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Abstract—The previous works on point registration based on graph model formulate registration as a graph
matching problem. The key step is to keep local neighborhood structure of a point stable because the local
neighborhood structure may not change freely even under non-rigid deformation. However, the traditional
methods do not give a correspondence between local point sets. In this paper, we propose to define a sub-
graph which is compose of point and its adjacent points. A correspondence is obtained by arranging the edges
of two sub-graphs according to length and angle, respectively. Finally, a local support probability is computed
based on the correspondence. The performance of our method is validated with different synthetic data and
real data, showing that the proposed method can improve the robustness and accuracy to the traditional tech-
niques.
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1. INTRODUCTION

Image registration or shape matching is a funda-
mental problem in computer vision, image analysis
and pattern recognition. It is the key component in
many applications such as visual enhancement, con-
text-based image retrieval and medical image process-
ing. According to the objects processed, registration
algorithm is divided into gray registration and point
registration. However, the former is time consuming.
Thus, the real-time application prefers the latter.
Point registration would have more extensive applica-
tion prospect. The goal of point registration is to find
meaningful correspondence between two different
point sets and determine the transformation that maps
one set to the other. These point sets are often
extracted from other types of data such as images rep-
resenting feature points.

Generally speaking, there are also two categories of
methods on point registration, one is based on classi-
fication and the other is based on graph matching. The
classification-based registration methods mainly
adopt finite mixture model, especially Gaussian mix-
ture model (GMM), which formulas the alignment of
two point sets as a probability density estimation.
Points from one set are normally distributed around
points belonging to the other set. The point-to-point
assignment problem can be recast into that of estimat-
ing the parameters of a mixture distribution.
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The iterative closest point (ICP), introduced by
Besl and Mckay [2] and Zhang [15], is one of the
methods commonly used, which iteratively assigns
correspondence based on the Euclidean distance and
finds the least squares based transformation related to
these point sets. A nonlinear version of ICP [6] and a
TriICP algorithm [3] are the variants of ICP.

Chui and Rangarajan [4] formulate registration
problem as likelihood estimation problem by using
mixture model. The approach is the embedding of the
expectation maximization (EM) algorithm with in a
deterministic annealing scheme in order to directly
control the fuzziness of the correspondences. Coher-
ence point drift (CPD) Myronenko and Song [11]
defines a velocity function for the template point set,
namely the centroid of the Gaussian mixture model,
and iteratively calculates the unknown parameters in
the GMM by EM. An expectation conditional maxi-
mization (ECM) algorithm for point registration
(ECMPR) is proposed by Horaud et al. [7], which
adopts the anisotropic covariance model and ECM to
resolve the rigid and articulated point registration.
Sanroma et al. [14] propose a rigid point set registration
method that uses neighboring relation and extends a
non-rigid registration version. Sang et al. [13] and
Ma et al. [10] introduce the local feature measured by
shape context [1] to assign the membership probabili-
ties of the mixture model. Nevertheless, the local fea-
ture is computed by comparing the histogram of shape
context. As we know, a histogram shows statistical
property of the numerical data. But the number of
neighborhood points is always small. It is not accurate
to describe the local topology of point just according
655. © Pleiades Publishing, Ltd., 2021.
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to the distribution of only several points. Meanwhile,
these methods include an extra uniform component,
see Hennig and Coretto [8], in the mixture model in
order to enhance robustness. But this strategy cannot
fit outliers in both point sets at the same time.

In the second category, point registration is formu-
lated as a graph matching problem. Each point is a
node in the graph, and two nodes are connected by an
edge if their Euclidean distance is less than a thresh-
old. The optimal match between two graphs is the one
that maximizes the number of matched edges. As
computing the similarity matrix between two point
sets, an extra column and an extra row are adopted to
fit the outliers in two point sets. Chui et al. [5] propose
the robust point matching (TPS-RPM) which adopt-
ing soft assignment and deterministic annealing tech-
niques. Zheng et al. [16] introduce robust point
matching for non-rigid shapes by preserving local
neighborhood structure (PLNS) which takes advan-
tage of the notion of a neighborhood structure for the
general point matching problem. Lee et al. [9] propose
topology preserving relaxation labeling algorithm
(TPRL) using relaxation labeling and discrete values
to measure the correlation between point pairs. Under
the framework of registration based-on graph match-
ing, the key question is how to precisely measure the
local structure of point and quantize the differences of
local structure. However, the methods mentioned
above do not give an explicit correspondences when
computing the local matching probability. In this
paper, a new local structure named sub-graph is intro-
duced and a corresponding method is proposed to
compute correspondence between two sub-graphs.
Above all, an improved registration algorithm based
on topology invariance is proposed.

The paper is organized as follows. The non-rigid
point set registration method is proposed in Section 2.
In Section 3, the proposed method is applied to artifi-
cial point sets and medical image data. The experi-
mental results are presented. Conclusions are drawn in
Section 4.

2. METHOD
2.1. Point Registration Based on Graph Matching
In [16], the authors formulate point registration as

a graph matching problem. According to that, each
point is treated as a node in the graph, and two node
are connected by an edge. The registration problem is
the one that maximizes the number of matched edges
of two graphs. Here point set T is composed with M
points, T = t1, t2, …, tM. And point set D is composed
with N points, D = d1, d2, …, dN. A mapping function f:
T  D is used to define the correspondence between
point sets. When two point sets have different number
of points, a dummy or nil point is introduced. The
point sets T and D are augmented to  = t1, t2, …, tM,
nil and  = d1, d2, …, dN, nil. Thus, the function :

⇔

'T
'D f̂
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 may match multiple points to a dummy
point. Under non-rigid deformation, the distance
between a pair of points cannot be preserved. How-
ever, the local structure of a point may not change
freely due to physical constraints. Therefore, the opti-
mal matching  is:

(1)

where

(2)

Nm is the neighborhood of point tm. If connected nodes
m and i in one graph are matched to connected nodes
f(m) and f(i) in the other graph, δ( f(m), f(i)) = 1. δ(i, j)
is defined as 1 – dis(i, j). The value of dis(i, j) is 1 if
point i and point j are a pair of neighbors; otherwise,
dis(i, j) = 0. The optimal solution of (2) maximizes the
number of matched edges of two graphs. The matching
function in (1) with a set of supplemental variables is
organized as a matrix P with dimension (M + 1) ×
(N + 1). The probability matrix P denotes the global
similarity. If point tm is matched to point dn, then

= 1; otherwise,  = 0. And P satisfies

(3)

(4)

The objective function (2) can be written as

(5)

The probability matrix P is initialized by shape
context [1], which is a coarse histogram of the relative
coordinates of the neighbor points as follows

(6)

The shape context of a point is a measure of the dis-
tribution of other points relative to it. Consider two
points  in one shape and  in the other shape. Their
shape contexts are  and , for ,
respectively. And the cost is denoted by . Based on

the  test statistic

(7)

where K is the number of bins.
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And relaxation labeling [12, 17] is adopt to resolve
the optimal question. Based on relaxation labeling, the
contextual constraints are expressed in the compatibil-
ity function , which measures the strength of
compatibility between  matching  and  matching

. The support function  measures the overall sup-
port the match between points  and  gets from its
neighbors

(8)

In [16], the compatibility function is  if
a pair of neighbors  and  are matched to a pair of
neighbors  and ; otherwise, . The
original updating rule is [12]

(9)

According to the objective function of (5),  is
defined as

(10)

2.2. Point Registration by Preserving Local Structure
Formula (10) in above section is a local support

function, which is used to update local context to
achieve a globally consistent result. Meanwhile, it is
also a local similarity probability used to correct global
matching probability. Nevertheless, the method in
[16] just takes the sum of global probability of adjacent
points as local support without determining the corre-
spondences between neighborhoods. TPRL algorithm
in [9] takes advantage of a local structure of point to
correct global matching probability. The authors
firstly define a point and its neighborhoods. For a
given point , one can select adjacent point ,

, which reside in the circle centered at .
Similarly, for a point , adjacent points are ,

. The local structure is defined as an edge
which compose of a point and its nearest adjacent
point. The log distance and polar angle bins are used
to capture the coarse location information [9]. The
mass center of a point set is used as a reference point
for the computation of the angle between point pairs.

The local similarity is computed by comparing the
angle and radius of the two local neighborhood struc-
tures (namely, the two edges), which is used to replace
the global probability when computing local support.
Then three constraints are defined as:

(11)
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(13)

where  and  denote the length and
angle of edge composed of point  and its nearest adja-
cent point , respectively, and  is used to
obtain the longest edge and the biggest angle of point
adjacent point pairs. Thus, α(·) computes the length
difference, β(·) computes the angle difference, and γ(·)
measures the salient. Thus, a compatibility coefficient
is defined as

(14)

The value of formula (14) reaches the maximum
value one when the local structure of two points are
totally the same. Nevertheless, the local structure is
just composed of two points and it assumes that the
nearest adjacent points are in correspondence to each
other, which is not robust.

2.3. Point Registration by Preserving Local Topology

In this paper, we propose an improved point reg-
istration by preserving the local topology of point. In
order to accurately computer the similarity of local
topology, a concept of sub-graph is introduced as
illustrated in Fig. 1. The sub-graph describes the
local structure of point. A correspondence between
edges of sub-graph is computed by matching two sub-
graphs. The local support is the sum of cost of corre-
sponding edges.

The sub-graph is defined firstly. For point ,
the circle neighborhood of  is defined as , x = 1, 2,
…, I. I is the number of neighborhood points and is set
with fixed values (generally, 3–5). The point  and

one point in  are connected to be an edge . The
sub-graph of point  is composed of the I edges
defined above and is a general case contrasting to the
local structure defined in [9]. When the value of I is set
to one, our method is degraded to TRPL [9]. In order
to computing the similarity of two sub-graphs, the
correspondence between edges must be confirmed.
We notice that the relative positions between a point
and its adjacent points in sub-graph are always stable.
The reason is that the relative positions would not
change freely because of physical constrain. The
changes of local topology are isotropic in other words.
Secondly, two partial ordering relations are defined to
describe the topology mentioned above. And, a corre-
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Fig. 1. Example of sub-graph. The corresponding color indicates the correspondence between two sub-graphs.

(b)

(a)

Point and its neighborhoods 

Sub-graph corresponding to (a), respectively

1
I
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2

3

spondence could be determined between two sub-
graphs. Let  be the distance between origin
point  and its adjacent point  and  be the
angle between point  and its adjacent point . Thus,
two ordered set  = ,  satisfying

 <  and  = ,  satisfy-
ing  <  are defined, respectively. As
mentioned above, the relative position of point and its
neighborhood points would not change freely because
of physical constrain. Even if non-rigid deformation,
the change of local point set is always smoothed within
the local position of point. Namely, the order of edges
remain stable in the most situation. From Fig. 1 we
can clearly notice that. Thus, the local topology
invariance can be represented by the two ordinal rela-
tions. If point  is the corresponding point of , their
two ordinal relations of sub-graph edges would be
almost identical. Thus, two correspondences  and

 would be obtained based on  and .

If edge  has the same corresponding edge 

according to  and , the two edges are correspon-
dent and would be marked with matched. Otherwise,
unmatched. Supposing there are k sub-graph edges
unmatched, where k ≥ 2. Thus, I – k sub-graph edges
are matched and the correspondence is denoted by .
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For the sub-graph edges matched, a matching proba-
bility is computed by

(15)

and for the unmatched sub-graph edges, a match-
ing probability is computed as

(16)

where a cost between any two edges is defined as fol-
lows

(17)

where  and ,

 represent longer edge and larger angle,
respectively. An improved local support function is
introduced as
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(18)
Obviously, the number of edge pairs matched is I

and the cost between edges is equal to one when the
topology of two sub-graphs is totally the same. In this
situation, the value of support function reach the max-
imum. As mentioned above, all the edges of two sub-
graphs are marked as matched in Fig. 1b. Hence,

 where I = 3, k = 0. When the two ordinal
relations of edges is completely different, the value of

k is equal to I. There are no a priori correspondences.
Then, formula (16) would degenerate into formula (8)
which may be regarded as a special case of our algo-
rithm.

At last, the thin plate spline (TPS) deformation
model is adopted as physical constraints to bring two
point sets closer in each iteration.

Thus, the algorithm proposed in this paper can be
listed as follows

3. EXPERIMENT RESULT
In this section, the experiment results are shown.

Our method is implemented in C++ and tested on an
i5 CPU with 8 GB RAM. Three state-of-the-art algo-
rithms: TPS-RPM [5], PLNS [16], and TPRL [9] are
adopted to compare with our method. The log-polar
bins [9] are used to compute the length and angle. The
number of edges of sub-graph is set to three. We have
performed registration experiments with synthetic and
real data. Experiments with synthetic data consists in
matching point sets of a fish and a Chinese character
templates under non-rigid deformations, noise outli-
ers, occlusion, and rotation. Experiments with real
data consists in registering point sets extracted from
ultrasound elastography image with histopathology
images and two sequences of heart and chest slice
images.

3.1. Synthetic Data
In this section we have performed matching exper-

iments on synthetic data set [4]. The test data consist
of two shape model. One is a fish shape that has 96
points, the other is a Chinese character with more
complex pattern consisting of 108 points, as shown in
Fig. 2a.

Firstly, three sets of data are designed to measure
the robustness of an algorithm under deformation,
noise in point position, and outliers. The degeneration
levels are set from one to five according to ascending
extent. In each test, one point set is subjected to one of
the above distortions to create a target point set. A total
of 100 test point sets are randomly generated at each
level. The examples degenerated are illustrated in
Figs. 2b–2d. Our algorithm is run to find the corre-
spondence between two sets of points and use the esti-
mated correspondence to warp the target point set.
The accuracy of the match is quantified as the average
Euclidean distance between a point in the warped
point set and the corresponding point in the original
point set. The same evaluation metric is used as in [5]
for evaluating the performance of different algorithms.
The algorithm performances are compared by the
mean and standard deviation of the registration error
of 100 trials in each level. The statistical results for
each setting are shown in Fig. 3.

In the deformation test results (Fig. 3a) four algo-
rithms achieve similar registration results in both two
test point sets at low deformation ratio. However, as
the degree of deformation increasing, our method
shows more robustness. For the corresponding point
pairs, their local topology are similar even if they are

= +' '' .mn mn mnS P P

= 'mn mnS P

Algorithm 1. Framework of point registration by preserving topology algorithm.

1: Input: Two point sets: T and D.

2: Calculate the shape context for two point sets to initialize the matching probability matrix P and convert it to a gen-
eralized doubly stochastic matrix.

3: while No convergence or iteration < Nummax(300) do

4: Use formula (15)–(17) to computer the local matching probability of two sub-graphs.

5: Use the local support probability  formula (18) to update the global matching probability matrix P
formula (9), and convert matrix P to a generalized doubly stochastic matrix.

6: Compute the transform parameters of TPS according to the matching probability of P and transform template 
point set T.

7: end while

8: Output: The correspondence between two point sets according to the final matching probability matrix P.

mnS
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Fig. 2. The examples of (a) original data sets and point
shapes degenerated under (b) deformation, (c) outlier, (d)
noise, (e) occlusion, and (f) rotation. Left col: data set of
fish shape. Right col: data set of Chinese character shape.

(a)

(b)

(c)

(d)

(e)

(f)
degenerated with non-rigid deformation. Our method
accurately quantifies the topology differences between
point pairs so that the corresponding point pairs
obtain more local support than these unmatched point
pairs. Our method shows more robustness in the case
of severe deformation.

A similar situation happens when testing on data
set with outliers. As a different number of outliers were
added in point set according to different degenerated
levels, the error ratio of the fourth algorithm increases.
From the results of Fig. 3b, we note that the others
algorithms easily fall into local optimum and get false
correspondences, especially in high outlier level. Our
method shows more robustness regardless of the out-
lier level. However, the neighborhood of a point
changes significantly when a large number of outliers
are present, which violates our assumption on topol-
ogy preserving. The performance of our method begin
to decrease, but it is still better than the previous ones
in general.

For the noise test set, the presence of a much
amount of noise make the location of point ambigu-
ous. So the experiment is more challenging than the
others. The results in Fig. 3c show that all algorithms
are affected by the noise. When a mass of noise is
added to point sets, the local topology may be
destroyed. The mechanism of topology preserving will
work as long as the noise does not disorder whole
shape to unrecognizable. Thus, all the performances
are declining greatly. The test result of our method
shows that more accurate correspondences can be
found compared to the others algorithms.

Secondly, the experiments are conducted under
occlusion and rotation.

Occlusion is often present in most of real applica-
tions and is a challenge for many algorithms.

So, we test the four algorithms under occlusion. A
moderate amount of non-rigid deformation is applied
to two point sets. A point is randomly selected and
removed together with some of its adjacent points. Six
occlusion levels are used: from 0 to 50%, and 100 sam-
ples are generated for each level. Figure 2e shows two
synthesized samples. Quantitative evaluation results
are shown in Fig. 4a.

In some applications, rotation invariance is also a
critical property of a matching algorithm. We test our
algorithm under rotations using synthesized data of
the same fish and Chinese character shapes. A moder-
ate amount of non-rigid deformation is applied. We
then rotate the deformed shape. Six rotations are used:
0°, 30°, 60°, 90°, 120°, and 180°. One hundred sam-
ples are generated for each rotation. Figure 2f shows
two synthesized rotation samples. Quantitative evalu-
ation results are shown in Fig. 4b. We can see that our
method consistently outperforms the others.
ol. 31  No. 4  2021
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Fig. 3. Comparison of our result with TPS-RPM, PRNS, and TPRL under (a) deformation, (b) outlier, and (c) noise. The error
bars indicate the standard deviation of the error over 100 random trials.
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Table 1. The average computation time to register 500 pairs
of fish point sets with different non-rigid deformations (s)

Algorithm PLNS TPRL Our method

Time 0.94 0.24 0.26
At last, we show comparative computation times

for the three algorithms in Table 1. A standard PC with

a 3.0 GHz processor and 8.0 GB of memory is used.

A total of 500 fish point sets under different non-rigid

deformation are used as test data. The average compu-

tation time is shown. Although it would take a little

more time to compute the matching probability of

sub-graphs in our method, the speed of convergence

of our method is faster, because the local support

function corrects the global matching probability.

Although the time of one iteration may be longer, the

total registration time is shorter. Thus, the cost of our

method is better than PRNS and close to TPRL.
PATTERN RECOGNIT
3.2. Real Data

We have performed real experiments with medical
image data. The quantitative evaluation is conducted
on two image sets which include heart slice sequence
and chest slice sequence. Heart slice sequence is con-
sisting of 30 image slices. Chest slice sequence is con-
ION AND IMAGE ANALYSIS  Vol. 31  No. 4  2021



PATTERN RECOGNITION AND IMAGE ANALYSIS  Vol. 31  No. 4  2021

AN IMPROVED NON-RIGID POINT SET REGISTRATION ALGORITHM 653

Fig. 4. Comparison of our result with TPS-RPM, PRNS, and TPRL under (a) occlusion and (b) rotation. The error bars indicate
the standard deviation of the error over 100 random trials.
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Fig. 5. Feature points registration between heart slices and chest slices. (a) Heart slice sequence. (b) Chest slice sequence. (c) An
example matches from heart slice sequence. (d) An example matches from chest slice sequence.
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Fig. 6. Comparison of our result with PRNS and TPRL
with heart slice sequence and chest slice sequence. The
error bars indicate the standard deviation of the number of
points mismatched.
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Heart image dat Chest image data
sisting of 24 image slices. As shown in Figs. 5a and 5b,
we illustrate six and three slices of them, respectively.
The order of images reflects a gradual change process
of human organs. The deformations of heart and chest
principal features, such as its contour, are non-rigid.
At the same time, the point sets would in general have
outliers when feature points are automatically
extracted. Finding the correspondence points between
slice pairs is always a key step for image registration or
image 3D interpolation, etc. For each image, land-
mark points are extracted by Canny’s algorithm and
the ground truths of correspondence are manually
marked for performance evaluation. The adjacent
image pairs are used to match. So we run 29 experi-
ments for heart sequence and 23 experiments for chest
sequence. After applying PRNS, TPRL, and our
method, we get a projection between two correspon-
dence points, as shown in Figs. 5c and 5d. Since we
know the ground truth of correspondence, we take
advantage of the number of feature point mismatched
as error measure. Figure 6 shows the compared results.

4. CONCLUSIONS

This paper introduces an improved point set regis-
tration based on graph matching by preserving local
topology. Unlike the previous methods, we firstly
define the neighborhoods of point as a sub-graph.
Secondly, two ordinal relations based topology stable
are proposed to determine the correspondences
between two sub-graphs, which is more reasonable
and precise for measuring the local topology transfor-
mation. Finally, a matching probability is computed
based on the correspondence as the local support.
Extensive experiments were presented to show the
robustness and accuracy. Compared with the other
PATTERN RECOGNIT
three well-known algorithms, our approach shows
better performance. Nevertheless, the local topology
may be destroyed when a large amount of outlier or
noise exists. The performance of algorithm would
decrease. How to improve the robustness would be
addressed in our future research.
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