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Abstract—We consider the global Morrey-type spaces GM ) g(.),w(-)(€2) With variable exponents
p(z), 6(x), and w(z,r) defining these spaces. In the case of unbounded sets @ C R™, we prove
the boundedness of the Hardy—Littlewood maximal operator and potential-type operator in these
spaces. We prove Spanne-type results on the boundedness of the Riesz potential I* in global
Morrey-type spaces with variable exponents GM () g(.),w(-)(€2).
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INTRODUCTION

[n this paper we consider the global Morrey-type spaces GM ) g(.).w(.)(§2) with variable exponents
p(-), 6(-) and a general function w(x,r) defining a Morrey-type norm. The Morrey spaces M), 5 are
introduced in [1] in the frames of the study of partial differential equations. Many classical operators
of harmonic analysis (e. g., maximal, fractional maximal, potential operators) were studied in the
Morrey-type spaces with constant exponents p, 6 [2—4]. The Morrey spaces also attracted attention
of researchers in the area of variable exponent analysis; see [5—10]. The Morrey spaces L) 5., with

variable exponent p(-), A(-) were introduced and studied in [5]. The general versions M.y ,(.y(£2),

Q C R", were introduced and studied in [11, 12]. The boundedness of maximal and potential type
operators in the generalized Morrey-type spaces with a variable exponent were considered in [11] in
the case of bounded sets 2 € R", in[12]in the case of unbounded sets 2 C R™.

Let f € Lioc(R™).The Hardy—Littlewood maximal operator is defined as

1
M) = 220 |B(x,7)| /E;(z,r) 1wl dy.

where B(x,r) is a ballin R” centered at a point 2 € R™ and of a radius r, B(x,r) = B(z,7) NQ, Q C R
The fractional maximal operator of variable order a(z) is defined as

a(zx)
M0 (@) = sup | Bla, )| [
r>0 B(z,r)
In the case a(x) = a = const, this operator coincides with the classical fractional maximal operator M.
If a(z) = 0 then M0 coincides with the operator M.

The Riesz potential %) of variable order a(z) is defined by the following equality:

|f(y)ldy, 0<a(z)<n.

1@ f(2) = /R 1) dy, 0<a(x)<n.

o=y
In the case a(z) = o = const, this operator coincides with the classical Riesz potential 7%.
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1. LEBESGUE SPACES WITH VARIABLE EXPONENT.
GENERALIZED MORREY-TYPE SPACES WITH VARIABLE EXPONENTS

Let p(x) be a measurable function on an open set Q C R™ with values in (1, 00). Put
1 <p- <p(z) <py <oo, (1)
where p_ = p_(Q) = essinfyeq p(z) and py = p4 () = esssup,cq p (). We denote by L,.y(£2) the

space of all measurable functions f(z) on Q such that

%Ouwaéuuw“wx<m,

||f||p() = inf{n >0: Jp() <{7> < 1}.

This is a Banach space. The conjugate exponent p’ is defined by the formula

where the norm is defined as

/ i p(z)

Hélder’s inequality for the variable exponents p(+) and p/(-) is of the form

Kﬁuwww<0@wmwmwhﬂmy

where C(p) = p{ + p}, . The Lebesgue spaces L., with variable exponents p(-) were introduced in [13]

and studied in[14, 15].

Define P(Q2) as the set of measurable functions p: Q — [1,00). Denote by P8(Q) the set of
measurable functions p(x) satisfying the local log-condition

Ap

1
— g 3 i h - < 9 Q?
p(z) —ply)l < 1z — with |z —y[ <, Va,y €

where A, is independent of z and y. Next, put P1°8(Q) for the set of measurable functions p(x) meeting

both (1) and the log-condition. In the case of €2 is an unbounded set, we denote by ]P’L%g(Q) the set of
exponents which is a subset of the set of P°8() and satisfying the decay condition

p(z) = p(oo)| € Ao In(2 + [2]), = €R™

Put Al°8(Q) for the set of bounded exponents a : 2 — R satisfying the log-condition.
Let © be an open bounded set, p € P°8(€2), and () be a measurable function on Q with values in

[0,n]. The variable Morrey space L,y 5. (€2) with the norm

_Me)
HfHLP(M(A)(Q) = xesélp t v ”f”Lp(,)(E;(z,t))-

>0
was introduced in [3]. Let w(z,r) be nonnegative measurable function on €2, where Q C R"™ is an open
bounded set. The generalized Morrey-type space M,,(.) ,,.)(€2) with variable exponent and the norm

r p(e)

1 llas o = 50D 11z, B

zeQ,r>0 ’LU(ZL‘, ’I")

is defined in [11]. Let w(x,r) be nonnegative measurable function on €, where Q C R™ is an open
unbounded set. The generalized Morrey-type space M.y ,,.(€2) with variable exponent with the norm

11 o MmoBen)
Mp ()0 () z€Q,r>0 ’LU(.’E,T’) .
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is defined in[12]. Put

i) = {” .

p(zo) ifr > 1.

Definition 1.1. Let p € P'°8(Q), w(x,r) be a positive function on Q x [0, 0o}, where Q € R™. The
global Morrey-type space GM (. g(.),w(.)(£2) With variable exponents is defined as the set of functions

fe LLO(.)(Q) with the finite norm

”f”GMpm,e(‘),w(»)(Q) = sup Hw(m’T)r_np(m)”f”me(B(w,r))

€N ‘LQ(A)((),OO)

We assume that the positive measurable function w(x, r) satisfies the condition

sup lw(@, 7). (0,00) < 00

Then this space contains at least any bounded functions and thereby is nonempty. In the case w(z,r) =
— M) T,r . . .
o) T (@ ), the corresponding space is denoted by GM;‘((')) o)’

AC) B
GM 5 ) () = GM () 0] A®)

w(z,r)=r P®) +ap(e,r)’

and

_ A=)
_ (@) B
@ 21618 Hw(:p,r)r P ||f||Lp(A)(B(w,T)) ‘Lg(,)(o,oo)'

[HA| P
GM560)

In the case 6 = oo, the space GM () o0.w(.)(€2) coincides with the generalized Morrey space with

variable exponent M) ,,(.(£2) with the finite quasi-norm

T e Ll Vi P

[fp(-) = p = const and 6(z) = 0 = const then the space GM ) o(.),w(.)(£2) coincides with the ordinary
global Morrey space GM 5 ,(§2), considered by V.I. Burenkov and others [2—4]. Some Spanne- and
Adams-type theorems were proved in [5] for bounded sets 2. Also, various results on the boundedness
of operators are obtained in[11, 12, 16].

We need the following results from [12] for our arguments.

Lemma 1.2. Assume that p € P=8(Q) and f € Lifj(R”).Then
p@t) [ )1
0ty < OO [ oD
Theorem 1.3. Suppose that p € P<&(Q). Then for each f € Ly () we have
HMfHLp(A)(B(w,t)) < Ot S;1212{74—77;7(9c,r)||f||Lp(A)(B(%’T))}7

where C'is independent of f,x € Qandt > 0.

Let us prove the next necessary inequality.

Theorem 1.4. Assume that p € P<2(Q). Then

1Ml oy < CFP0 /t ST L g 5, (2)

where C is independent of f,x,t.
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Proof. Using Theorem 1.3 and Lemma 1.2, we deduce

r>2t

(z,t) —np(z,r) .
o Sg?{r T

< O(at) sup{/ S_”p(z’s)_l”f”Lp(A)(B(LS)) ds}

r>t
— ot [ @)1
_ o /t SO, oy .

The theorem is proved.

The next result generalizes an inequality proved in [12].
Theorem 1.5. Let p € P<8(Q) and let the Junction o(z) and q(z) satisfy the condition q(lx) =

p(lx) - aff). Then, for each x € R™ and t > 0,

1

7(v) .
(]‘ + ‘y|) Lq(.)(B(:C,t))
Proof. We represent the function f as f(z) = fi(z)+ fao(x), where fi(x)= f(x)XEz(th) and

1 1 1
1°0) f(y) = 1°C) £y (y) +
(14 Jy))"@ (14 Jy))"@ (14 Jy))"@

From the results obtained in [16] it follows that

10 ¢

@ [ a1 )
< Ctm /t D oy 3)

1°0) o ().

1 1
Oy Oy
= )
(1l Ly (B(z1) (L+ )™ Lg(y(R™)
< C”fluLp(,)(Rn) = C”f”Lp(.)(B(:cQt))'
Lemma 1.2 implies
1 o0
H 1°0) £ < Cha(z:t) / pa@)=) g dr. (4)
() i = Ly (B(w,r)
(1 + |y|) L (A)(B(w t)) 2t P
If |z — 2| < tand |z — y| > 2t, we have J|z — y| < |z — y| < 3|z — y|. Since (14ly \)”(y) < 1, we infer
' ! PO F < /n |z = yI* " f(y) dy
(1+lyl) Loty (B(at)) RM\B(z,2t) Lo(y(B(x.b))
<C e =y* I W)l dy - IxBan L, @0

R™\ B(,2t)

Choosing 3> " , we obtain

/ |z —y*7"|f(y)| dy = B 2 —y* " £ (y)] (/ s ds) dy
R7\ B(z,2t) R7\ B(z,2t) | |

=Y

o [Ts(f o=yl () dy) s
2t yeR™: 2tz —y|<s
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o
—B-1 —nt
gc/zt TN ey By Ml =917 P, ey 4

< C/:) Sa_np(x’S)_lHfHLp(A)(B(w,s)) ds.

Therefore,
1
(1+ [y Ly (B

The latter together with (4) yields (3). The theorem is proved.

Let u and v be positive measurable functions. The dual Hardy operator is defined as

[a(~)f2

< Ot /2t s F L (B 35

H,uf(x) = v(z) /oo f@)u(t)dt, x € R™.

Suppose that a is a positive fixed number. Put 61 4(z) = essinfy ¢ o) 01(y),

él(x) _ {91@(3:) ifx € [0,q],

01 = const ifz € [a,00).

Moreover, we denote 61 = essinf e, 61(z) and ©2 = esssup,cg, 02(z) for 01 (z) and Oa(z).
The next theorem is proved in [17].

Theorem 1.6. Let 01(x) and 02(x) be measurable functions on R,. Suppose that there exists
a positive number a such that 61(x) = 01 = const, 0s(x) = 03 = const holds for all x > a, and
1 <0 <01(z) < O2(x) < Oy < 00 almost everywhere. If

. o 3(2)
G= Sup/ [v(z)]?*@ (/ ueg(m)(r),dT) O 4r < 0
0 t

>0
then the operator H,,, from Lo, (y(RT) to Lg,.y(R") is bounded.

2. MAIN RESULTS

Theorem 2.1. Assume that p(-) € PX2(Q), and 0,(z) and 0y(x) are measurable functions on
Ry. Suppose that there exists a positive number a such that we have 6,(z) = 6, = const, O3(z) =

0y = const for all t > a, and 1 < 01 < 6, () < 02(x) < Oz < 00 a. e. Let the positive measurable
functions wy w wy satisfy the condition

02(r)

¢ o0 1 u(m)]” By
A= su / wo(x, 7 92(”/ ds dr < oo. 5
b e ([ s) %) 5)

zeQ,t>0 z,s)s
Then the maximal operator M from GM ) o, (), (-)(82) 10 GM p(y gy () ws(-) (2) is bounded.

Proof. According to the definition and to Theorem 1.6, Hélder’s inequality with variable exponents
0, 0’ infers

_ wa(z,T)
||Mf||GMp(')Y02(')Yw2(‘)(Q) - 21618 i (,7) ||Mf||Lp(A)(B(w,r))
Loy (.)(0,00)
o0
< C'sup wz(a:,r)/ @=L £ (Bt A
e r P

L62(~)(0700)
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Denote

Houf(r) = o(r) / T oult) dt,

w1 (z,t)

where v(r) = wa(z,r), g(t) = (e 1) ||f||Lp(')(B(x7t)), and u(t) = wl(}mt)t for every fixed z € Q. Then

condition (2) has the form (5), from which the boundedness of the operator H,,, f () from Lg, (.(0, 00)
to Lg,((0, 00) follows. Consequently, we have

1M FlGAt ) 0y g (@) S A SUD le(aj, t)t_np(%t)HfHLp(‘)(B(z,t)) H

z€Q Lel()(ovoo)

= A-|Ifllgar,
The latter infers the boundedness of the operator M from GM ;) 0, (.),w1(-) 10 GM gy 05() w2 () -
Corollary 2.2. Let p(-) € PSE(Q), wi (z,7) = wa(x,r) = rP@). [}

2,01()w1 ()

inf (B(x) + e ()] > 1 (6)
zeQ,r>0
and
1 ’ 0o (1)
' D)5 t[—(ﬁ(r)+1)[91(7“)] +1] [éf(r)l’
sup /r2 ooy AT <00 (7)
zeQ,t>0.J0 ~

[(B(x) + 1)[01(r)] — 1] 1020
then the maximal operator M from GMP(_),Gl(_)’Tg(A) (Q) to GMP(_)’M,)’M(A) (Q) is bounded.
Proof. Condition (5) has the form

02(r)

¢ 0 ~ ’ = ’
sup / L02(1)B(2) ( / 16+ () ds) aer

xz€eQ,t>0J0 t
By the convergence of the inner integral, we obtain conditions (6) and (7).

The next theorems give Spanne-type results on the boundedness of the Riesz potential I* in global
Morrey-type spaces with variable exponent GM ) () (. (£2). In the following theorem o = const.

Theorem 2.3. Assume that p(-) € PRE(Q), the constant number o is positive, and (ap(-); =
sup,eq ap(x) < n. Let 61(x) and 02(x) be measurable functions on Ry. Suppose that there exists
a positive number a such that, for all x > a, we have 61(x) = 61 = const, O3(x) = O3 = const, and
1 < 6; < 0)(x) < Oa(x) < Oy < 0o almost everywhere. Let the Junctions pi(x) and po(z) satisfy

1 a(z)

the equality pziz) = @) ~ and let the functions wy and wo meet the condition

o, 02(r)
a—1 | [01(r)] (61 ()7’

t o]
T= su / wo (7)) / s ds dr < oo. 8
wEQ,£)>0 0 (wala,r) ( ; <w1(az,s)) ) (8)
() () 10 GM ,, (.05 () wa() (2) are bounded.

Proof. Using the definition and results from [12] (see also Theorem 1.5), we have

Then the operators 1, and M, from GM p, () 6,(-)w: (-

||Ia||GMq()Y02()Yw2()(Q) = Sup Hw2 (;U’ ”")7"_7711("577') ||Iaf||Lq()(B(I,T))

e ‘LeQ(.)(Ovoo)

< Csup
zeN

wz(az,r)/ t_nq(x’t)_l||f||Lp(,)(B(:c,t)) dt

L62(~)(0700)
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Denote

Fouf () = o(r) [ ®yute) a,
wi(zx, (z,t) (z,t)—
tn;(l f) HfHLp() (B(a.p)) and u(t) = e wl(lqt) " for every fixed z € Q.

Then condition (2) has the form (8), from which the boundedness of the operator ﬁv,wf(r) acting from
Lg,()(0,00) to Lg,(.y(0,00) follows. Consequently, we have

where v(r) = wa(z,7), g(t) =

M Fllent ey myo@ < T80 |ws @ 0P EONFl Ly |

),62() e

L@l(.)(oyoo)
=T ||f||GMp(.),01(<),w1(')'

This means that the operator I from GM,, () 0, (.),w1 (-) 10 GM py(),65(-),wo(-) 18 Dounded. The theorem is
proved.

Corollary 2.4. Let p(-) € Px2(Q) and wi (z,7) = wa(x,r) = rP@). If

sup (o — B(x) — 1)[Ay(r)]) < 1 (9)
zeQ,r>0
and

fo-B)- 1) +1) 2,

t
sup / rb2(r)B(@) ., dr<oo (10)
2eQ,t>0J0 [B(x) +1—=a]lb1(r)] —1

then the operators I, and My from GM () 9, ()78(2) 0 GM () 9,78 ($2) are bounded.
Proof. Condition (8) takes the form

: a0,
sup / L02(1)5() ( / o 1-p@) (") g > ' < 0.
zeQ,t>0.J0 t

By the convergence of the inner integral, we deduce conditions (9) and (10).

In the following theorem, «(x) is a variable exponent.

Theorem 2.5. Assume that p(-) € P<3(Q2), the function o(z) satisfies the condition a(z) > 0
and (a()p(-)); = supgeq a(r)p(z) <n. Let 61(x) and 03(x) be measurable functions on R..

Suppose that there exists a positive number a such that, for all x > a, we have 6;(x) = 61 = const,

Oy(x) = 0y = const, and 1 < 6; < 0y (z ) Oa(z) < @2(<) oo almost everywhere. Let the functions
1 o=

p1(2) and let the functions wi and wy meet the

p1(x) and pa(x) satisfy the equality p2(x) =
condition

o, 03(r)
a(z)—1 | [01(r)] [61(r)

t o]
T= su wo(z,7))%2") / s ds dr < oo.
zeQ,%O/O ( 2( )) ( t <w1(a:,s)) >

1 a(’)
Then the operators (1+\$‘)’Y(I)I and (1+|x|)v(l

to the space GM () () wa(-) () are bounded.

M*C) acting from the space GM oy, (9,61 (),w1()) (§2)

Proof The proof of this theorem is the same as that of Theorem 2.3: It is sufficient to substitute

(1+|x|)7(z) 1°0) f () for I f (z).
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