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Abstract—We find new conditions for existence of strong solutions of ordinary differential equations
with random right-hand side, stochastic differential equations with measurable random drift, and
their trajectory analogs with symmetric integrals. We show that solutions of [t6 equations satisly
a parabolic equation along trajectories of a Wiener process.

DOI: 10.1134/S1055134421020048

Keywords: stochastic differential equation, strong solution, equation with symmetric inte-
grals, ordinary differential equation with random right-hand side, Carathéodory solution,
Filippov solution.

1. INTRODUCTION

Let W be a standard Wiener process on a filtered probability space (Q, F, (Fy)eeto, )5 P). We denote
by P the sigma-algebra of predictable sets and by B(D), where D C R", the sigma-algebra of Borel
subsets of D.

In stochastic analysis, two types of ordinary stochastic differential equations (SDEs) are usually
considered. They are

(1) Ito equations
t

E(t) —&(to) = / a(s, W(s),{(s)) dW (s) +/ b(s, W(s),{(s)) ds, (1.1)

to to

where o and b are measurable functions with respect to the o-algebra P x B(R?), o(s,v,z) =
o(w,s,v,x),b(s,v,x) = b(w, s,v, ), and the first summand on the right-hand side is the stochas-
tic [t6 integral;

(2) Stratonovich equations

£(t)—E(t) = /

to

t t

o (s, W(s),&(s)) *dW(s)+/ B(s,W(s),&(s)) ds, (1.2)

to

where the first summand on the right-hand side is the stochastic Fisk—Stratonovich integral.
If o is a “smooth” diffusion coefficient then equation (1.1) can be rewritten in the form with
the Stratonovich integral.

The above equations are related to trajectory (deterministic) equations with symmetric integrals
(see[9, 10]) of a similar form

t

£(t) — £(ty) = / o (s, X (s), £(s)) * dX(s) + / B(s, X(s), £(s)) ds, (1.3)

to to

where X is a continuous function (or a realization of a stochastic process with continuous trajectories).
[t is essential that equation (1.3) is deterministic. In stochastic analysis, it is a trajectory equation;
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hence, its coefficients need not be predictable. The following fact is important: If X is a typical trajectory
of a Wiener process W then, within the framework of the [t6 formula (to be more precise, a version
of the I[to—Wentzell formula), the symmetric integral coincides with the Stratonovich integral with
probability 1; therefore, we may use the same notation for such integrals.

We present necessary information on symmetric integrals. Let R = (—o0,+00). We consider
partitions T,,, n € N, of the segment [0, ¢], where

T, = {t](gn)}’ Oztén) ﬁtgn) < ... St](gn) Sgt%ﬁ =t, neN,
such thatT,, C T,11,n € N, and

Ap = mkax‘tlgn) — t,(:_)1| — 0 as n — oo.

We denote by X the function on [0, ¢] constructed from X according to T},.
An integral
t

/0 f(s,X(s)) *xdX(s) = lim f(s,X(")(s)) (X(”))/(s)ds

n—oo 0

is said to be symmetric if the limit on the right-hand side of the equality exists and is independent of
the choice of the partition T;,, n € N.

The following condition (S) is necessary and sufficient for the existence of a symmetric integral.
Consider a pair of functions X and f, where X = X (s) with s € R* and f = f(s,u) with s € RT and
u € R. We say that this pair satisfies condition (S) on [0, t] if

(a) the function X is continuous on [0, ¢];

(b) for almost all u, the function f = f(s,u) is a function of bounded variation for s € [0,¢] and is

right-continuous with respect to s € [0, ¢];

(c) for almost all u, we have

| 1 = w)irids ) <o,

where | f|(s,u) denotes, for each u, the total variation of the function f = f(7, u) with respect to
the variable 7 on [0, s;

(d) the total variation | f|(¢,u) of the function f = f(s,u) with respect to the variable s on [0, s] is
locally summable with respect to w.

If FF = F(s,u) is a function whose partial derivatives F and F}, are continuous with respect to u and
the pair (X, F)) of functions satisfies condition (S) on [0, ¢] then the following equality holds:

F(t,X(t)) — F(0,X(0)) :/0 F;(S,X(s))*dX(s)Jr/O Fl(s,X(s)) ds.

If X(t) = W(t,w), the latter formula coincides with the formula for the stochastic It6 differential with
the Stratonovich integral.

We fix a probability space (2, F, (F})sejt,,r),P) and a Wiener process W. Recall (see [2, 4])
that a solution of SDE (1.1) is said to be strong if it is continuous with probability 1, agrees with
the filtration (F}), and substitution of the solution into equation (1.1) leads to a valid equality with
probability 1. The definitions of strong solutions of equations (1.2) and (1.3) are similar.

We describe the results of the present article. First, we consider conditions for existence of strong
solutions of SDEs (1.1) and (1.2) with measurable random drift. The methods presented below are
based on the structure of solutions of SDEs and allow us to prove existence results for strong solutions
of equation (1.3), where X is a stochastic process with continuous trajectories that agrees with (F}).
The problem on finding existence conditions for strong solutions of ODEs with random right-hand side
and SDEs attracted the attention of many researchers (see, for example, [7, 12, 13]). We also mention
surveys on this topic [2, 11] with detailed references.
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STRONG SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS 149

Second, we succeeded to understand better the well-known connection between a solution of a 1t6
SDE and the mathematical expectation of such a solution (which is a solution of a parabolic equation).
We show that solutions of SDE (1.1) satisfy with probability 1 a parabolic equation along trajectories
of a Wiener process. This assertion is a consequence of the [t6 formula, i.e., the (trajectory based)
connection with parabolic equations is already built in the definition of the [t6 integral.

2. MAIN RESULTS

1. We present necessary information on ordinary differential equations (ODEs). We consider
the Cauchy problem

y' = f(t,y), t € [to,T], y(to) = yo. (2.1)

By Peano’s theorem (see [3]), this problem is locally solvable if f is a continuous function. For
discontinuous functions, a generalization of the notion of a “solution” is needed. Such a generalization
was suggested by Carathéodory (see [6]).

A Carathéodory solution of problem (2.1) is an absolutely continuous function y such that

y@—mz[f@mm@JEMf}

0

Assume that the following Carathéodory conditions hold:

e for almost all ¢, the function f = f(¢,y) is defined and continuous with respect to y;
e forevery y, the function f = f(¢,y) is measurable with respect to ¢;

e for every bounded interval of the t-axis, the inequality |f(t,y)| < n(t) holds, where n is
a Lebesgue integrable function.

As is known, they imply existence of a Carathéodory solution of problem (2.1). The following fact is es-
sential for further considerations: This solution y is constructed as the uniform limit of a sequence {yk}

of functions, where y;, is defined on [to +ih,to +i(h + 1)] with h = T;to by the relation

%m—msz@%@—mws (22)

to
and yi(t) = yo fort < tp.

By a differential inclusion we mean a relation of the form y/(t)€F(t,y), where F'is a multivalued
mapping that takes each point (¢,y) € [to,T] x R™ into a set F(t,y) (here by y = y(t) we mean
an unknown function). If, for each point (¢,y), the set F(¢,y) is a singleton then the corresponding
differential inclusion is an ODE. A function y is called a solution if it is absolutely continuous and
satisfies the relation 3/(t) € F(t,y) almost everywhere. Such a function y is also called a Filippov
solution of problem (2.1). It is clear that differential properties of a solution y depend on the properties of
the multivalued mapping.

In the sequel, by F(t,y) we denote the least closed convex set containing all values f(t,y*) as y*
tends to y ranging over a neighborhood of y (except for a set of zero measure). By Theorems 8 and 9
in[6, Ch. 2, Sec. 7], it is possible to construct a solution as the limit of Carathéodory solutions of (2.1)
even if f is not continuous with respect to y. Instead, we require that the following conditions be valid:

e the function f = f(t,y) is measurable and almost everywhere satisfies the inequality

|f(t, )| < n(t) with a summable function n. (2.3)
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The method of the proof is important for the further study. A Filippov solution is constructed as
the limit of a sequence of solutions of ODEs of the form ¢’ = f._(¢,v), em \, 0, that are obtained by
averaging f with respect to the spatial variable, i.e., we have

f(t,y) = 215 /{|y—x|<a} f(t,z)dz.

The above-mentioned Carathéodory’s theorem can be applied to these functions.

2. We consider a Wiener process W on a probability space (Q, F, (Ft)te[toﬂ,]P’). The main aim of

this subsection is to study conditions for existence of a solution of an ODE with random right-hand side
of the form

Y =fEWE),y+ W), telto.T] yto) =y, (2.4)

where f is a random P x B(R?)-measurable function, f(t,v,y) = f(w,t,v,). We are also interested
in conditions for existence of strong solutions of equation (2.4).

Let f(t,y) = f(t, W(t),y + W(t)). Assume that f satisfies conditions (2.3) with probability 1 for
almost all £. By the above, there exists a Filippov solution of equation (2.4) for almost all w. It
remains to clarify when this solution agrees with F;. Analyzing the proofs of Carathéodory’s and
Filippov’s theorems and taking into account the fact that the limit of a sequence of measurable functions
is again a measurable functions, we find that solutions in Filippov’s theorem are constructed in two
stages. First, a sequence of functions yy, is constructed according to (2.2) with the averaged right-hand
side f.(t,y). The uniform limit of these functions is a Carathéodory solution y.. Second, the limit is
taken of a subsequence ., , where ¢, tends to zero, which leads to a Filippov solution of the initial
equation. If, at the first stage of construction of solutions with the use of formula (2.2), the function on
the right-hand side is measurable with respect to some o-algebra (for example, Fy-measurable) then so
is the constructed Filippov solution.

Theorem 1. Let

fty) = F(t,W(t),y + W(t))
and let :fv be a P x B(R)-measurable function satisfying conditions (2.3) with probability 1 for
almost all t. Then there exists a strong solution of equation (2.4).

Remark. In[13], a similar assertion was proven for ODEs with f(¢,y + W(¢)) on the right-hand
side, where f is a bounded function that is not random.

3. Filippov’s theorem allows us to find simple sufficient conditions for existence of solutions of
equations with symmetric integrals of the form (1.3).

As is known (see [1, 10]), a solution of equation (1.3) (and, consequently, of the correspond-
ing Stratonovich equation of the form (1.2) with X(t) = W(t)) can be found in the form £(t) =
©*(t, X (t),C(t)), where the partial derivatives (¢*);, (¢*),,, and (¢*),, of the function ¢* = ¢*(t,v, u)
are continuous and satisfy the following two conditions for almost all ¢:

(") (8 X (0, ) = o (£, X(8), 9" (£, X (). C(1) ). (2.5)
(¢ (10, C(t)))' = B(1,X(0),¢" (1, X(1),C(1)) ). (2.6)

We present simple arguments justifying this claim. We rewrite equation (1.3):

[(gp*);(t,X(t), C(t) — a(t,X(t), o (t, X (¢), C(t)))] * dX(s)
+ | (¢ (oc)

Taking into account results of [ 1], we conclude that conditions (2.5) and (2.6) hold.

tlv=X(t)

!/

— B(t,X(t), o (¢, X (¢), C(t)))} dt = 0.

tlv=X(t)

SIBERIAN ADVANCES IN MATHEMATICS Vol.31 No.2 2021



STRONG SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS 151

We find functions ¢* and C'. We consecutively solve two equations. First, for each ¢, we find a general
solution of the equation

(") = ot 0,97 (2.7)

in the form ¢* (¢, v, C(t)), where C' = C(¢) is an arbitrary “constant” that depends on ¢. According to (3,
pp. 158—160], it is sufficient to require that the partial derivative o7, of o = (¢, v, ¢) be continuous for

all t and v. Then condition (2.5) holds. Second, we find a solution of the Cauchy problem for an ODE of
the form

C'(t) = f(t,C1)), ¢*(to, X (to), C(to)) = &o, t € [to, T], (2.8)
where
B(t,X(t),go* (t,X(t),c)) — (Nt X (1), c)
U(t,X(t),go* (t,X(t),c))

Equation (2.8) is obtained from (2.6) with the use of (2.5). A similar (but different) approach to
construction of solutions of SDEs can be found in [5]; yet another method for solving SDEs is presented
in[8].

Theorem 2. Assume that the following conditions hold:

f(t7c) =

e there exists a general solution of equation (2.7);

e the function f on the right-hand side of equation (2.8) satisfies the assumptions of
Filippou’s theorem.

Then there exists a solution of equation (1.3).

Theorem 1 allows us to find simple sufficient conditions for existence of solutions of Stratonovich and
[t6 equations.

Corollary 1. /] the conditions of Theorem 2 are satisfied with probability 1, where o is a de-
terministic Borel function and B is a P x B(R?)-measurable function, then there exists a strong
solution of equation (1.2).

Indeed, neither equation (2.7) nor the function ¢* is random and solutions of equation (1.2) have
the form &(t) = ¢* (¢, W (t), C(t)), where C'is a random function that agrees with (F}).

[f o is a smooth function then it is possible to rewrite the corresponding [t equation in the form (1.2).
Hence, the following assertion is valid.

Corollary 2. Assume that the conditions of Corollary 1 of Theorem 2 are satisfied, the func-
tion o is continuous, and the partial derivatives o, and o, are continuous too. Then there exists
a strong solution of equation (1.1).

Remark 1. Assume that, in equation (1.3), the function o is of the (simpler) form o (¢, ). Then

equation (2.7) becomes a separable ODE. Its general solution has the form ¢* = ¢* (t, v+ C’(t)); hence,
solutions of equation (1.3) are of the form

E(t) =" (t, X(t) + C(1)). (2.9)

Remark 2. As is shown above, for SDEs (1.1) and (1.2) with a deterministic coefficient o =
o(t,v,x), strong solutions of the equations are of the form

Et) =" (t,W(1),C(1)), (2.10)

i.e., each solution is a deterministic function that depends on the Wiener process W and a smooth
random function C. In the case of a Markov process, solutions assume the (simpler) form (2.9).
Therefore, we may call the function ¢ = ¢* (¢, v, u) the structure of a solution of SDE (1.2). Thus, each
solution of equation (1.2) is a deterministic function of a Wiener process with a random drift C = C(¢, w)
(we call it a small drift).

SIBERIAN ADVANCES IN MATHEMATICS Vol.31 No.2 2021



152 NASYROV

4. The structure of a solution of SDE (1.1) allows us to clarify the connection (see [2, 4] for more
detail) between solutions of SDEs and parabolic equations. In the simplest case, this connection can be
formulated as follows: The mathematical expectation u = wu(t,z) = E;£(t) is a solution of the parabolic

equation u; = 0?uz, + bu,. The following assertion shows that solutions (2.10) of equation (1.1)
themselves satisly a parabolic equation along trajectories of the Wiener process W.

Theorem 3. Let the conditions of Corollary 2 of Theorem 2 hold for equation (1.1). Then there
exist a strong solution £ of equation (1.1) with £(t) = ¢* (¢, W(t), C(t)) and the random function ¢,
where

(L, W(t)) =" (t, W(t),C(1)),

satisfies the condition

(6 W(0) = = 0l (6,W(0) + (£, W(0), 61, (1)), ¢ € [t0,T), (2.11)

with probability 1.

Proof. We rewrite equation (1.1) with the Stratonovich integral. We obtain equation (1.2). Only
the second summand is changed; namely, we have

; [U;(S,U,%)U(S,U,{L‘) +O';(S,’U,l‘)]. (2.12)

Formula (2.12) is a consequence of the formula that connects the [t6 and Stratonovich integrals:

/Ot f(s,W(s)) *dW (s) = /0

where f = f(w, s,v)isa P x B(R?)-measurable function such that the derivative f is continuous with
probability 1 and the It6 and Stratonovich integrals make sense for f.

We differentiate the equality ¢),(t,v) = o' (¢, v, ¢(¢t,v)) with respect to v. Taking (2.5) into account,
we obtain

B(s,v,z,w) = b(s,v,x,w) —

t

f(s,W(s)) dW(s) + ; /0 fi(s,W(s)) ds,

v (t,0) = 0 (t,v,0(s,0)) o (s,0,0(s,v)) + 0y, (t,v,6(s,v)).

In view of the latter equality and formula (2.6), we may rewrite relation (2.12) in the form of equa-
tion (2.11).
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