On the Boundedness of Integral Operators in Morrey-Type Spaces with Variable Exponents

N. A. Bokayev^{1*} and Zh. M. Onerbek^{1**}

¹L.N. Gumilyov Eurasian National University, Nur-Sultan, 010008 Kazakhstan Received February 4, 2022; revised February 13, 2022; accepted April 29, 2022

Abstract—We consider the global Morrey-type spaces $GM_{p(\cdot),\theta(\cdot),w(\cdot)}(\Omega)$ with variable exponents p(x), $\theta(x)$, and w(x,r) defining these spaces. In the case of unbounded sets $\Omega \subset \mathbb{R}^n$, we prove the boundedness of the Hardy–Littlewood maximal operator and potential-type operator in these spaces. We prove Spanne-type results on the boundedness of the Riesz potential I^{α} in global Morrey-type spaces with variable exponents $GM_{p(\cdot),\theta(\cdot),w(\cdot)}(\Omega)$.

DOI: 10.1134/S1055134422020018

Keywords: boundedness, Riesz potential, fractional maximal operator, global Morrey-type space with variable exponents.

INTRODUCTION

In this paper we consider the global Morrey-type spaces $GM_{p(\cdot),\theta(\cdot),w(\cdot)}(\Omega)$ with variable exponents $p(\cdot), \theta(\cdot)$ and a general function w(x, r) defining a Morrey-type norm. The Morrey spaces $M_{p,\lambda}$ are introduced in [1] in the frames of the study of partial differential equations. Many classical operators of harmonic analysis (e. g., maximal, fractional maximal, potential operators) were studied in the Morrey-type spaces with constant exponents p, θ [2–4]. The Morrey spaces also attracted attention of researchers in the area of variable exponent analysis; see [5–10]. The Morrey spaces $\mathcal{L}_{p(\cdot),\lambda(\cdot)}$ with variable exponent $p(\cdot), \lambda(\cdot)$ were introduced and studied in [5]. The general versions $M_{p(\cdot),w(\cdot)}(\Omega)$, $\Omega \subset \mathbb{R}^n$, were introduced and studied in [11, 12]. The boundedness of maximal and potential type operators in the generalized Morrey-type spaces with a variable exponent were considered in [11] in the case of bounded sets $\Omega \subset \mathbb{R}^n$.

Let $f \in L_{loc}(\mathbb{R}^n)$. The Hardy–Littlewood maximal operator is defined as

$$Mf(x) = \sup_{r>0} \frac{1}{|B(x,r)|} \int_{\tilde{B}(x,r)} |f(y)| \, dy,$$

where B(x,r) is a ball in \mathbb{R}^n centered at a point $x \in \mathbb{R}^n$ and of a radius $r, \tilde{B}(x,r) = B(x,r) \cap \Omega, \Omega \subset \mathbb{R}^n$.

The fractional maximal operator of variable order $\alpha(x)$ is defined as

$$M^{\alpha(\cdot)}f(x) = \sup_{r>0} |B(x,r)|^{-1 + \frac{\alpha(x)}{n}} \int_{\tilde{B}(x,r)} |f(y)| \, dy, \quad 0 \le \alpha(x) < n$$

In the case $\alpha(x) = \alpha = \text{const}$, this operator coincides with the classical fractional maximal operator M^{α} . If $\alpha(x) = 0$ then $M^{\alpha(\cdot)}$ coincides with the operator M.

The Riesz potential $I^{\alpha(x)}$ of variable order $\alpha(x)$ is defined by the following equality:

$$I^{\alpha(x)}f(x) = \int_{\mathbb{R}^n} \frac{f(y)}{|x-y|^{n-\alpha(x)}} \, dy, \quad 0 < \alpha(x) < n.$$

In the case $\alpha(x) = \alpha = \text{const}$, this operator coincides with the classical Riesz potential I^{α} .

^{*}E-mail: bokayev@mail.ru

^{**}E-mail: 930mail.ru

1. LEBESGUE SPACES WITH VARIABLE EXPONENT. GENERALIZED MORREY-TYPE SPACES WITH VARIABLE EXPONENTS

Let p(x) be a measurable function on an open set $\Omega \subset \mathbb{R}^n$ with values in $(1, \infty)$. Put

$$1 < p_{-} \leqslant p(x) \leqslant p_{+} < \infty, \tag{1}$$

where $p_{-} = p_{-}(\Omega) = \operatorname{ess\,inf}_{x \in \Omega} p(x)$ and $p_{+} = p_{+}(\Omega) = \operatorname{ess\,sup}_{x \in \Omega} p(x)$. We denote by $L_{p(\cdot)}(\Omega)$ the space of all measurable functions f(x) on Ω such that

$$J_{p(\cdot)}(f) = \int_{\Omega} |f(x)|^{p(x)} dx < \infty,$$

where the norm is defined as

$$||f||_{p(\cdot)} = \inf\left\{\eta > 0: J_{p(\cdot)}\left(\frac{f}{\eta}\right) \leqslant 1\right\}.$$

This is a Banach space. The conjugate exponent p' is defined by the formula

$$p'(x) = \frac{p(x)}{p(x) - 1}$$

Hölder's inequality for the variable exponents $p(\cdot)$ and $p'(\cdot)$ is of the form

$$\int_{\Omega} f(x)g(x)dx \leqslant C(p) \|f\|_{L_{p(\cdot)}(\Omega)} \|g\|_{L_{p'(\cdot)}(\Omega)},$$

where $C(p) = \frac{1}{p_-} + \frac{1}{p'_-}$. The Lebesgue spaces $L_{p(\cdot)}$ with variable exponents $p(\cdot)$ were introduced in [13] and studied in [14, 15].

Define $\mathcal{P}(\Omega)$ as the set of measurable functions $p: \Omega \to [1, \infty)$. Denote by $\mathcal{P}^{\log}(\Omega)$ the set of measurable functions p(x) satisfying the local log-condition

$$|p(x) - p(y)| \leq \frac{A_p}{-\ln|x-y|}, \text{ with } |x-y| \leq \frac{1}{2} \quad \forall x, y \in \Omega,$$

where A_p is independent of x and y. Next, put $\mathbb{P}^{\log}(\Omega)$ for the set of measurable functions p(x) meeting both (1) and the log-condition. In the case of Ω is an unbounded set, we denote by $\mathbb{P}^{\log}_{\infty}(\Omega)$ the set of exponents which is a subset of the set of $\mathbb{P}^{\log}(\Omega)$ and satisfying the decay condition

$$|p(x) - p(\infty)| \leq A_{\infty} \ln(2 + |x|), \quad x \in \mathbb{R}^n.$$

Put $\mathbb{A}^{\log}(\Omega)$ for the set of bounded exponents $\alpha : \Omega \to \mathbb{R}$ satisfying the log-condition.

Let Ω be an open bounded set, $p \in \mathbb{P}^{\log}(\Omega)$, and $\lambda(x)$ be a measurable function on Ω with values in [0, n]. The variable Morrey space $\mathcal{L}_{p(\cdot),\lambda(\cdot)}(\Omega)$ with the norm

$$\|f\|_{\mathcal{L}_{p(\cdot),\lambda(\cdot)}(\Omega)} = \sup_{x \in \Omega, t > 0} t^{-\frac{\lambda(x)}{p(x)}} \|f\|_{L_{p(\cdot)}(\tilde{B}(x,t))}.$$

was introduced in [3]. Let w(x, r) be nonnegative measurable function on Ω , where $\Omega \subset \mathbb{R}^n$ is an open bounded set. The generalized Morrey-type space $M_{p(\cdot),w(\cdot)}(\Omega)$ with variable exponent and the norm

$$\|f\|_{M_{p(\cdot),w(\cdot)}(\Omega)} = \sup_{x \in \Omega, r > 0} \frac{r^{-\frac{n}{p(x)}}}{w(x,r)} \|f\|_{L_{p(\cdot)}(\tilde{B}(x,r))}$$

is defined in [11]. Let w(x,r) be nonnegative measurable function on Ω , where $\Omega \subset \mathbb{R}^n$ is an open unbounded set. The generalized Morrey-type space $M_{p(\cdot),w(\cdot)}(\Omega)$ with variable exponent with the norm

$$\|f\|_{M_{p(\cdot),w(\cdot)}(\Omega)} = \sup_{x \in \Omega, r > 0} \frac{\|f\|_{L_{p(\cdot)}(\tilde{B}(x,r))}}{w(x,r)}.$$

is defined in [12]. Put

$$\eta_p(x,r) = \begin{cases} \frac{n}{p(x)} & \text{if } r \leqslant 1; \\ \frac{n}{p(\infty)} & \text{if } r > 1. \end{cases}$$

Definition 1.1. Let $p \in P^{\log}(\Omega)$, w(x, r) be a positive function on $\Omega \times [0, \infty]$, where $\Omega \in \mathbb{R}^n$. The global Morrey-type space $GM_{p(\cdot),\theta(\cdot),w(\cdot)}(\Omega)$ with variable exponents is defined as the set of functions $f \in L^{\mathrm{loc}}_{p(\cdot)}(\Omega)$ with the finite norm

$$\|f\|_{GM_{p(\cdot),\theta(\cdot),w(\cdot)}(\Omega)} = \sup_{x\in\Omega} \left\|w(x,r)r^{-\eta_p(x,r)}\|f\|_{L_{p(\cdot)}(\tilde{B}(x,r))}\right\|_{L_{\theta(\cdot)}(0,\infty)}.$$

We assume that the positive measurable function w(x, r) satisfies the condition

$$\sup_{x\in\Omega} \|w(x,r)\|_{L_{\theta(\cdot)}(0,\infty)} < \infty.$$

Then this space contains at least any bounded functions and thereby is nonempty. In the case $w(x,r) = r^{-\frac{\lambda(x)}{p(x)} + \eta_p(x,r)}$, the corresponding space is denoted by $GM_{p(\cdot),\theta(\cdot)}^{\lambda(\cdot)}$:

$$GM_{p(\cdot),\theta(\cdot)}^{\lambda(\cdot)}(\Omega) = GM_{p(\cdot),w(\cdot),\theta}\Big|_{w(x,r)=r^{-\frac{\lambda(x)}{p(x)}+\eta_p(x,r)}},$$

and

$$\|f\|_{GM_{p(\cdot),\theta(\cdot)}^{\lambda(\cdot)}(\Omega)} = \sup_{x\in\Omega} \left\|w(x,r)r^{-\frac{\lambda(x)}{p(x)}}\|f\|_{L_{p(\cdot)}(\tilde{B}(x,r))}\right\|_{L_{\theta(\cdot)}(0,\infty)}$$

In the case $\theta = \infty$, the space $GM_{p(\cdot),\infty,w(\cdot)}(\Omega)$ coincides with the generalized Morrey space with variable exponent $M_{p(\cdot),w(\cdot)}(\Omega)$ with the finite quasi-norm

$$\|f\|_{M_{p(\cdot),w(\cdot)}(\Omega)} = \sup_{x \in \Omega} \Big\{ w(x,r)r^{-\eta_p(x,r)} \|f\|_{L_{p(\cdot)}(\tilde{B}(x,r))} \Big\}.$$

If $p(\cdot) = p = \text{const}$ and $\theta(x) = \theta = \text{const}$ then the space $GM_{p(\cdot),\theta(\cdot),w(\cdot)}(\Omega)$ coincides with the ordinary global Morrey space $GM_{p,\theta,w}(\Omega)$, considered by V.I. Burenkov and others [2–4]. Some Spanne- and Adams-type theorems were proved in [5] for bounded sets Ω . Also, various results on the boundedness of operators are obtained in [11, 12, 16].

We need the following results from [12] for our arguments.

Lemma 1.2. Assume that $p \in \mathbb{P}^{\log}_{\infty}(\Omega)$ and $f \in L^{p(\cdot)}_{loc}(\mathbb{R}^n)$. Then

$$\|f\|_{L_{p(\cdot)}(B(x,t))} \leq Ct^{\eta_p(x,t)} \int_t^\infty r^{-\eta_p(x,r)-1} \|f\|_{L_{p(\cdot)}(B(x,r))} \, dr$$

Theorem 1.3. Suppose that $p \in \mathbb{P}^{\log}_{\infty}(\Omega)$. Then for each $f \in L_{p(\cdot)}(\Omega)$ we have

$$\|Mf\|_{L_{p(\cdot)}(\tilde{B}(x,t))} \leqslant Ct^{\eta_p(x,t)} \sup_{r>2t} \Big\{ r^{-\eta_p(x,r)} \|f\|_{L_{p(\cdot)}(\tilde{B}(x,r))} \Big\},$$

where C is independent of $f, x \in \Omega$ and t > 0.

Let us prove the next necessary inequality.

Theorem 1.4. Assume that $p \in \mathbb{P}^{\log}_{\infty}(\Omega)$. Then

$$\|Mf\|_{L_{p(\cdot)}(\tilde{B}(x,t))} \leq Ct^{\eta_p(x,t)} \int_t^\infty s^{-\eta_p(x,s)-1} \|f\|_{L_{p(\cdot)}(\tilde{B}(x,s))} \, ds, \tag{2}$$

where C is independent of f, x, t.

Proof. Using Theorem 1.3 and Lemma 1.2, we deduce

$$\begin{split} \|Mf\|_{L_{p(\cdot)}(\tilde{B}(x,t))} &\leqslant Ct^{\eta_{p}(x,t)} \sup_{r>2t} \left\{ r^{-\eta_{p}(x,r)} \|f\|_{L_{p(\cdot)}(\tilde{B}(x,r))} \right\} \\ &\leqslant Ct^{\eta_{p}(x,t)} \sup_{r>t} \left\{ r^{-\eta_{p}(x,r)} \|f\|_{L_{p(\cdot)}(\tilde{B}(x,r))} \right\} \\ &\leqslant Ct^{\eta_{p}(x,t)} \sup_{r>t} \left\{ \int_{r}^{\infty} s^{-\eta_{p}(x,s)-1} \|f\|_{L_{p(\cdot)}(B(x,s))} \, ds \right\} \\ &= Ct^{\eta_{p}(x,t)} \int_{t}^{\infty} s^{-\eta_{p}(x,s)-1} \|f\|_{L_{p(\cdot)}(\tilde{B}(x,s))} \, ds. \end{split}$$

The theorem is proved.

The next result generalizes an inequality proved in [12].

Theorem 1.5. Let $p \in \mathbb{P}_{\infty}^{\log}(\Omega)$ and let the function $\alpha(x)$ and q(x) satisfy the condition $\frac{1}{q(x)} = \frac{1}{p(x)} - \frac{\alpha(x)}{n}$. Then, for each $x \in \mathbb{R}^n$ and t > 0,

$$\left\|\frac{1}{(1+|y|)^{\gamma(y)}}I^{\alpha(\cdot)}f\right\|_{L_{q(\cdot)}(\tilde{B}(x,t))} \leq Ct^{\eta_q(x,t)}\int_t^\infty r^{-\eta_q(x,r)-1}\|f\|_{L_{p(\cdot)}(\tilde{B}(x,r))}\,dr.$$
(3)

Proof. We represent the function f as $f(x) = f_1(x) + f_2(x)$, where $f_1(x) = f(x)\chi_{\tilde{B}(x,2t)}$ and $f_2(x) = f(x)\chi_{\Omega\setminus\tilde{B}(x,2t)}$. Then

$$\frac{1}{(1+|y|)^{\gamma(y)}}I^{\alpha(\cdot)}f(y) = \frac{1}{(1+|y|)^{\gamma(y)}}I^{\alpha(\cdot)}f_1(y) + \frac{1}{(1+|y|)^{\gamma(y)}}I^{\alpha(\cdot)}f_2(y).$$

From the results obtained in [16] it follows that

$$\begin{split} \left\| \frac{1}{(1+|y|)^{\gamma(y)}} I^{\alpha(\cdot)} f_1 \right\|_{L_{q(\cdot)}(\tilde{B}(x,t))} &\leqslant \left\| \frac{1}{(1+|y|)^{\gamma(y)}} I^{\alpha(\cdot)} f_1 \right\|_{L_{q(\cdot)}(\mathbb{R}^n)} \\ &\leqslant C \| f_1 \|_{L_{p(\cdot)}(\mathbb{R}^n)} = C \| f \|_{L_{p(\cdot)}(B(x,2t))}. \end{split}$$

Lemma 1.2 implies

$$\left\|\frac{1}{(1+|y|)^{\gamma(y)}}I^{\alpha(\cdot)}f_1\right\|_{L_{q(\cdot)}(\tilde{B}(x,t))} \leqslant Ct^{\eta_q(x,t)}\int_{2t}^{\infty} r^{-\eta_q(x,r)-1}\|f\|_{L_{p(\cdot)}(\tilde{B}(x,r))}\,dr.$$
(4)

If $|x-z| \leq t$ and $|z-y| \geq 2t$, we have $\frac{1}{2}|z-y| \leq |x-y| \leq \frac{3}{2}|z-y|$. Since $\frac{1}{(1+|y|)^{\gamma(y)}} \leq 1$, we infer

$$\begin{aligned} \left\| \frac{1}{(1+|y|)^{\gamma(y)}} I^{\alpha(\cdot)} f_2 \right\|_{L_{q(\cdot)}(\tilde{B}(x,t))} &\leq \left\| \int_{\mathbb{R}^n \setminus B(x,2t)} |z-y|^{\alpha-n} f(y) \, dy \right\|_{L_{q(\cdot)}(\tilde{B}(x,t))} \\ &\leq C \int_{\mathbb{R}^n \setminus B(x,2t)} |x-y|^{\alpha-n} |f(y)| \, dy \cdot \|\chi_{B(x,t)}\|_{L_{q(\cdot)}(\mathbb{R}^n)}. \end{aligned}$$

Choosing $\beta > \frac{n}{q_{-}}$, we obtain

$$\begin{split} \int_{\mathbb{R}^n \setminus B(x,2t)} |x-y|^{\alpha-n} |f(y)| \, dy &= \beta \int_{\mathbb{R}^n \setminus B(x,2t)} |x-y|^{\alpha-n+\beta} |f(y)| \left(\int_{|x-y|}^{\infty} s^{-\beta-1} \, ds \right) dy \\ &= \beta \int_{2t}^{\infty} s^{-\beta-1} \left(\int_{y \in \mathbb{R}^n : 2t \leqslant |x-y| \leqslant s} |x-y|^{\alpha-n+\beta} |f(y)| \, dy \right) ds \end{split}$$

$$\leq C \int_{2t}^{\infty} s^{-\beta-1} \|f\|_{L_{p(\cdot)}(B(x,s))} \cdot \||x-y|^{\alpha-n+\beta}\|_{L_{p'(\cdot)}(B(x,s))} \, ds \\ \leq C \int_{2t}^{\infty} s^{\alpha-\eta_p(x,s)-1} \|f\|_{L_{p(\cdot)}(B(x,s))} \, ds.$$

Therefore,

$$\left\|\frac{1}{(1+|y|)^{\gamma(y)}}I^{\alpha(\cdot)}f_2\right\|_{L_{q(\cdot)}(\tilde{B}(x,t))} \leqslant Ct^{\eta_p(x,t)}\int_{2t}^{\infty}s^{-\eta_q(x,s)-1}\|f\|_{L_{p(\cdot)}(B(x,s))}\,ds.$$

The latter together with (4) yields (3). The theorem is proved.

Let u and v be positive measurable functions. The dual Hardy operator is defined as

$$\tilde{H}_{v,u}f(x) = v(x)\int_x^\infty f(t)u(t)\,dt, \ x \in \mathbb{R}^n.$$

Suppose that *a* is a positive fixed number. Put $\theta_{1,a}(x) = \operatorname{ess\,inf}_{y \in [x,a)} \theta_1(y)$,

$$\tilde{\theta}_1(x) = \begin{cases} \theta_{1,a}(x) & \text{if } x \in [0,a], \\ \overline{\theta}_1 = \text{const} & \text{if } x \in [a,\infty) \end{cases}$$

Moreover, we denote $\theta_1 = \operatorname{ess\,inf}_{x \in \mathbb{R}_+} \theta_1(x)$ and $\Theta_2 = \operatorname{ess\,sup}_{x \in \mathbb{R}_+} \theta_2(x)$ for $\theta_1(x)$ and $\theta_2(x)$.

The next theorem is proved in [17].

Theorem 1.6. Let $\theta_1(x)$ and $\theta_2(x)$ be measurable functions on \mathbb{R}_+ . Suppose that there exists a positive number a such that $\theta_1(x) = \overline{\theta}_1 = \text{const}$, $\theta_2(x) = \overline{\theta}_2 = \text{const}$ holds for all x > a, and $1 < \theta_1 \leq \tilde{\theta}_1(x) \leq \theta_2(x) \leq \Theta_2 < \infty$ almost everywhere. If

$$G = \sup_{t>0} \int_0^t [v(x)]^{\theta_2(x)} \left(\int_t^\infty u^{\tilde{\theta}_1'(x)}(\tau), d\tau \right)^{\frac{\theta_2(x)}{(\theta_1)'(x)}} dx < \infty$$

then the operator $\tilde{H}_{v,u}$ from $L_{\theta_1(\cdot)}(\mathbb{R}^+)$ to $L_{\theta_2(\cdot)}(\mathbb{R}^+)$ is bounded.

2. MAIN RESULTS

Theorem 2.1. Assume that $p(\cdot) \in \mathbb{P}_{\infty}^{\log}(\Omega)$, and $\theta_1(x)$ and $\theta_2(x)$ are measurable functions on \mathbb{R}_+ . Suppose that there exists a positive number a such that we have $\theta_1(x) = \overline{\theta}_1 = \text{const}, \theta_2(x) = \overline{\theta}_2 = \text{const}$ for all t > a, and $1 < \theta_1 \leq \tilde{\theta}_1(x) \leq \theta_2(x) \leq \Theta_2 < \infty$ a. e. Let the positive measurable functions w_1 ut w_2 satisfy the condition

$$A = \sup_{x \in \Omega, t > 0} \int_{0}^{t} (w_{2}(x, r))^{\theta_{2}(r)} \left(\int_{t}^{\infty} \left(\frac{1}{w_{1}(x, s)s} \right)^{\left[\tilde{\theta}_{1}(r)\right]'} ds \right)^{\frac{\theta_{2}(r)}{\left[\tilde{\theta}_{1}(r)\right]'}} dr < \infty.$$
(5)

0 (-)

Then the maximal operator M from $GM_{p(\cdot),\theta_1(\cdot),w_1(\cdot)}(\Omega)$ to $GM_{p(\cdot),\theta_2(\cdot),w_2(\cdot)}(\Omega)$ is bounded.

Proof. According to the definition and to Theorem 1.6, Hölder's inequality with variable exponents θ , θ' infers

$$\begin{split} \|Mf\|_{GM_{p(\cdot),\theta_{2}(\cdot),w_{2}(\cdot)}(\Omega)} &= \sup_{x \in \Omega} \left\| \frac{w_{2}(x,r)}{r^{\eta_{p}(x,r)}} \|Mf\|_{L_{p(\cdot)}(B(x,r))} \right\|_{L_{\theta_{2}(\cdot)}(0,\infty)} \\ &\leq C \sup_{x \in \Omega} \left\| w_{2}(x,r) \int_{r}^{\infty} t^{-\eta_{p}(x,t)-1} \|f\|_{L_{p(\cdot)}(B(x,t))} \, dt \right\|_{L_{\theta_{2}(\cdot)}(0,\infty)}. \end{split}$$

SIBERIAN ADVANCES IN MATHEMATICS Vol. 32 No. 2 2022

Denote

$$\tilde{H}_{v,u}f(r) = v(r)\int_{r}^{\infty}g(t)u(t)\,dt,$$

where $v(r) = w_2(x, r)$, $g(t) = \frac{w_1(x,t)}{t^{\eta_p(x,t)}} ||f||_{L_{p(\cdot)}(B(x,t))}$, and $u(t) = \frac{1}{w_1(x,t)t}$ for every fixed $x \in \Omega$. Then condition (2) has the form (5), from which the boundedness of the operator $\tilde{H}_{v,w}f(r)$ from $L_{\theta_1(\cdot)}(0,\infty)$ to $L_{\theta_2(\cdot)}(0,\infty)$ follows. Consequently, we have

$$\begin{split} \|Mf\|_{GM_{q(\cdot),\theta_{2}(\cdot),w_{2}(\cdot)}(\Omega)} &\leqslant A \cdot \sup_{x \in \Omega} \left\| w_{1}(x,t)t^{-\eta_{p}(x,t)} \|f\|_{L_{p(\cdot)}(B(x,t))} \right\|_{L_{\theta_{1}(\cdot)}(0,\infty)} \\ &= A \cdot \|f\|_{GM_{p(\cdot),\theta_{1}(\cdot),w_{1}(\cdot)}}. \end{split}$$

The latter infers the boundedness of the operator M from $GM_{p(\cdot),\theta_1(\cdot),w_1(\cdot)}$ to $GM_{q(\cdot),\theta_2(\cdot),w_2(\cdot)}$.

Corollary 2.2. Let $p(\cdot) \in \mathbb{P}^{\log}_{\infty}(\Omega)$, $w_1(x,r) = w_2(x,r) = r^{\beta(x)}$. If

$$\inf_{x\in\Omega,r>0} (\beta(x)+1)[\tilde{\theta}_1(r)]' > 1 \tag{6}$$

and

$$\sup_{x \in \Omega, t > 0} \int_{0}^{t} r^{\theta_{2}(r)\beta(x)} \frac{t^{\left[-(\beta(x)+1)[\tilde{\theta}_{1}(r)]'+1\right]\frac{\theta_{2}(r)}{[\tilde{\theta}_{1}(r)]'}}}{\left[(\beta(x)+1)[\tilde{\theta}_{1}(r)]-1\right]^{\frac{\theta_{2}(r)}{[\tilde{\theta}_{1}(r)]'}}} dr < \infty$$

$$\tag{7}$$

then the maximal operator M from $GM_{p(\cdot),\theta_1(\cdot),r^{\beta(\cdot)}}(\Omega)$ to $GM_{p(\cdot),\theta_2(\cdot),r^{\beta(\cdot)}}(\Omega)$ is bounded.

Proof. Condition (5) has the form

$$\sup_{x \in \Omega, t > 0} \int_0^t r^{\theta_2(r)\beta(x)} \left(\int_t^\infty s^{-[\beta(x)+1][\tilde{\theta}_1(r)]'} \, ds \right)^{\frac{\theta_2(r)}{[\tilde{\theta}_1(r)]'}} \, dr < \infty.$$

By the convergence of the inner integral, we obtain conditions (6) and (7).

The next theorems give Spanne-type results on the boundedness of the Riesz potential I^{α} in global Morrey-type spaces with variable exponent $GM_{p(\cdot),\theta(\cdot),w(\cdot)}(\Omega)$. In the following theorem $\alpha = \text{const.}$

Theorem 2.3. Assume that $p(\cdot) \in \mathbb{P}_{\infty}^{\log}(\Omega)$, the constant number α is positive, and $(\alpha p(\cdot))_{+} = \sup_{x \in \Omega} \alpha p(x) < n$. Let $\theta_1(x)$ and $\theta_2(x)$ be measurable functions on \mathbb{R}_+ . Suppose that there exists a positive number α such that, for all $x > \alpha$, we have $\theta_1(x) = \overline{\theta}_1 = \text{const}$, $\theta_2(x) = \overline{\theta}_2 = \text{const}$, and $1 < \theta_1 \leq \overline{\theta}_1(x) \leq \theta_2(x) \leq \Theta_2 < \infty$ almost everywhere. Let the functions $p_1(x)$ and $p_2(x)$ satisfy the equality $\frac{1}{p_2(x)} = \frac{1}{p_1(x)} - \frac{\alpha(x)}{n}$ and let the functions w_1 and w_2 meet the condition

$$T = \sup_{x \in \Omega, t > 0} \int_0^t (w_2(x, r))^{\theta_2(r)} \left(\int_t^\infty \left(\frac{s^{\alpha - 1}}{w_1(x, s)} \right)^{[\tilde{\theta}_1(r)]'} ds \right)^{\frac{\theta_2(r)}{[\tilde{\theta}_1(r)]'}} dr < \infty.$$
(8)

Then the operators I_{α} and M_{α} from $GM_{p_1(\cdot),\theta_1(\cdot),w_1(\cdot))}(\Omega)$ to $GM_{p_2(\cdot),\theta_2(\cdot),w_2(\cdot)}(\Omega)$ are bounded.

Proof. Using the definition and results from [12] (see also Theorem 1.5), we have

$$\begin{split} \|I^{\alpha}\|_{GM_{q(\cdot),\theta_{2}(\cdot),w_{2}(\cdot)}(\Omega)} &= \sup_{x \in \Omega} \left\|w_{2}(x,r)r^{-\eta_{q}(x,r)}\|I_{\alpha}f\|_{L_{q(\cdot)}(B(x,r))}\right\|_{L_{\theta_{2}(\cdot)}(0,\infty)} \\ &\leq C \sup_{x \in \Omega} \left\|w_{2}(x,r)\int_{r}^{\infty}t^{-\eta_{q}(x,t)-1}||f||_{L_{p(\cdot)}(B(x,t))} \,dt\right\|_{L_{\theta_{2}(\cdot)}(0,\infty)}. \end{split}$$

Denote

$$\tilde{H}_{v,u}f(r) = v(r)\int_{r}^{\infty}g(t)u(t)\,dt,$$

where $v(r) = w_2(x, r)$, $g(t) = \frac{w_1(x,t)}{t^{\eta_p(x,t)}} \|f\|_{L_{p(\cdot)}(B(x,t))}$, and $u(t) = \frac{t^{\eta_p(x,t)-\eta_q(x,t)-1}}{w_1(x,t)}$ for every fixed $x \in \Omega$. Then condition (2) has the form (8), from which the boundedness of the operator $\tilde{H}_{v,w}f(r)$ acting from $L_{\theta_1(\cdot)}(0,\infty)$ to $L_{\theta_2(\cdot)}(0,\infty)$ follows. Consequently, we have

$$\begin{split} \|I^{\alpha}f\|_{GM_{q(\cdot),\theta_{2}(\cdot),w_{2}(\cdot)}(\Omega)} \leqslant T \cdot \sup_{x \in \Omega} \left\| w_{1}(x,t)t^{-\eta_{p}(x,t)} \|f\|_{L_{p(\cdot)}(B(x,t))} \right\|_{L_{\theta_{1}(\cdot)}(0,\infty)} \\ &= T \cdot \|f\|_{GM_{p(\cdot),\theta_{1}(\cdot),w_{1}(\cdot)}}. \end{split}$$

This means that the operator I^{α} from $GM_{p_1(\cdot),\theta_1(\cdot),w_1(\cdot)}$ to $GM_{p_2(\cdot),\theta_2(\cdot),w_2(\cdot)}$ is bounded. The theorem is proved.

Corollary 2.4. Let
$$p(\cdot) \in P_{\infty}^{\log}(\Omega)$$
 and $w_1(x,r) = w_2(x,r) = r^{\beta(x)}$. If

$$\sup_{x \in \Omega, r > 0} (\alpha - \beta(x) - 1) [\tilde{\theta}_1(r)]' < -1$$
(9)

and

$$\sup_{x \in \Omega, t > 0} \int_{0}^{t} r^{\theta_{2}(r)\beta(x)} \frac{t^{[[\alpha - \beta(x) - 1][\tilde{\theta}_{1}(r)]' + 1]\frac{\theta_{2}(r)}{[\tilde{\theta}_{1}(r)]'}}}{[\beta(x) + 1 - \alpha][\tilde{\theta}_{1}(r)]' - 1} dr < \infty$$
(10)

o ()

then the operators I_{α} and M_{α} from $GM_{p(\cdot),\theta_{1}(\cdot),r^{\beta}}(\Omega)$ to $GM_{p(\cdot),\theta_{2}(\cdot),r^{\beta}}(\Omega)$ are bounded.

Proof. Condition (8) takes the form

$$\sup_{x\in\Omega,t>0}\int_0^t r^{\theta_2(r)\beta(x)} \left(\int_t^\infty s^{(\alpha-1-\beta(x))[\tilde{\theta}_1(r)]'} \, ds\right)^{\frac{\theta_2(r)}{[\tilde{\theta}_1(r)]'}} \, dr < \infty$$

By the convergence of the inner integral, we deduce conditions (9) and (10).

In the following theorem, $\alpha(x)$ is a variable exponent.

Theorem 2.5. Assume that $p(\cdot) \in \mathbb{P}_{\infty}^{\log}(\Omega)$, the function $\alpha(x)$ satisfies the condition $\alpha(x) > 0$ and $(\alpha(\cdot)p(\cdot))_{+} = \sup_{x \in \Omega} \alpha(x)p(x) < n$. Let $\theta_{1}(x)$ and $\theta_{2}(x)$ be measurable functions on \mathbb{R}_{+} . Suppose that there exists a positive number a such that, for all x > a, we have $\theta_{1}(x) = \overline{\theta}_{1} = \text{const}$, $\theta_{2}(x) = \overline{\theta}_{2} = \text{const}$, and $1 < \theta_{1} \leq \tilde{\theta}_{1}(x) \leq \theta_{2}(x) \leq \Theta_{2} < \infty$ almost everywhere. Let the functions $p_{1}(x)$ and $p_{2}(x)$ satisfy the equality $\frac{1}{p_{2}(x)} = \frac{1}{p_{1}(x)} - \frac{\alpha(x)}{n}$ and let the functions w_{1} and w_{2} meet the condition

$$T = \sup_{x \in \Omega, t > 0} \int_0^t (w_2(x, r))^{\theta_2(r)} \left(\int_t^\infty \left(\frac{s^{\alpha(x) - 1}}{w_1(x, s)} \right)^{\left[\tilde{\theta}_1(r)\right]'} ds \right)^{\frac{\theta_2(r)}{\left[\tilde{\theta}_1(r)\right]'}} dr < \infty.$$

Then the operators $\frac{1}{(1+|x|)^{\gamma(x)}}I^{\alpha(\cdot)}$ and $\frac{1}{(1+|x|)^{\gamma(x)}}M^{\alpha(\cdot)}$ acting from the space $GM_{p_1(\cdot),\theta_1(\cdot),w_1(\cdot))}(\Omega)$ to the space $GM_{p_2(\cdot),\theta_2(\cdot),w_2(\cdot)}(\Omega)$ are bounded.

Proof. The proof of this theorem is the same as that of Theorem 2.3: It is sufficient to substitute $\frac{1}{(1+|x|)^{\gamma(x)}}I^{\alpha(\cdot)}f(x)$ for $I^{\alpha}f(x)$.

BOKAYEV, ONERBEK

REFERENCES

- C. B. Morrey, "On the solutions of quasi-linear elliptic partial differential equations," Trans. Am. Math. Soc. 43, 126 (1938).
- 2. V. Burenkov and H. Guliyev, "Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces," Studia Math. 163, 157 (2004).
- 3. V. Burenkov and V. Guliyev, "Necessary and sufficient conditions for boundedness of the Riesz potential in the local Morrey-type spaces," Potential Analys. **30** 1 (2009).
- 4. V. Burenkov, H. Guliyev, and V. Guliyev, "Necessary and sufficient conditions for boundedness of the Riesz potential in the local Morrey-type spaces," Doklady Math. **75**, 103 (2007).
- 5. A. Almeida, J. Hasanov, and S. Samko, "Maximal and potential operators in variable exponent Morrey spaces," Georgian Math. J. 15, 195 (2008).
- 6. A. Almeida and P. Hasto, "Besov spaces with variable smoothness and integrability," J. Funct. Analys. 258, 1628 (2010).
- 7. A. Almeida and S. Samko, "Characterization of Riesz and Bessel potentials on variable Lebesgue spaces," J. Funct. Spaces and Appl. 4, 113 (2006).
- 8. A. Almeida and S. Samko, "Embeddings of variable Hajlasz-Sobolev spaces into Holder spaces of variable order," J. Math. Analys. Appl. **353**, 489 (2009).
- 9. A. Almeida and S. Samko, "Fractional and hypersingular operators in variable exponent spaces on metric measure spaces," Mediterr. J. Math. 6, 215 (2009).
- 10. J. Alvarez and C. Perez, "Estimates with A_{∞} weights for various singular integral operators," Boll. Un. Mat. Ital. 7, 123 (1994).
- 11. V. Guliyev, J. Hasanov, and S. Samko, "Boundedness of maximal, potential type, and singular integral operators in the generalized variable exponent Morrey spaces," J. Math. Sci. **170**, 423 (2010).
- 12. V. Guliyev and S. Samko, "Maximal, potential, and singular operators in the generalized variable exponent Morrey spaces on unbounded sets," J. Math. Sci. **193**, 228 (2013).
- 13. I. Sharapudinov, "The topology of spaces $L^{p(t)}$," Math. Not. 26, 613 (1979).
- 14. L. Diening, "Maximal function on generalized Lebesgue spaces $L_{p(\cdot)}$," Math. Inequal. Appl. 7, 245 (2004).
- 15. L. Diening, "Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L_{p(\cdot)}$ and $W_{k,p(\cdot)}$," Math. Nachr. **268**, 31 (2004).
- 16. V. Kokilashvili and S. Samko, "On Sobolev theorem for the Riesz type potentials in Lebesgue spaces with variable exponent," Z. Analys. Anwend. **22**, 899 (2003).
- 17. D. E. Edmunds., V. Kokilashvili, and A. Meskhi, "On the boundedness and compactness of weight Hardy operators in $L_p(x)$ spaces," Georgian Math. J. **12**, 27 (2005).