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Abstract—We consider the global Morrey-type spaces GMp(·),θ(·),w(·)(Ω) with variable exponents
p(x), θ(x), and w(x, r) defining these spaces. In the case of unbounded sets Ω ⊂ R

n, we prove
the boundedness of the Hardy–Littlewood maximal operator and potential-type operator in these
spaces. We prove Spanne-type results on the boundedness of the Riesz potential Iα in global
Morrey-type spaces with variable exponents GMp(·),θ(·),w(·)(Ω).
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INTRODUCTION

In this paper we consider the global Morrey-type spaces GMp(·),θ(·),w(·)(Ω) with variable exponents
p(·), θ(·) and a general function w(x, r) defining a Morrey-type norm. The Morrey spaces Mp,λ are
introduced in [1] in the frames of the study of partial differential equations. Many classical operators
of harmonic analysis (e. g., maximal, fractional maximal, potential operators) were studied in the
Morrey-type spaces with constant exponents p, θ [2–4]. The Morrey spaces also attracted attention
of researchers in the area of variable exponent analysis; see [5–10]. The Morrey spaces Lp(·),λ(·) with
variable exponent p(·), λ(·) were introduced and studied in [5]. The general versions Mp(·),w(·)(Ω),
Ω ⊂ R

n, were introduced and studied in [11, 12]. The boundedness of maximal and potential type
operators in the generalized Morrey-type spaces with a variable exponent were considered in [11] in
the case of bounded sets Ω ⊂ R

n, in [12] in the case of unbounded sets Ω ⊂ R
n.

Let f ∈ Lloc(Rn).The Hardy–Littlewood maximal operator is defined as

Mf(x) = sup
r>0

1
|B(x, r)|

∫
B̃(x,r)

|f(y)| dy,

where B(x, r) is a ball in R
n centered at a point x ∈ R

n and of a radius r, B̃(x, r) = B(x, r)∩Ω, Ω ⊂ R
n.

The fractional maximal operator of variable order α(x) is defined as

Mα(·)f(x) = sup
r>0

|B(x, r)|−1+ α(x)
n

∫
B̃(x,r)

|f(y)| dy, 0 � α(x) < n.

In the case α(x) = α = const, this operator coincides with the classical fractional maximal operator Mα.
If α(x) = 0 then Mα(·) coincides with the operator M .

The Riesz potential Iα(x) of variable order α(x) is defined by the following equality:

Iα(x)f(x) =
∫

Rn

f(y)

|x − y|n−α(x)
dy, 0 < α(x) < n.

In the case α(x) = α = const, this operator coincides with the classical Riesz potential Iα.
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1. LEBESGUE SPACES WITH VARIABLE EXPONENT.
GENERALIZED MORREY-TYPE SPACES WITH VARIABLE EXPONENTS

Let p(x) be a measurable function on an open set Ω ⊂ R
n with values in (1,∞). Put

1 < p− � p(x) � p+ < ∞, (1)

where p− = p−(Ω) = ess infx∈Ω p(x) and p+ = p+(Ω) = ess supx∈Ω p (x). We denote by Lp(·)(Ω) the
space of all measurable functions f(x) on Ω such that

Jp(·)(f) =
∫

Ω
|f(x)|p(x) dx < ∞,

where the norm is defined as

‖f‖p(·) = inf

{
η > 0 : Jp(·)

(
f

η

)
� 1

}
.

This is a Banach space. The conjugate exponent p′ is defined by the formula

p′(x) =
p(x)

p(x) − 1
.

Hölder’s inequality for the variable exponents p(·) and p′(·) is of the form∫
Ω

f(x)g(x)dx � C(p)‖f‖Lp(·)(Ω)‖g‖Lp′(·)(Ω),

where C(p) = 1
p−

+ 1
p′−

. The Lebesgue spaces Lp(·) with variable exponents p(·) were introduced in [13]

and studied in [14, 15].
Define P(Ω) as the set of measurable functions p : Ω → [1,∞). Denote by Plog(Ω) the set of

measurable functions p(x) satisfying the local log-condition

|p(x) − p(y)| � Ap

− ln |x − y| , with |x − y| � 1
2
∀x, y ∈ Ω,

where Ap is independent of x and y. Next, put P
log(Ω) for the set of measurable functions p(x) meeting

both (1) and the log-condition. In the case of Ω is an unbounded set, we denote by P
log
∞ (Ω) the set of

exponents which is a subset of the set of P
log(Ω) and satisfying the decay condition

|p(x) − p(∞)| � A∞ ln(2 + |x|), x ∈ R
n.

Put A
log(Ω) for the set of bounded exponents α : Ω → R satisfying the log-condition.

Let Ω be an open bounded set, p ∈ P
log(Ω), and λ(x) be a measurable function on Ω with values in

[0, n]. The variable Morrey space Lp(·),λ(·)(Ω) with the norm

‖f‖Lp(·),λ(·)(Ω) = sup
x∈Ω,t>0

t
−λ(x)

p(x) ‖f‖Lp(·)(B̃(x,t)).

was introduced in [3]. Let w(x, r) be nonnegative measurable function on Ω, where Ω ⊂ R
n is an open

bounded set. The generalized Morrey-type space Mp(·),w(·)(Ω) with variable exponent and the norm

‖f‖Mp(·),w(·)(Ω) = sup
x∈Ω,r>0

r
− n

p(x)

w(x, r)
‖f‖Lp(·)(B̃(x,r)).

is defined in [11]. Let w(x, r) be nonnegative measurable function on Ω, where Ω ⊂ R
n is an open

unbounded set. The generalized Morrey-type space Mp(·),w(·)(Ω) with variable exponent with the norm

‖f‖Mp(·),w(·)(Ω) = sup
x∈Ω,r>0

‖f‖Lp(·)(B̃(x,r))

w(x, r)
.
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is defined in [12]. Put

ηp(x, r) =

{
n

p(x) if r � 1;
n

p(∞) if r > 1.

Definition 1.1. Let p ∈ P log(Ω), w(x, r) be a positive function on Ω × [0,∞], where Ω ∈ R
n. The

global Morrey-type space GM p(·),θ(·),w(·)(Ω) with variable exponents is defined as the set of functions
f ∈ Lloc

p(·)(Ω) with the finite norm

‖f‖GMp(·),θ(·),w(·)(Ω) = sup
x∈Ω

∥∥∥w(x, r)r−ηp(x,r)‖f‖Lp(·)(B̃(x,r))

∥∥∥
Lθ(·)(0,∞)

.

We assume that the positive measurable function w(x, r) satisfies the condition

sup
x∈Ω

‖w(x, r)‖Lθ(·)(0,∞) < ∞.

Then this space contains at least any bounded functions and thereby is nonempty. In the case w(x, r) =

r
−λ(x)

p(x)
+ηp(x,r), the corresponding space is denoted by GM

λ(·)
p(·),θ(·):

GM
λ(·)
p(·),θ(·)(Ω) = GMp(·),w(·),θ|

w(x,r)=r
−λ(x)

p(x)
+ηp(x,r)

,

and

‖f‖
GM

λ(·)
p(·),θ(·)(Ω)

= sup
x∈Ω

∥∥∥w(x, r)r−
λ(x)
p(x) ‖f‖Lp(·)(B̃(x,r))

∥∥∥
Lθ(·)(0,∞)

.

In the case θ = ∞, the space GM p(·),∞,w(·)(Ω) coincides with the generalized Morrey space with
variable exponent Mp(·),w(·)(Ω) with the finite quasi-norm

‖f‖Mp(·),w(·)(Ω) = sup
x∈Ω

{
w(x, r)r−ηp(x,r)‖f‖Lp(·)(B̃(x,r))

}
.

If p(·) = p = const and θ(x) = θ = const then the space GMp(·),θ(·),w(·)(Ω) coincides with the ordinary
global Morrey space GM p,θ,w(Ω), considered by V.I. Burenkov and others [2–4]. Some Spanne- and
Adams-type theorems were proved in [5] for bounded sets Ω. Also, various results on the boundedness
of operators are obtained in [11, 12, 16].

We need the following results from [12] for our arguments.

Lemma 1.2. Assume that p ∈ P
log
∞ (Ω) and f ∈ L

p(·)
loc (Rn).Then

‖f‖Lp(·)(B(x,t)) � Ctηp(x,t)

∫ ∞

t
r−ηp(x,r)−1‖f‖Lp(·)(B(x,r)) dr.

Theorem 1.3. Suppose that p ∈ P
log
∞ (Ω). Then for each f ∈ Lp(·)(Ω) we have

‖Mf‖Lp(·)(B̃(x,t)) � Ctηp(x,t) sup
r>2t

{
r−ηp(x,r)‖f‖Lp(·)(B̃(x,r))

}
,

where C is independent of f, x ∈ Ω and t > 0.

Let us prove the next necessary inequality.

Theorem 1.4. Assume that p ∈ P
log
∞ (Ω). Then

‖Mf‖Lp(·)(B̃(x,t)) � Ctηp(x,t)

∫ ∞

t
s−ηp(x,s)−1‖f‖Lp(·)(B̃(x,s)) ds, (2)

where C is independent of f, x, t.
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Proof. Using Theorem 1.3 and Lemma 1.2, we deduce

‖Mf‖Lp(·)(B̃(x,t)) � Ctηp(x,t) sup
r>2t

{
r−ηp(x,r)‖f‖Lp(·)(B̃(x,r))

}

� Ctηp(x,t) sup
r>t

{
r−ηp(x,r)‖f‖Lp(·)(B̃(x,r))

}

� Ctηp(x,t) sup
r>t

{∫ ∞

r
s−ηp(x,s)−1‖f‖Lp(·)(B(x,s)) ds

}

= Ctηp(x,t)

∫ ∞

t
s−ηp(x,s)−1||f ||Lp(·)(B̃(x,s)) ds.

The theorem is proved.

The next result generalizes an inequality proved in [12].

Theorem 1.5. Let p ∈ P
log
∞ (Ω) and let the function α(x) and q(x) satisfy the condition 1

q(x) =
1

p(x) −
α(x)

n . Then, for each x ∈ R
n and t > 0,

∥∥∥∥∥
1

(1 + |y|)γ(y)
Iα(·)f

∥∥∥∥∥
Lq(·)(B̃(x,t))

� Ctηq(x,t)

∫ ∞

t
r−ηq(x,r)−1‖f‖Lp(·)(B̃(x,r)) dr. (3)

Proof. We represent the function f as f(x) = f1(x) + f2(x), where f1(x) = f(x)χB̃(x,2t) and
f2(x) = f(x)χΩ\B̃(x,2t). Then

1

(1 + |y|)γ(y)
Iα(·)f(y) =

1

(1 + |y|)γ(y)
Iα(·)f1(y) +

1

(1 + |y|)γ(y)
Iα(·)f2(y).

From the results obtained in [16] it follows that
∥∥∥∥∥

1

(1 + |y|)γ(y)
Iα(·)f1

∥∥∥∥∥
Lq(·)(B̃(x,t))

�
∥∥∥∥∥

1

(1 + |y|)γ(y)
Iα(·)f1

∥∥∥∥∥
Lq(·)(Rn)

� C‖f1‖Lp(·)(Rn) = C‖f‖Lp(·)(B(x,2t)).

Lemma 1.2 implies
∥∥∥∥ 1

(1 + |y|)γ(y)
Iα(·)f1

∥∥∥∥∥
Lq(·)(B̃(x,t))

� Ctηq(x,t)

∫ ∞

2t
r−ηq(x,r)−1‖f‖Lp(·)(B̃(x,r)) dr. (4)

If |x − z| � t and |z − y| � 2t, we have 1
2 |z − y| � |x − y| � 3

2 |z − y|. Since 1

(1+|y|)γ(y) � 1, we infer

∥∥∥∥∥
1

(1 + |y|)γ(y)
Iα(·)f2

∥∥∥∥∥
Lq(·)(B̃(x,t))

�
∥∥∥∥∥
∫

Rn\B(x,2t)
|z − y|α−nf(y) dy

∥∥∥∥∥
Lq(·)(B̃(x,t))

� C

∫
Rn\B(x,2t)

|x − y|α−n|f(y)| dy · ‖χB(x,t)‖Lq(·)(Rn)
.

Choosing β > n
q−

, we obtain

∫
Rn\B(x,2t)

|x − y|α−n|f(y)| dy = β

∫
Rn\B(x,2t)

|x − y|α−n+β|f(y)|
(∫ ∞

|x−y|
s−β−1 ds

)
dy

= β

∫ ∞

2t
s−β−1

(∫
y∈Rn:2t�|x−y|�s

|x − y|α−n+β|f(y)| dy
)

ds
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� C

∫ ∞

2t
s−β−1‖f‖Lp(·)(B(x,s)) · ‖|x − y|α−n+β‖Lp′(·)(B(x,s)) ds

� C

∫ ∞

2t
sα−ηp(x,s)−1‖f‖Lp(·)(B(x,s)) ds.

Therefore, ∥∥∥∥∥
1

(1 + |y|)γ(y)
Iα(·)f2

∥∥∥∥∥
Lq(·)(B̃(x,t))

� Ctηp(x,t)

∫ ∞

2t
s−ηq(x,s)−1‖f‖Lp(·)(B(x,s)) ds.

The latter together with (4) yields (3). The theorem is proved.

Let u and v be positive measurable functions. The dual Hardy operator is defined as

H̃v,uf(x) = v(x)
∫ ∞

x
f(t)u(t) dt, x ∈ R

n.

Suppose that a is a positive fixed number. Put θ1,a(x) = ess infy∈[x,a) θ1(y),

θ̃1(x) =

{
θ1,a(x) if x ∈ [0, a],
θ1 = const if x ∈ [a,∞).

Moreover, we denote θ1 = ess infx∈R+ θ1(x) and Θ2 = ess supx∈R+
θ2(x) for θ1(x) and θ2(x).

The next theorem is proved in [17].

Theorem 1.6. Let θ1(x) and θ2(x) be measurable functions on R+. Suppose that there exists
a positive number a such that θ1(x) = θ1 = const, θ2(x) = θ2 = const holds for all x > a, and
1 < θ1 � θ̃1(x) � θ2(x) � Θ2 < ∞ almost everywhere. If

G = sup
t>0

∫ t

0
[v(x)]θ2(x)

(∫ ∞

t
uθ̃′1(x)(τ), dτ

) θ2(x)

(θ1)′(x)

dx < ∞

then the operator H̃v,u from Lθ1(·)(R
+) to Lθ2(·)(R+) is bounded.

2. MAIN RESULTS

Theorem 2.1. Assume that p(·) ∈ P
log
∞ (Ω), and θ1(x) and θ2(x) are measurable functions on

R+. Suppose that there exists a positive number a such that we have θ1(x) = θ1 = const, θ2(x) =
θ2 = const for all t > a, and 1 < θ1 � θ̃1(x) � θ2(x) � Θ2 < ∞ a. e. Let the positive measurable
functions w1 ш w2 satisfy the condition

A = sup
x∈Ω,t>0

∫ t

0
(w2(x, r))θ2(r)

(∫ ∞

t

( 1
w1(x, s)s

)[θ̃1(r)]
′

ds
) θ2(r)

[θ̃1(r)]
′

dr < ∞. (5)

Then the maximal operator M from GMp(·),θ1(·),w1(·)(Ω) to GM p(·),θ2(·),w2(·)(Ω) is bounded.

Proof. According to the definition and to Theorem 1.6, Hölder’s inequality with variable exponents
θ, θ′ infers

‖Mf‖GMp(·),θ2(·),w2(·)(Ω) = sup
x∈Ω

∥∥∥∥∥
w2(x, r)
rηp(x,r)

‖Mf‖Lp(·)(B(x,r))

∥∥∥∥∥
Lθ2(·)(0,∞)

� C sup
x∈Ω

∥∥∥∥∥w2(x, r)
∫ ∞

r
t−ηp(x,t)−1‖f‖Lp(·)(B(x,t)) dt

∥∥∥∥∥
Lθ2(·)(0,∞)

.
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Denote

H̃v,uf(r) = v(r)
∫ ∞

r
g(t)u(t) dt,

where v(r) = w2(x, r), g(t) = w1(x,t)

tηp(x,t) ‖f‖Lp(·)(B(x,t)), and u(t) = 1
w1(x,t)t for every fixed x ∈ Ω. Then

condition (2) has the form (5), from which the boundedness of the operator H̃v,wf(r) from Lθ1(·)(0,∞)
to Lθ2(·)(0,∞) follows. Consequently, we have

‖Mf‖GMq(·),θ2(·),w2(·)(Ω) � A · sup
x∈Ω

∥∥∥w1(x, t)t−ηp(x,t)‖f‖Lp(·)(B(x,t))

∥∥∥
Lθ1(·)(0,∞)

= A · ‖f‖GMp(·),θ1(·),w1(·)
.

The latter infers the boundedness of the operator M from GMp(·),θ1(·),w1(·) to GM q(·),θ2(·),w2(·).

Corollary 2.2. Let p(·) ∈ P
log
∞ (Ω), w1(x, r) = w2(x, r) = rβ(x). If

inf
x∈Ω,r>0

(β(x) + 1)[θ̃1(r)]
′
> 1 (6)

and

sup
x∈Ω,t>0

∫ t

0
rθ2(r)β(x) t

[−(β(x)+1)[θ̃1(r)]
′
+1]

θ2(r)

[θ̃1(r)]
′

[(β(x) + 1)[θ̃1(r)] − 1]
θ2(r)

[θ̃1(r)]
′

dr < ∞ (7)

then the maximal operator M from GMp(·),θ1(·),rβ(·)(Ω) to GMp(·),θ2(·),rβ(·)(Ω) is bounded.

Proof. Condition (5) has the form

sup
x∈Ω,t>0

∫ t

0
rθ2(r)β(x)

(∫ ∞

t
s−[β(x)+1][θ̃1(r)]

′
ds

) θ2(r)

[θ̃1(r)]
′
dr < ∞.

By the convergence of the inner integral, we obtain conditions (6) and (7).

The next theorems give Spanne-type results on the boundedness of the Riesz potential Iα in global
Morrey-type spaces with variable exponent GM p(·),θ(·),w(·)(Ω). In the following theorem α = const.

Theorem 2.3. Assume that p(·) ∈ P
log
∞ (Ω), the constant number α is positive, and (αp(·))+ =

supx∈Ω αp(x) < n. Let θ1(x) and θ2(x) be measurable functions on R+. Suppose that there exists
a positive number a such that, for all x > a, we have θ1(x) = θ1 = const, θ2(x) = θ2 = const, and
1 < θ1 � θ̃1(x) � θ2(x) � Θ2 < ∞ almost everywhere. Let the functions p1(x) and p2(x) satisfy

the equality 1
p2(x) = 1

p1(x) −
α(x)

n and let the functions w1 and w2 meet the condition

T = sup
x∈Ω,t>0

∫ t

0
(w2(x, r))θ2(r)

(∫ ∞

t

( sα−1

w1(x, s)

)[θ̃1(r)]
′

ds
) θ2(r)

[θ̃1(r)]
′

dr < ∞. (8)

Then the operators Iα and Mα from GM p1(·),θ1(·),w1(·))(Ω) to GMp2(·),θ2(·),w2(·)(Ω) are bounded.

Proof. Using the definition and results from [12] (see also Theorem 1.5), we have

‖Iα‖GMq(·),θ2(·),w2(·)(Ω) = sup
x∈Ω

∥∥∥w2(x, r)r−ηq(x,r)‖Iαf‖Lq(·)(B(x,r))

∥∥∥
Lθ2(·)(0,∞)

� C sup
x∈Ω

∥∥∥∥∥w2(x, r)
∫ ∞

r
t−ηq(x,t)−1||f ||Lp(·)(B(x,t)) dt

∥∥∥∥∥
Lθ2(·)(0,∞)

.
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Denote

H̃v,uf(r) = v(r)
∫ ∞

r
g(t)u(t) dt,

where v(r) = w2(x, r), g(t) = w1(x,t)

tηp(x,t) ‖f‖Lp(·)(B(x,t)), and u(t) = tηp(x,t)−ηq(x,t)−1

w1(x,t) for every fixed x ∈ Ω.

Then condition (2) has the form (8), from which the boundedness of the operator H̃v,wf(r) acting from
Lθ1(·)(0,∞) to Lθ2(·)(0,∞) follows. Consequently, we have

‖Iαf‖GMq(·),θ2(·),w2(·)(Ω) � T · sup
x∈Ω

∥∥∥w1(x, t)t−ηp(x,t)‖f‖Lp(·)(B(x,t))

∥∥∥
Lθ1(·)(0,∞)

= T · ‖f‖GMp(·),θ1(·),w1(·)
.

This means that the operator Iα from GMp1(·),θ1(·),w1(·) to GM p2(·),θ2(·),w2(·) is bounded. The theorem is
proved.

Corollary 2.4. Let p(·) ∈ P log
∞ (Ω) and w1(x, r) = w2(x, r) = rβ(x). If

sup
x∈Ω,r>0

(α − β(x) − 1)[θ̃1(r)]
′
< −1 (9)

and

sup
x∈Ω,t>0

∫ t

0
rθ2(r)β(x) t

[[α−β(x)−1][θ̃1(r)]
′
+1]

θ2(r)

[θ̃1(r)]
′

[β(x) + 1 − α][θ̃1(r)]
′ − 1

dr < ∞ (10)

then the operators Iα and Mα from GM p(·),θ1(·),rβ(Ω) to GM p(·),θ2(·),rβ(Ω) are bounded.

Proof. Condition (8) takes the form

sup
x∈Ω,t>0

∫ t

0
rθ2(r)β(x)

(∫ ∞

t
s(α−1−β(x))[θ̃1(r)]

′
ds

) θ2(r)

[θ̃1(r)]
′
dr < ∞.

By the convergence of the inner integral, we deduce conditions (9) and (10).

In the following theorem, α(x) is a variable exponent.

Theorem 2.5. Assume that p(·) ∈ P
log
∞ (Ω), the function α(x) satisfies the condition α(x) > 0

and (α(·)p(·))+ = supx∈Ω α(x)p(x) < n. Let θ1(x) and θ2(x) be measurable functions on R+.

Suppose that there exists a positive number a such that, for all x > a, we have θ1(x) = θ1 = const,
θ2(x) = θ2 = const, and 1 < θ1 � θ̃1(x) � θ2(x) � Θ2 < ∞ almost everywhere. Let the functions

p1(x) and p2(x) satisfy the equality 1
p2(x) = 1

p1(x) −
α(x)

n and let the functions w1 and w2 meet the
condition

T = sup
x∈Ω,t>0

∫ t

0
(w2(x, r))θ2(r)

(∫ ∞

t

( sα(x)−1

w1(x, s)

)[θ̃1(r)]
′

ds
) θ2(r)

[θ̃1(r)]
′

dr < ∞.

Then the operators 1

(1+|x|)γ(x) I
α(·) and 1

(1+|x|)γ(x) M
α(·) acting from the space GMp1(·),θ1(·),w1(·))(Ω)

to the space GMp2(·),θ2(·),w2(·)(Ω) are bounded.

Proof. The proof of this theorem is the same as that of Theorem 2.3: It is sufficient to substitute
1

(1+|x|)γ(x) I
α(·)f(x) for Iαf(x).
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