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Abstract—Several video coding standards and techniques have been introduced for multimedia applications,
particularly h.26x series for video processing. These standards employ motion estimation process for reducing
the amount of data that is required to store or transmit the video. Motion estimation process is an inextricable
part of the video coding as it removes the temporal redundancy between successive frames of video sequences.
This paper is about these motion estimation algorithms, their search procedures, complexity, advantages, and
limitations. A survey of motion estimation algorithms including full search algorithm, many fast search, and
fast full search block-based algorithms has been presented. An evaluation of up to date motion estimation
algorithms, based on a number of empirical results on several test video sequences, is presented as well.

Keywords: motion estimation, video coding, minimum block distortion measure, temporal/spatial redun-
dancy
DOI: 10.1134/S1054661822010072
1. INTRODUCTION
At present, online videos play a significant role in

everyday life and the video technology has become the
future of content marketing. The basic task of video
coding is to reduce the huge amount of raw data in
video sequence by removing spatial and temporal
redundancies in video data. Motion estimation tech-
nique plays an important role in video coding process
by removing temporal redundancy of video signal. The
simple and efficient motion estimation technique is
block based motion estimation (BBME) technique,
which has been adopted in many video coding stan-
dards such as h.26x series and MPEGx series [4, 7, 10,
11, 23, 33]. In real time video processing, the full-
search (FS) algorithm demands enormous computa-
tions. The huge computational cost of FS algorithm
has laid the foundations for broad and deep research in
motion estimation. The research has given many fast
block matching algorithms. These algorithms can
roughly be categorized as fast search [1–3, 5, 6, 9, 12–
22, 24, 27, 29, 30, 32, 34–52, 54–57, 59] and fast full-
search [8, 25, 26, 28, 31, 53, 58] block matching algo-
rithms. In this paper, an overview of selected algo-
rithms in the last forty years and a comprehensive
comparison of some well-known algorithms in terms
of computational complexity and error distortion are
presented. The rest of the paper is organized as fol-
lows. In Section 2, the brief analysis of fast search and
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fast full-search block-based motion estimation algo-
rithms are presented. Section 3 gives the comparison
of some well-known algorithms. Finally, the conclu-
sions are presented in Section 4.

2. BLOCK BASED MOTION
ESTIMATION ALGORITHMS

The key goal of block-based motion estimation
algorithms is to find out the magnitude and direction
of motion (motion vector) between a macroblock of
current frame and best matched candidate block of the
reference frame. The most commonly used matching
criterion which measures the error distortion between
the macroblock of current fame and candidate blocks
in reference frame is sum of absolute difference (SAD).
The SAD between an M × N size macroblock with top-
left corner at (p, q) and an M × N size candidate block
with top-left corner at (p + x, q + y) is defined in the
Eq. (1)

(1)

where I(., .) and R(., .) denote current frame and ref-
erence frame pixel values. The coordinates of motion
vector x and y are defined in Eq. (2)

(2)

where R = {( , )| – s ≤ ,  ≤ d} and d represents the
search range. It is obvious from Eq. (2) that the SAD
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Fig. 1. An example of a search procedure of TSS algorithm
for finding motion vector (3, –2). Each search point is
indicated by its search step number and red colored point
is the minimum BDM point.
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Fig. 2. An example of a search procedure of NTSS for find-
ing motion vector (2, –2). Each search point is indicated
by its search step number and red colored point is the min-
imum BDM point.
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criterion involves (M × N) − 1 addition operations,
M × N absolute operations and M × N subtraction
operations i.e., one SAD computation requires 3 ×
M × N operations approximately.

2.1. Fast Search Block Based 
Motion Estimation Algorithms

In order to reduce the huge computational cost of
FS algorithm, many fast search block based motion
estimation algorithms [1–3, 5, 6, 9, 12–14, 17–22, 24,
27, 29, 30, 32, 34–52, 54–57, 59] have been presented
at the cost of slight reduction in error distortion given
by peak signal-to-noise ratio (PSNR).These algo-
rithms may be classified into the following categories:
reduction in number of search points [1–3, 12, 17–22,
24, 27, 30, 36, 38, 40, 44, 55–57, 59], predictive
motion estimation [14, 32, 39, 45–47, 52], adaptive
search pattern switching strategy [9, 13, 34, 35], multi-
resolution motion estimation [6, 37, 42, 43, 48, 51, 54]
and fractional-pixel interpolation [5, 29, 41, 49, 50].
Present fast search block-based motion estimation
algorithms belong to any one of them or utilize a com-
bination of the above categories.

In general, the fast search block matching algo-
rithms which belong to reduction in number of search
points category are mainly developed with an assump-
tion that the error between a macroblock, and a candi-
date block increases monotonically as the search point
moves away from the optimal search point. In the early
1980s, some fast search block-based motion estima-
tion algorithms such as the three-step search (TSS)
[17], two-dimensional logarithmic search (TDL) [12],
the conjugate directional search (CDS) and its simpli-
fied version one-at-a-time search (OTS) [40], etc.,
were proposed. In TSS algorithm, the search proce-
dure employs rectangular shaped search pattern which
consists of nine search points including the center at
each step. Initially, the step size is taken as ceil (s/2)
PATTERN RECOGNIT
and is reduced by a factor two in the subsequent steps,
where s is search range. The search stops when step
size is reduced to 1. Figure 1 shows an example of TSS
search procedure to find a motion vector at (3, –2).
The total number of steps and the total number of
checking points are given by log2(s + 1) and 1 +
8[log2(s + 1)], respectively. NTSS algorithm [27], pro-
posed by Renxiang Li et al., performs better than TSS
in terms of motion prediction quality and computa-
tional complexity while retaining the regularity and
simplicity of the TSS algorithm. NTSS algorithm is
developed mainly with an assumption that the motion
vector distribution of most real-world video sequences
is center biased. Therefore, besides the original search
points of TSS, NTSS checks eight additional search
points around the search center at the first step
(total 17) as shown Fig. 2. Furthermore, the NTSS
quickly identifies stationary and quasi-stationary blocks
by applying a half way stop technique. In the first step,
the minimum BDM point may occur at the search win-
dow center, at any one of the eight search points around
the search center or at any one of the remaining eight
search points. In the first case, the block is considered
as stationary block and the search stops. In the second
case, the block is considered quasi-stationary and the
search stops after checking eight search points around
the minimum BDM. In the final case (if the block is
neither stationary nor quasi-stationary), the search fol-
lows complete TSS procedure.

In [20], a four-step search (4SS) algorithm has
been proposed for motion estimation [20]. This algo-
rithm includes a half−way stop technique and center-
biased motion vector distribution characteristic simi-
lar to NTSS. However, the number of block matches
of 4SS in the worst case is 27 when the maximum
search range is ±7. With the maximum search range of
±7, the 4SS employs two different search patterns with
5 × 5 and 3 × 3 square window sizes. For first three
ION AND IMAGE ANALYSIS  Vol. 32  No. 1  2022
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Fig. 3. An example of a search procedure of 4SS for finding
motion vector (6, 4). Each search point is indicated by its
search step number and red colored point is the minimum
BDM point.
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Fig. 4. An example of a search procedure of OTS for find-
ing motion vector (3, 3). Each search point is indicated by
its search step number and red colored point is the mini-
mum BDM point.
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Fig. 5. An example of a search procedure of BBGDS for
finding motion vector (2, –2). Each search point is indi-
cated by its search step number and red colored point is the
minimum BDM point.
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search steps, if the minimum BDM search point is
positioned at center, the search goes directly to fourth
search step. An example of search procedure to find a
motion vector at (6, 4) is shown in Fig. 3.

One-at-a-time search (OTS) [40] is a 1D gradient
descent search algorithm. At first, OTS searches along
the horizontal search direction until the minimum
BDM value lies between two higher BDM values.
Then, the search direction changes to vertical direc-
tion until the minimum BDM value is found in verti-
cal direction. The OTS search path to locate motion
vector (3, 3) is shown in Fig. 4. Several OTS based
motion estimation algorithms such as block-based
gradient descent search (BBGDS) [30] and directional
gradient descent search (DGDS) [21] algorithms have
been developed.

The BBGDS is a 2D gradient descent search
motion estimation algorithm which searches for the
minimum BDM block along the block-based gradient
descent direction. At each search step, it applies a
square search pattern which consists of nine search
points. The eight search points surround the search
center independently performs motion estimation in
all the possible eight directions from the search center.
The search continues until the minimum BDM search
point is positioned at the search center. An example of
BBGDS search path to locate a motion vector at (2, ‒2)
is shown in Fig. 5. The DGDS independently applies
OTS strategy in eight directions of the search center to
find eight directional minimum search points. Among
these eight directional minimum search points, the
minimum one becomes the search center for the next
search step. At any search step, if the least among eight
directional minimum search points is search center,
search stops with search center as the motion vector.
PATTERN RECOGNITION AND IMAGE ANALYSIS  V
The DGDS search path to locate motion vector (5, 2)
is shown in Fig. 6.

The diamond search (DS) algorithm [44, 55]
locates a small area of global minimum by applying
large diamond search pattern (LDSP) and then traces
the global minimum in the located small area by
applying a compact small diamond search pattern
(SDSP). An example of search procedure to find a
motion vector at (3, –2) is shown in Fig. 7. DS starts
search by checking 9 search points of LDSP posi-
tioned at search window center. A new SDSP or LDSP
is centered at minimum BDM point depending on
whether the minimum BDM point is search center or
not. The search continues until the new SDSP is cen-
tered and the minimum BDM point of SDSP will be
the final motion vector. The hexagonal search (HS)
algorithm with circle approximated search pattern is
ol. 32  No. 1  2022
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Fig. 6. An example of a search procedure of DGDS for
finding motion vector (5, 2), each search point is indicated
by its search round number, red colored points are the
directional minimum search points and green colored
point is the least of directional minimum search points.
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Fig. 7. An example of a search procedure of DS for finding
motion vector (3, –2). Each search point is indicated by its
search step number and red colored point is the minimum
BDM point.
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Fig. 8. An example of a search procedure of HS for finding
motion vector (3, –2). Each search point is indicated by its
search step number and red colored point is the minimum
BDM point.
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proposed in [56]. The search procedure of HS is same
as that of DS except that the HS performs a coarse
search by using a large hexagon search pattern which is
close enough to a circle. An example of HS search path
to locate a motion vector at (3, –2) is shown in Fig. 8.

The modifications of HS [22, 57, 59] are developed
for reducing computational cost against HS algorithm.
These algorithms essentially focus on methods to
improve the inner search procedure of HS. An
enhanced hexagonal search (EHS) algorithm [57]
reduces the search points by employing the six-side-
based fast inner search method. EHS algorithm calcu-
lates the group-sum distortion to predict a part of
inner search that has to be examined. In [22], an
enhanced hexagonal search using point-oriented inner
search (EHS-POIS) [22] apply mean internal distance
to calculate the normalized group distortions of the
large hexagon. Then, it checks only two inner search
points which are associated to minimum normalized
group distortions. An enhanced hexagonal search
using direction-oriented inner search (EHS-DOIS)
[59] forms pseudo-points prediction pattern from the
large hexagon. EHS-DOIS calculates the group dis-
tortions of these pseudo-points to select one inner
search point.

In the adaptive rood pattern search (ARPS) algo-
rithm [36], it is modified algorithm adaptive rood pat-
tern search (ARPS-2) [38] and the directional asym-
metric search with prediction scheme (DASp) [18], a
prediction scheme has been employed to better track
large motions. These algorithms reduce the computa-
tional complexity of search process with prediction
and best match prejudgment schemes. The ARPS pre-
dicts current block’s motion vector with the motion
vector of left adjacent block. This algorithm uses an
adaptive rood pattern at initial search stage and then
applies a unit-size rood pattern repeatedly to find the
PATTERN RECOGNIT
final motion vector. The ARPS has shown two to three
times of search speed-up while maintaining fairly
close PSNR when compared to DS. The ARPS-2
employs the median prediction to find the predicted
motion vector, and, then, an adaptive rood pattern is
positioned on this predicted motion vector. This
results in a great reduction on computational cost of
ARPS-2 over ARPS. The matching error information
and the center-biased motion vector distribution char-
acteristic have been effectively utilized in DASp algo-
rithm for reducing the computational cost greatly. At
first, DASp check eight adjacent search points of the
search center in eight directions to estimate the most
probable search direction in whose vicinity the opti-
mal motion vector is present. Then, it uses one of the
proposed directional search patterns to find the final
motion vector.
ION AND IMAGE ANALYSIS  Vol. 32  No. 1  2022
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The algorithms belong to predictive motion esti-
mation category [14, 32, 39, 45–47, 52] reduce the
computational cost considerably by using the temporal
and/or spatial correlation among motion vectors.
In [39], motion vector field adaptive search technique
(MVFAST) efficiently uses adjacent blocks motion
information for performing motion estimation effec-
tively. Before starting search at each macroblock,
MVFAST calculates the city block lengths of the adja-
cent motion vectors. This city block length classifies
the motion content of current macroblock as high,
medium, or slow motion. According to motion activity,
the search strategy and search center of current macrob-
lock are determined. Furthermore, a halfway-stop tech-
nique is included in MVFAST such that it terminates the
search early by checking (0, 0) predictor.

The search performance of MVFAST is further
improved in predictive motion vector field adaptive
search technique (PMVFAST) [45] with median pre-
dictor and collocated block’s motion vector. PMV-
FAST employs adaptively early search termination
technique, unlike MVFAST, where a fixed early
search termination technique is used. Enhanced pre-
dictive zonal search (EPZS) [47] improves the search
performance of PMVFAST by using additional higher
probable predictors, and with improved threshold cal-
culations.

The algorithms belonging to search patterns
switching category [9, 13, 34, 35] employ an adaptive
switching strategy, i.e., the algorithms dynamically
apply various search patterns according to the motion
activity. Consequently, the number of search locations
is reduced drastically. An adaptive search patterns
switching algorithm was proposed in [35]. This algo-
rithm predicts the motion activity of a block and then
uses an appropriate search pattern for performing
motion estimation. For small motions, center-biased
search patterns such as NTSS, DS, and BBGDS are
used. The non-center-biased search patterns such as
TSS and 4SS are used for large motions. The motion
content of a block is determined by an error descent
rate (EDR). This EDR is calculated from block distor-
tions of search window center and its four neighboring
search points. This EDR is defined as EDR = DB/DA,
where DA represents distortion of the block at center of
the search window and DB represents minimum dis-
tortion of the four neighboring blocks of the search
window center.

The algorithms belonging to multiresolution tech-
niques [6, 37, 42, 43, 48, 51, 54] represent the refer-
ence and current frames by pyramidal structure with
various levels. Each level of this representation is a
reduced resolution representation of the lower level
and is obtained by subsampling and spatial low-pass
filtering of the lower level. The motion field estimated
at the present coarser resolution level is interpolated to
form the initial solution for the motion field at the next
finer resolution level, as this initial solution is more
PATTERN RECOGNITION AND IMAGE ANALYSIS  V
likely to be near to the global minimum point. There-
fore, the search at each resolution level is restricted to
a smaller search range than the actual search range at
the finest resolution level. Consequently, total compu-
tational cost is less than the computational cost
demanded in the finest resolution directly. The algo-
rithms belonging to fractional-pixel motion estima-
tion (FPME) techniques [5, 29, 41, 49, 50] achieve
further reduction in bit rate, i.e., improvement in
video quality by applying fractional-pixel interpola-
tion (FPI) algorithms.

2.2. Fast Full-Search Block Based 
Motion Estimation Algorithms

The fast full-search algorithms minimize the com-
putational complexity of the motion estimation pro-
cess while preserving the same PSNR performance of
full-search algorithm. Many fast full-search algo-
rithms have been proposed in last four decades. Some
eminent algorithms are: successive elimination tech-
nique based algorithms [8, 15, 16, 25, 26, 28, 31, 53,
58]. The most popular of these algorithms is the suc-
cessive elimination algorithm (SEA) [28]. SEA finds
the optimal motion vectors like full-search algorithm,
but with less computational cost. The SEA rejects the
search points which may not be the best possible
search points before computing full distortion measure
for those search points. SEA skips these impossible
search points by examining if the current minimum
SAD (SADmin) is less than partial distortion measure

In [25], block sum pyramid algorithm (BSPA)
skips the non-best candidate blocks by calculating
partial errors hierarchically at every candidate block
before computing the rigorous full distortion. In [8],
multilevel successive elimination algorithm (MSEA)
rejects a greater number of candidate blocks than
those of SEA by using additional boundary levels.
MSEA obtains these boundary levels by partitioning
blocks into four equal sized subblocks continually until
a 2 × 2 subblock is arrived at. MSEA has shown search
speed improvement against SEA by applying these
boundary levels sequentially to skip some highly
impossible search points which could not be rejected
by the SEA boundary. In MSEA, very large gaps exist
between two contiguous boundary levels. Because of
such large gaps, the effectiveness of MSEA is under-
mined. In [58], a fine granularity successive elimina-
tion (FGSE) is proposed to make up for this ineffi-
ciency of MSEA. FGSE algorithm reduces the gaps
between two contiguous boundary levels by increasing
the number of boundary levels. So, highly impossible
search points are filtered out earlier in FGSE algo-
rithm than in MSEA. In [31], an adaptive MSEA
(AdaMSEA) divides the search area based on homo-
geneity of the macroblock. In order to increase the
possibility of skipping impossible search points in the
early stage, the blocks with large variances are parti-
tioned into subblocks first. Winner-update algorithm
ol. 32  No. 1  2022
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Table 1. The average numbers of operations per block in each algorithm

Video 
sequence FS

Fast search motion estimation algorithms Fast full-search algorithms

DS CDS DGDS EHS-
DOIS ARPS-2 DASp SEA MSEA Ada 

MSEA WUI

Foreman 601520 13203 12398 14334 8178 7288 6532 175080 29301 25612 25301

Mobile 668516 8253 7877 8919 5948 5181 4174 270890 30927 24153 24039

Rhinos 668516 29327 23440 26515 12990 11662 10378 329652 65321 50602 49305

Robot boat 668516 26494 22016 25413 12447 11067 11943 363925 72109 66944 66001

Suzie 601520 9627 7993 8587 5768 4805 4496 113280 14317 12209 12152

Akiyo 601520 6327 6314 6054 5155 4305 3551 24608 6877 6205 6109

Cricket 668516 13911 12734 12599 8344 7508 6379 106799 28641 22943 21513

Flower 668516 10072 9323 9968 6729 6194 5322 104960 18303 16112 16001

Kirsten-Sara 10813330 7981 7410 7537 5839 5201 4218 216852 63928 54883 53697

Rocket launch 10813330 13364 12149 12964 8278 7403 6752 284621 82504 73864 73359
with integral image (WUI) is proposed in [15]. This
algorithm replaces the hierarchical pyramid structure
of the matching block by an integral image. This inte-
gral image facilitates the evaluation of partial block
sum norms dynamically, and, therefore, WUI reduces
the computational complexity of motion estimation.

3. RESULTS
This section presents the simulation results per-

taining to the motion prediction quality and computa-
tional complexity of various up to date and famous
motion estimation algorithms such as DS, CDS,
DGDS, EHS-DOIS, ARPS-2, DASp, SEA, MSEA,
AdaMSEA, and WUI. Ten test video sequences with
different motion contents and different video formats
(HD, CIF, and QCIF) have been used to analyze the
performance of these algorithms. Ten test videos con-
tain various motion contents and have different reso-
lutions. Kirsten-Sara and Akiyo test videos contain
low-motion content, i.e., maximum blocks are sta-
tionary blocks. Suzie, Mobile, and Flower are the test
videos which consist of medium motions with station-
ary and quasi-stationary blocks. Mobile is a typical
test video in which the local and global motions are
complex. Rocket launch, Cricket, and Foreman test
videos have large motions. Rhinos and Robot boat test
videos consist of complex motions with fast camera
zooming and panning.

The search ranges ±63 and ±15 are used for HD
test video sequences (Rocket launch and Kirsten-
Sara) and the remaining (QCIF and CIF) video
sequences, respectively. Block size set to 16 × 16. In
the comparison of various algorithms, PSNR is used
as a measure for motion prediction quality, and aver-
PATTERN RECOGNIT
age number of operations per block measures the com-
putational complexity. The average numbers of opera-
tions per block (ANOB) in each algorithm are summa-
rized in Table 1. The degree of motion prediction
quality of every algorithm with respect to full search
algorithm is shown in Table 2. It is very clear from
these tables that the fast search algorithms (DS, CDS,
DGDS, C, ARPS-2, and DASp) reduce the computa-
tional complexity significantly but degrades the PSNR
performance when compared to full-search algorithm.
Whereas, the fast full-search algorithms (SEA,
MSEA, AdaMSEA, and WUI) obtain same PSNR of
full search but with high computational complexity.
From Table 1, it is obvious that DASp demands a
smaller number of operations when compared to other
algorithms. ARPS-2 is better than DS, CDS, EHS-
DOIS, and DGDS in terms of number of operations.
With respect to video sequences (Akiyo and Kirsten-
Sara) that have small motion content, all the algo-
rithms including DASp and ARPS-2 demand a
smaller number of operations. However, DASp and
ARPS-2 require a smaller number of operations irre-
spective of motion activity in video sequences.

It is clear from Table 2 that the DGDS obtains bet-
ter average PSNRs than those of DS, CDS, DASp,
ARPS-2, and EHS-DOIS in all the video sequences.
On average, DGDS obtains 0.304 dB better PSNR
than that of CDS. However, CDS requires a smaller
number of operations when compared to that of
DGDS. It is very clear from Table 1 that EHS-DOIS
finds motion vectors with less computational cost
when compared to that of DGDS and CDS. However,
EHS-DOIS gives least PSNR performance among all
the algorithms (refer Table 2). On the whole, in terms
of average number of operations per block as the indi-
ION AND IMAGE ANALYSIS  Vol. 32  No. 1  2022



BLOCK MATCHING ALGORITHMS FOR THE ESTIMATION OF MOTION 39

Table 2. The degree of motion prediction quality of every algorithm with respect to full search algorithm

Video sequence
FS or fast 
full-search 
algorithms

Fast search motion estimation algorithms

DS CDS DGDS EHS-DOIS ARPS-2 DASp

Foreman 28.89 28.15 28.03 28.28 26.70 28.22 28.05

Mobile 24.29 23.52 23.85 23.87 22.71 23.63 23.83

Rhinos 30.23 27.62 27.81 28.40 27.66 27.34 28.35

Robot boat 30.62 29.21 29.10 29.54 28.83 29.32 29.05

Suzie 35.90 35.02 35.10 35.25 33.87 35.11 35.13

Akiyo 44.16 44.16 44.16 44.16 43.25 44.16 44.16

Cricket 35.95 33.66 33.95 34.99 33.19 33.94 34.67

Flower 33.69 33.02 33.19 33.35 31.47 33.28 33.17

Kirsten-Sara 44.74 44.18 44.21 44.39 42.45 44.10 44.17

Rocket launch 38.95 37.53 37.69 37.90 36.20 37.66 37.89
cator for computational complexity, DASp is certainly
the best ever. Simultaneously, with reference to PSNR
as an indication for quality of video, the DASp is also
apparently better than the DS, CDS, EHS-DOIS, and
ARPS-2 algorithms and comparable to the DGDS.
Among fast full-search algorithms (SEA, MSEA,
AdaMSEA, and WUI), WUI has faster search perfor-
mance.

To comprehend the comparative studies shown in
Tables 1 and 2 more vividly, ANOB and PSNR of all
the algorithms are plotted in Figs. 9 and 10. Figures 9a–
9j plot a frame by frame comparison of ANOB for all
the algorithms applied to the ten test video sequences.
Figures 10a–10j plot a frame by frame comparison of
PSNR for all the algorithms applied to the ten test
video sequences. In Figs. 9a–9j, the results of fast full-
search algorithms have not been shown to avoid con-
gestion between graphic lines of fast search algo-
rithms. This is because the fast full-search algorithms
require a huge computation when compared to fast
search algorithms. Since the PSNR values of FS and
the fast full-search algorithms are the same, the graph
of FS in Figs. 10a–10j can be considered as graphs of
the fast full-search algorithms. Figures 9a–9j clearly
manifest that the DASp algorithm requires fewer oper-
ations compared to other algorithms in each frame.
From these figures, it is also very clear that the ARPS-
2 competes with DASp and performs better when
compared to other algorithms in each frame.

It is clear from Figs. 10a–10j that all algorithms,
except EHS-DOIS, can obtain a PSNR that is close to
the PSNR that the FS algorithm can obtain in each
frame. In most frames of all video sequences, DGDS
shows better PSNR values when compared with other
algorithms. In video sequences with small motion
PATTERN RECOGNITION AND IMAGE ANALYSIS  V
content such as Akiyo and Kirsten-Sara, all algo-
rithms, except EHS-DOIS, show same performance
as shown in Figs. 10f and 10j, respectively. So, we can
observe that the graphs of all algorithms, except EHS-
DOIS, are overlapping each other in these figures.

4. CONCLUSIONS

In last four decades, multimedia research involves
in development of efficient block matching algorithms
to decrease the computational cost of motion estima-
tion. This paper has presented basic search procedures
of well-known fast search and fast full-search algo-
rithms. The integral image concept of the WUI algo-
rithm makes WUI algorithm the fastest search algo-
rithm of all fast full-search algorithms. On average, the
WUI algorithm achieves a 96.51, 82.21, 15.97, and
1.74% speed-improvement rate over FS, SEA, MSEA,
and AdaMSEA, respectively. On average, the DASp
achieves a 99.17, 51.45, 46.36, 49.84, 21.79, and
11.36% speed-improvement rate over FS, DS, CDS,
DGDS, EHS-DOIS, and ARPS-2, respectively.
Computationally, EHS-DOIS has shown an excel-
lence. DGDS has proven to be the best in terms of
quality. However, the DASp has proven its efficiency
in both computational cost and quality over other fast
search algorithms. In summary, in terms of ANOB as
the indicator for search speed, the fast search algo-
rithms are certainly the best over fast full-search algo-
rithms. Whereas, in terms of PSNR as the sign for
quality, the fast full-search algorithms are clearly a bit
better than the fast search algorithms. The
EHS-DOIS and DASp have shown their computa-
tional efficiency by reducing as many search points as
possible.
ol. 32  No. 1  2022
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Fig. 9. The computational cost comparison of all the algorithms in terms of the average numbers of operations per block (ANOB)
for various video sequences: (a) Foreman, (b) Mobile, (c) Rhinos, (d) Robot boat, (e) Suzie, (f) Akiyo, (g) Cricket, (h) Flower,
(i) Kirsten-Sara, and (j) Rocket launch.
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Fig. 10. The motion prediction quality comparison of all the algorithms in terms of the peak signal-to-noise ratio (PSNR) for
various video sequences: (a) Foreman, (b) Mobile, (c) Rhinos, (d) Robot boat, (e) Suzie, (f) Akiyo, (g) Cricket, (h) Flower,
(i) Kirsten-Sara, and (j) Rocket launch.
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