant \tilde{\theta}_1(x) \leqslant \theta_2(x) \leqslant \Theta_2 < \infty$ a. e. Let the positive measurable f *unctions* w_1 *u* w_2 *satisfy the condition*

$$
A = \sup_{x \in \Omega, t > 0} \int_0^t (w_2(x, r))^{\theta_2(r)} \left(\int_t^\infty \left(\frac{1}{w_1(x, s)s} \right)^{[\tilde{\theta}_1(r)]'} ds \right)^{\frac{\theta_2(r)}{[\tilde{\theta}_1(r)]'}} dr < \infty.
$$
 (5)

Then the maximal operator M *from* $GM_{p(\cdot),\theta_1(\cdot),w_1(\cdot)}(\Omega)$ *to* $GM_{p(\cdot),\theta_2(\cdot),w_2(\cdot)}(\Omega)$ *is bounded.*

Proof. According to the definition and to Theorem 1.6, Hölder's inequality with variable exponents θ , θ' infers

$$
||Mf||_{GM_{p(\cdot),\theta_2(\cdot),w_2(\cdot)}(\Omega)} = \sup_{x \in \Omega} \left\| \frac{w_2(x,r)}{r^{\eta_p(x,r)}} ||Mf||_{L_{p(\cdot)}(B(x,r))} \right\|_{L_{\theta_2(\cdot)}(0,\infty)} \leq C \sup_{x \in \Omega} \left\| w_2(x,r) \int_r^{\infty} t^{-\eta_p(x,t)-1} ||f||_{L_{p(\cdot)}(B(x,t))} dt \right\|_{L_{\theta_2(\cdot)}(0,\infty)}.
$$

SIBERIAN ADVANCES IN MATHEMATICS Vol. 32 No. 2 2022

 \Box

Denote

$$
\tilde{H}_{v,u}f(r) = v(r) \int_r^{\infty} g(t)u(t) dt,
$$

where $v(r) = w_2(x,r)$, $g(t) = \frac{w_1(x,t)}{t^{\eta p(x,t)}} \|f\|_{L_{p(\cdot)}(B(x,t))}$, and $u(t) = \frac{1}{w_1(x,t)t}$ for every fixed $x \in \Omega$. Then condition (2) has the form (5), from which the boundedness of the operator $H_{v,w}f(r)$ from $L_{\theta_1(\cdot)}(0,\infty)$ to $L_{\theta_2(\cdot)}(0,\infty)$ follows. Consequently, we have

$$
||Mf||_{GM_{q(\cdot),\theta_2(\cdot),w_2(\cdot)}(\Omega)} \leq A \cdot \sup_{x \in \Omega} \left||w_1(x,t)t^{-\eta_p(x,t)}||f||_{L_{p(\cdot)}(B(x,t))} \right||_{L_{\theta_1(\cdot)}(0,\infty)} = A \cdot ||f||_{GM_{p(\cdot),\theta_1(\cdot),w_1(\cdot)}}.
$$

The latter infers the boundedness of the operator M from $GM_{p(\cdot),\theta_1(\cdot),w_1(\cdot)}$ to $GM_{q(\cdot),\theta_2(\cdot),w_2(\cdot)}$. \Box

Corollary 2.2. Let
$$
p(\cdot) \in \mathbb{P}_{\infty}^{\log}(\Omega)
$$
, $w_1(x,r) = w_2(x,r) = r^{\beta(x)}$. If

$$
\inf_{x \in \Omega, r > 0} (\beta(x) + 1) [\tilde{\theta}_1(r)]' > 1 \tag{6}
$$

 \Box

and

$$
\sup_{x \in \Omega, t > 0} \int_0^t r^{\theta_2(r)\beta(x)} \frac{t^{[-(\beta(x)+1)(\tilde{\theta}_1(r)]' + 1] \frac{\theta_2(r)}{[\tilde{\theta}_1(r)]'}}}{[(\beta(x)+1)(\tilde{\theta}_1(r)] - 1]^{\frac{\theta_2(r)}{[\tilde{\theta}_1(r)]'}}} \, dr < \infty \tag{7}
$$

then the maximal operator M *from* $GM_{p(\cdot),\theta_1(\cdot),r^{\beta(\cdot)}}(\Omega)$ *to* $GM_{p(\cdot),\theta_2(\cdot),r^{\beta(\cdot)}}(\Omega)$ *is bounded.*

Proof. Condition (5) has the form

$$
\sup_{x\in\Omega, t>0}\int_0^t r^{\theta_2(r)\beta(x)}\Bigl(\int_t^\infty s^{-[\beta(x)+1][\tilde\theta_1(r)]'}\,ds\Bigr)^{\frac{\theta_2(r)}{[\tilde\theta_1(r)]'}}\,dr<\infty.
$$

By the convergence of the inner integral, we obtain conditions (6) and (7).

The next theorems give Spanne-type results on the boundedness of the Riesz potential I^{α} in global Morrey-type spaces with variable exponent $GM_{p(\cdot),\theta(\cdot),w(\cdot)}(\Omega)$. In the following theorem $\alpha = \text{const.}$

Theorem 2.3. Assume that $p(\cdot) \in \mathbb{P}_{\infty}^{\log}(\Omega)$, the constant number α is positive, and $(\alpha p(\cdot))_{+} =$ $\sup_{x\in\Omega} \alpha p(x) < n$. Let $\theta_1(x)$ and $\theta_2(x)$ be measurable functions on \mathbb{R}_+ . Suppose that there exists *a* positive number a such that, for all $x > a$, we have $\theta_1(x) = \overline{\theta}_1 = \text{const}$, $\theta_2(x) = \overline{\theta}_2 = \text{const}$, and $1 < \theta_1 \le \tilde{\theta}_1(x) \le \theta_2(x) \le \Theta_2 < \infty$ almost everywhere. Let the functions $p_1(x)$ and $p_2(x)$ satisfy the equality $\frac{1}{p_2(x)} = \frac{1}{p_1(x)} - \frac{\alpha(x)}{n}$ and let the functions w_1 and w_2 meet the condition

$$
T = \sup_{x \in \Omega, t > 0} \int_0^t (w_2(x, r))^{\theta_2(r)} \left(\int_t^\infty \left(\frac{s^{\alpha - 1}}{w_1(x, s)} \right)^{[\tilde{\theta}_1(r)]'} ds \right)^{\frac{\theta_2(r)}{[\tilde{\theta}_1(r)]'}} dr < \infty.
$$
 (8)

Then the operators I_α *and* M_α *from* $GM_{p_1(\cdot),\theta_1(\cdot),w_1(\cdot)}(\Omega)$ *to* $GM_{p_2(\cdot),\theta_2(\cdot),w_2(\cdot)}(\Omega)$ *are bounded.*

Proof. Using the definition and results from [12] (see also Theorem 1.5), we have

$$
||I^{\alpha}||_{GM_{q(\cdot),\theta_2(\cdot),w_2(\cdot)}(\Omega)} = \sup_{x \in \Omega} \left||w_2(x,r)r^{-\eta_q(x,r)}||I_{\alpha}f||_{L_{q(\cdot)}(B(x,r))}\right||_{L_{\theta_2(\cdot)}(0,\infty)}
$$

$$
\leq C \sup_{x \in \Omega} \left||w_2(x,r)\int_r^{\infty} t^{-\eta_q(x,t)-1}||f||_{L_{p(\cdot)}(B(x,t))} dt \right||_{L_{\theta_2(\cdot)}(0,\infty)}.
$$

Denote

$$
\tilde{H}_{v,u}f(r) = v(r) \int_r^{\infty} g(t)u(t) dt,
$$

where $v(r) = w_2(x,r)$, $g(t) = \frac{w_1(x,t)}{t^{\eta_p(x,t)}} \|f\|_{L_{p(\cdot)}(B(x,t))}$, and $u(t) = \frac{t^{\eta_p(x,t) - \eta_q(x,t) - 1}}{w_1(x,t)}$ for every fixed $x \in \Omega$. Then condition (2) has the form (8), from which the boundedness of the operator $\tilde{H}_{v,w}f(r)$ acting from $L_{\theta_1(\cdot)}(0,\infty)$ to $L_{\theta_2(\cdot)}(0,\infty)$ follows. Consequently, we have

$$
||I^{\alpha}f||_{GM_{q(\cdot),\theta_2(\cdot),w_2(\cdot)}(\Omega)} \leq T \cdot \sup_{x \in \Omega} \left||w_1(x,t)t^{-\eta_p(x,t)}||f||_{L_{p(\cdot)}(B(x,t))} \right||_{L_{\theta_1(\cdot)}(0,\infty)} = T \cdot ||f||_{GM_{p(\cdot),\theta_1(\cdot),w_1(\cdot)}}.
$$

This means that the operator I^{α} from $GM_{p_1(\cdot),\theta_1(\cdot),w_1(\cdot)}$ to $GM_{p_2(\cdot),\theta_2(\cdot),w_2(\cdot)}$ is bounded. The theorem is proved. \Box

Corollary 2.4. Let
$$
p(\cdot) \in P_{\infty}^{\log}(\Omega)
$$
 and $w_1(x, r) = w_2(x, r) = r^{\beta(x)}$. If
\n
$$
\sup_{x \in \Omega, r > 0} (\alpha - \beta(x) - 1) [\tilde{\theta}_1(r)]' < -1
$$
\n(9)

and

$$
\sup_{x \in \Omega, t > 0} \int_0^t r^{\theta_2(r)\beta(x)} \frac{t^{[[\alpha - \beta(x) - 1][\tilde{\theta}_1(r)]' + 1]\frac{\theta_2(r)}{[\tilde{\theta}_1(r)]'}}}{[\beta(x) + 1 - \alpha][\tilde{\theta}_1(r)]' - 1} dr < \infty
$$
\n(10)

then the operators I_α *and* M_α *from* $GM_{p(\cdot),\theta_1(\cdot),r^\beta}(\Omega)$ *to* $GM_{p(\cdot),\theta_2(\cdot),r^\beta}(\Omega)$ *are bounded.*

Proof. Condition (8) takes the form

$$
\sup_{x\in\Omega,t>0}\int_0^t r^{\theta_2(r)\beta(x)}\Bigl(\int_t^\infty s^{(\alpha-1-\beta(x))[\tilde\theta_1(r)]'}\,ds\Bigr)^{\frac{\theta_2(r)}{[\tilde\theta_1(r)]'}}\,dr<\infty.
$$

By the convergence of the inner integral, we deduce conditions (9) and (10).

In the following theorem, $\alpha(x)$ is a variable exponent.

Theorem 2.5. Assume that $p(\cdot) \in \mathbb{P}_{\infty}^{\log}(\Omega)$, the function $\alpha(x)$ satisfies the condition $\alpha(x) > 0$ *and* $(\alpha(\cdot)p(\cdot))_+ = \sup_{x \in \Omega} \alpha(x)p(x) < n$. Let $\theta_1(x)$ and $\theta_2(x)$ be measurable functions on \mathbb{R}_+ . *Suppose that there exists a positive number a such that, for all* $x > a$ *, we have* $\theta_1(x) = \overline{\theta}_1 = \text{const}$ *,* $\theta_2(x)=\overline{\theta}_2=\text{const},$ and $1<\theta_1\leqslant \tilde{\theta}_1(x)\leqslant \theta_2(x)\leqslant \Theta_2<\infty$ almost everywhere. Let the functions $p_1(x)$ and $p_2(x)$ satisfy the equality $\frac{1}{p_2(x)}=\frac{1}{p_1(x)}-\frac{\alpha(x)}{n}$ and let the functions w_1 and w_2 meet the *condition*

$$
T=\sup_{x\in \Omega, t>0}\int_0^t \big(w_2(x,r)\big)^{\theta_2(r)}\Bigl(\int_t^\infty \Bigl(\frac{s^{\alpha(x)-1}}{w_1(x,s)}\Bigr)^{[\tilde{\theta}_1(r)]'}\,ds\Bigr)^{\frac{\theta_2(r)}{[\tilde{\theta}_1(r)]'}}\,dr<\infty.
$$

Then the operators $\frac{1}{(1+|x|)^{\gamma(x)}}I^{\alpha(\cdot)}$ *and* $\frac{1}{(1+|x|)^{\gamma(x)}}M^{\alpha(\cdot)}$ *acting from the space* $GM_{p_1(\cdot),\theta_1(\cdot),w_1(\cdot))}(\Omega)$ *to the space* $GM_{p_2(\cdot),\theta_2(\cdot),w_2(\cdot)}(\Omega)$ *are bounded.*

Proof. The proof of this theorem is the same as that of Theorem 2.3: It is sufficient to substitute $\frac{1}{(1+|x|)^{\gamma(x)}}I^{\alpha(\cdot)}f(x)$ for $I^{\alpha}f(x)$. 1 \Box

SIBERIAN ADVANCES IN MATHEMATICS Vol. 32 No. 2 2022

 \Box

86 BOKAYEV, ONERBEK

REFERENCES

- 1. C. B. Morrey, "On the solutions of quasi-linear elliptic partial differential equations," Trans. Am. Math. Soc. **43**, 126 (1938).
- 2. V. Burenkov and H. Guliyev, "Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces," Studia Math. **163**, 157 (2004).
- 3. V. Burenkov and V. Guliyev, "Necessary and sufficient conditions for boundedness of the Riesz potential in the local Morrey-type spaces," Potential Analys. **30** 1 (2009).
- 4. V. Burenkov, H. Guliyev, and V. Guliyev, "Necessary and sufficient conditions for boundedness of the Riesz potential in the local Morrey-type spaces," Doklady Math. **75**, 103 (2007).
- 5. A. Almeida, J. Hasanov, and S. Samko, "Maximal and potential operators in variable exponent Morrey spaces," Georgian Math. J. **15**, 195 (2008).
- 6. A. Almeida and P. Hasto, "Besov spaces with variable smoothness and integrability," J. Funct. Analys. **258**, 1628 (2010).
- 7. A. Almeida and S. Samko, "Characterization of Riesz and Bessel potentials on variable Lebesgue spaces," J. Funct. Spaces and Appl. **4**, 113 (2006).
- 8. A. Almeida and S. Samko, "Embeddings of variable Hajlasz-Sobolev spaces into Holder spaces of variable order," J. Math. Analys. Appl. **353**, 489 (2009).
- 9. A. Almeida and S. Samko, "Fractional and hypersingular operators in variable exponent spaces on metric measure spaces," Mediterr. J. Math. **6**, 215 (2009).
- 10. J. Alvarez and C. Perez, "Estimates with A_{∞} weights for various singular integral operators," Boll. Un. Mat. Ital. **7**, 123 (1994).
- 11. V. Guliyev, J. Hasanov, and S. Samko, "Boundedness of maximal, potential type, and singular integral operators in the generalized variable exponent Morrey spaces," J. Math. Sci. **170**, 423 (2010).
- 12. V. Guliyev and S. Samko, "Maximal, potential, and singular operators in the generalized variable exponent Morrey spaces on unbounded sets," J. Math. Sci. **193**, 228 (2013).
- 13. I. Sharapudinov, "The topology of spaces $L^{p(t)}$," Math. Not. 26, 613 (1979).
- 14. L. Diening, "Maximal function on generalized Lebesgue spaces $L_{p(\cdot)}$," Math. Inequal. Appl. **7**, 245 (2004).
- 15. L. Diening, "Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L_{p(.)}$ and Wk,p(·)," Math. Nachr. **268**, 31 (2004).
- 16. V. Kokilashvili and S. Samko, "On Sobolev theorem for the Riesz type potentials in Lebesgue spaces with variable exponent," Z. Analys. Anwend. **22**, 899 (2003).
- 17. D. E. Edmunds., V. Kokilashvili, and A. Meskhi, "On the boundedness and compactness of weight Hardy operators in $L_p(x)$ spaces," Georgian Math. J. 12, 27 (2005).