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Abstract—The work is devoted to the research that was carried out within the framework of computer vision
problems applicable to the analysis of images and video information with vehicles. We solve the problem of
classifying vehicles. We analyze the drawbacks of Haar features and convolutional neural networks and test
the obtained networks using the key point method; we construct an integral algorithm that includes several
networks, and we further validate it on a large number of real photographs and types of vehicles. Next, we
solve the task to develop a software framework for tracking vehicles by analyzing adjacent photographs from
a video sequence. After that, we consider the tracking task in more detail. We analyze modern tracking algo-
rithms using machine learning and describe our implemented tracker with support for the appearance of
obstacles between the camera and a moving vehicle. As a result, we propose algorithms and open-source soft-
ware that, after being configured for specific cameras, can be used in traffic analysis systems.
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1. INTRODUCTION

Nowadays, in the service of traffic inspectorates,
compute appliance systems for automatic recording of
administrative offenses in the field of road safety have
appeared. These systems allow one to monitor espe-
cially dangerous sections of roads and record various
offenses: speed-limit violations, parking-rule viola-
tions, traffic-rule violations at intersections, etc. The
identification of the vehicle with which the offense was
committed is carried out by recognizing the symbols of
the vehicle registration plate (a survey on recognition
methods is given in [1] and examples of applicable
algorithms in article [2]). Thus, if the registration plate
belongs to another car, the offender will avoid liability.
To solve the problem, the system of identification of
the brand and model of vehicles, which partly solves
this problem, is one of the topics of the present study.
We believe that identifying the brand and model of
vehicles from traffic enforcement cameras will allow
detecting cars moving on public roads with deliber-
ately forged numbers, which can be useful when
searching for stolen cars and those that left the scene
of an accident. With the development of artificial neu-
ral networks designed to distinguishing features in
images, the process of determining the brand and
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model consists in training and subsequent operation of
such a network [3, 4]. Using such a method, it is pos-
sible to obtain an accuracy higher than the methods of
the SURF class [5] in an acceptable time, which is
applicable to the analysis of images from servers of
road compute appliance systems in the background
process or upon given requests.

Consider the task of motion detection. This task is
devoted to find moving objects in the video for further
work with these objects. A review on the topic was
published in [6, 7]. In papers [8, 9], methods for solv-
ing this problem are given in relation to video surveil-
lance of the movement of vehicles. In such video-sur-
veillance systems, the camera is static and does not
change its angle, the background is inactive, and
therefore background subtraction is the most effective
method for detecting motion [10, 11]. As a result, we
get a bounding rectangle of a moving object, or a pixel-
by-pixel mask of the object. This approach will allow
detecting traffic from traffic cameras and assessing
vehicle speed.

To solve the problem of tracking objects in a video
stream, the developer community currently uses algo-
rithms based on classical machine-learning methods,
such as building a linear classifier [12], support vector
machines [13], and a random forest [14]. Compared to
machine-learning methods based on convolutional
neural networks [15], such algorithms do not require
preliminary training, they build a classifier model
333. © Pleiades Publishing, Ltd., 2021.
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Fig. 1. Tutorial examples for Haar cascades.
based on one frame from a video stream and then
update this model. In addition, they have high perfor-
mance, which allows them to be used in real-time sys-
tems. For tracking purposes, we observe an important
task to propose the modification of algorithms, which
includes the appearance of short-term obstacles
between the camera and a moving object, for example,
overlapping one moving car with another. An overview
on this topic is presented in [16].

This article summarizes several works performed
by us in the study of cyber-physical systems [17], this
time from the point of view of computer vision algo-
rithms and self-teaching methods in relation to the
analysis of the traffic situation. When writing this arti-
cle, we are considering the key points of such systems,
namely, motion detection, tracking and classification
of vehicles, and implementing software that uses mod-
ern libraries, such as OpenCV, that clearly do not con-
tain the required algorithms. We also set ourselves the
goal of designing the software architecture in such a
way that it was customizable and extensible. To do
this, we apply software design patterns and follow the
concept of software frameworks [18]. The main con-
tribution of this work is the implementation and
description of (1) an integral algorithm for determin-
ing the types of vehicles (2) a software framework for
detecting motion, and (3) an add-on for the KCF
tracking algorithm with overlapping.

The structure of this article is as follows: in
Section 2, we consider issues of vehicle classification,
including testing neural networks and developing an
integral algorithm; in Section 3, we describe a software
framework for motion detection and vehicle speed
analysis by background subtraction; Section 4 deals
with object tracking and the extension of the KCF
algorithm with obstacles between the object and the
camera, and Section 5 draws conclusions and provides
links to our software.

2. SOLUTION OF THE VEHICLE 
CLASSIFICATION PROBLEM

2.1. Analysis of Data Coming from Road
Computer Appliance Systems

At the disposal of centers for analyzing the road sit-
uation, there are stationary and mobile computer
appliance systems for obtaining and processing traffic
photo and video data produced by various indepen-
dent companies. Therefore, each of the complexes has
its own communication interface and method of stor-
ing information, for example, they can use MSSQL
and PostgreSQL database management systems to
store photos or save a photo and a digitally signed key
along with information extracted from the photo to
files. According to the results of our study, it was found
that none of the available complexes provides an inter-
face for working with a video stream. Thus, it is possi-
ble to work only with photographs taken in automatic
PATTERN RECOGNIT
mode. In this section, we only consider photographs
in which it was possible to find a rectangle of the state
vehicle registration plate (SRP). For example, accord-
ing to the State Standard of the Russian Federation
GOST R 50577-2018 [19], the length and width of the
SRP for both passenger and cargo vehicles is 520 and
112 millimeters, respectively. Since the presence of a
license plate in a photograph is mandatory and its
physical size is standardized, it was customary to take
the license plate as a basis and estimate the dimensions
based on the size of the plate.

2.2. Study of a Classifier Based on Haar Cascades
One of the methods of image recognition is the use

of cascades of Haar features [20]. In the classical rep-
resentation, the algorithm does not support multiclass
classification so we applied a one-against-all approach
to work with photos containing vehicles. That is, we
trained a separate cascade for each vehicle class, and
used positive examples of other classes as negative
examples for each specific class. Thus, a well-func-
tioning cascade should take images of other classes as
the background. The multiclass classification consists
in sequential search for cars in the image by different
cascades.

For the experiment, we chose one desired class
“Lada Priora” and 11 classes of cars, the photos of
which were negative for the desired class. We selected
cut-out images of the front part of Lada Priora cars as
positive examples, an example is shown in Fig. 1. On
the other hand, we used raw photographs of other
vehicles from photo cameras as negative examples.

During the experiment, we revealed a large number
of shortcomings of the considered algorithm: insuffi-
cient accuracy, a large number of false positives, as
well as double positives. We suggest that the image of
the whole car is too complex to be classified using a set
of Haar cascade rectangles. Therefore, we made the
decision to test the Haar cascades for a simpler task:
classifying car nameplates. For this experiment, we
prepared a sample containing ten classes of name-
plates, 200 photos in each class. The experiment
involved nameplates of the following makes: Nissan,
Opel, Mazda, Honda, Volkswagen, Mercedes, Audi,
ION AND IMAGE ANALYSIS  Vol. 31  No. 2  2021
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Fig. 2. Tutorial examples for the classification of name-
plates with Haar cascades.
Toyota, Renault, Lexus. Examples from the training
sample are presented in Fig. 2.

For each of the ten classes, we trained its own cas-
cade. Then, to assess the classification accuracy, we
sequentially recognized 1000 photos by each of the
cascades. As a result of the experiment, the multiclas-
sification accuracy was 65%. Here, accuracy should be
understood as the ratio of correctly classified photos to
the total number of photos, where a correctly classi-
fied photo is a photo in which the only image of the
nameplate was found, and the class of the found
nameplate is correct. A result of 65% for multiclassifi-
cation is much more significant than a result of 66.8%
for a binary classification; however, this accuracy is
still not enough for use in real conditions.

2.3. Research of Artificial Neural Networks

The purpose of the first study of neural networks
was to test their applicability for vehicle recognition.
For this, we prepared a small data set (dataset) consist-
ing of two parts. The first part is a training sample of
5000 photographs of five different classes. The second
part is a validation set consisting of 2000 photographs
of the same classes. Thus, for each of the five classes,
we prepared 1000 photographs for training and 400
photographs for checking accuracy. All photographs
were taken with real traffic enforcement cameras and
are subject to the only modification: cropping of the
black frame containing information about the offense.

For all experiments with convolutional neural net-
works, we used the Keras framework [21] with two dif-
ferent backends: Theano [22] and TensorFlow [23].
Physically, the calculations were carried out on an
Nvidia GTX 970 GPU using the CUDA platform.

Currently, there are a large number of neural net-
work architectures, among which we selected the most
advanced and suitable for the task of image classifica-
tion. The final list includes:

1. Inception V3 [24] from Google.
2. Resnet50 from Microsoft [25].
3. Xception from the creator of the Keras frame-

work Francois Hall [26].
4. VGG from Oxford representatives [27].
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The accuracy of the first experiment with Incep-
tion V3 was 89.2%; that is, 1784 of 2000 photographs
of the validation sample were correctly recognized. We
used the standard hyperparameters and the RMSprop
optimizer. Thus, at that time it was the best result
among all selected algorithms, and we continued
experiments with this architecture. As a result of enu-
merating optimizers, batch sizes of simultaneous
training, and the number of training epochs, we found
the optimal parameters. The maximum accuracy was
96.9% in the case of training at least 80 epochs with the
Adam optimizer and batch_size parameter equals
to 16.

To experiment with the ResNet architecture, we
chose the ResNet50 network, which contains 50 layers
and fits into the memory of the GPU. Training took
place on the same dataset; and we used the RMSprop
optimizer. As a result of the experiment, the classifica-
tion accuracy was 89%.

The Xception architecture is a popular modifica-
tion of the Inception network, where some of the
blocks are replaced with deep split convolutions. The
author claims that such a network has a slightly higher
recognition accuracy than the original Inception V3.
However, in this particular case of black-and-white
images from a traffic camera, Inception could not be
surpassed. The final accuracy at 50 epochs with the
Adam optimizer was 93.5%. At the same time, the
training process looked similar to Inception, but the
training time turned out to be 1.5 times longer.

VGG is a very deep convolutional network archi-
tecture from Oxford. The network was developed spe-
cifically for the ImageNet competition and has two
implementations, VGG16 and VGG19, with 16 and 19
layers, respectively. Networks are very demanding on
computational resources; therefore, using the avail-
able capacities, it was possible to start training VGG19
with a batch of only two photos and VGG16 with a
batch of four photos. For training, we carried out sev-
eral approaches with additional training for 30 epochs
of each of the network; nevertheless, the recognition
accuracy did not move from 20%.

Based on the results of the experiments, we chose
convolutional neural networks of the ResNet and
Inception architectures as the basic units of the inte-
gral algorithm described below. We developed a mech-
anism for determining not only the type of vehicle but
also a specific brand using a single neural network.

2.4. Testing Networks Using Keypoints

To understand the principle of operation of neural
networks and optimize the input data, we carried out
an analysis of key points used by neural networks.
This experiment is consistent with the method pro-
posed in [28].

Experiment plan:
ol. 31  No. 2  2021
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1. Choose one well-recognized photo, keep the
recognition result.

2. Erase some of the information on the photo (put
a black square on the image).

3. Recognize the resulting image using the same
neural network.

4. Compare the recognition result with the original
one. Fix the location of the square and the deviation of
the result.

5. Nudge the square a pixel.
6. Repeat steps 2–5 for all possible areas.
7. Find the maximums among all deviations. The

corresponding areas are the key points.
The study found that the deep neural network pays

the most attention to the front of the car and almost
completely ignores the background. Therefore, we
considered inappropriate preliminary cropping and
processing of photographs.

In addition, we trained a neural network to respond
not to the brand of the car but to the body style. The
result of correct recognition on the validation set is
47%. The reason for this result is that most of the pho-
tos in the sample contain only the front of the car. At
the same time, the key points of the new network have
practically remained the same. Thus, the neural net-
work “tried” to recognize the brand anyway and then
issue the body style corresponding to the brand. This
experiment showed the inexpediency of separate rec-
ognition of the car body style.

2.5. Development of an Integral Algorithm

Cars are a difficult object to classify, even for
humans. It often happens that cars have been
reworked, or have traces of an accident. All this com-
plicates the process of determining their brand. We
have already noted that a modern approach to solving
this problem is the use of convolutional neural net-
works. Each neural network trained on N classes has
N outputs, on each of which is the probability of an
example belonging to a specific class. To provide the
user with a recognition result, the largest of these
probabilities is selected. However, if two or more
classes have the same or close probabilities, there is a
great chance of making a mistake and giving the user
an incorrect result. To solve this problem, we have
developed an integral algorithm that combines several
networks of different topologies at once and gives the
final result based on the weighted opinion of these
networks. The vehicle is characterized by an identifier,
which consists of a tuple (1):

(1)

Here, Model is the car model, Mark is the manu-
facturer’s brand, Year is the year of manufacture or
generation of the car, Type is the body style.

( )= × × ×ID Mark Model Year Type
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We denote a set of images of cars by Img. The con-
sidered integral learning algorithm consists of several
subalgorithms for highlighting the key features of the
vehicle. For the algorithm, it is necessary to obtain the
target regions of the image depending on the region of
interest (ROI) as well as the set of Filters necessary to
accurately select these regions. Applying a chain of fil-
ters and an area of interest to the image, we get the
region of interest as a composition:

(2)
Each subalgorithm receives an image and a target

region as input and, returns a set of numerical features
(metrics) for the original image as a result.

(3)
In the next step, these metrics become the basis for

training neural networks.

(4)
We propose to use the following metrics:
1. Binary track of the front or rear of the car,

including headlights or lights, grille, bumper.
2. Distances from the license plate to the edges of

the trunk or bonnet and headlights or lamps, given in
centimeters based on the specific license plate size.

3. Binary trace of the manufacturer’s logo.
4. Data on the year of manufacture, make, model,

country of the car manufacturer.
The use of one network is impractical, since the

classification problem is complicated by the similarity
of cars and errors as a result of determining metrics
from the original images.

During recognition, a neural network from the
image returns several values of the found vehicle iden-
tifiers and the probability of the correctness of the fol-
lowing determination:

(5)
The integral algorithm uses several neural networks

that work in parallel and return classes of machines
and probabilities.

We use an integral weighted formula to determine
the resulting class. Let several networks return some
detection probabilities and identifiers:

(6)

The set of identifiers returned by different networks
is identical; therefore, by applying weighted, empiri-
cally selected coefficients  showing the weight of
each network in the final integral algorithm, we get

(7)

= …1i i i inRegion ROI oFilter oFilter oImg

( )× →: *i i iAlg Region Img Metric

( ) × →*i iMetric ID Net

( )→ ×: *Net Img ID P

→ × × ×…1 11 1 12 2 1{ , , }n nNet p id p id p id

→ × × ×…2 21 1 22 2 2{ , , }n nNet p id p id p id
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iw
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Fig. 3. Integral algorithm recognition matrix.
To speed up work with a large value of vehicle types
for detection, we can use only a few maximum proba-
bilities and the corresponding classes returned by neu-
ral networks.

After calculating the weighted probabilities for all
vehicle identifiers, we select the identifier with the
highest obtained probability:

(8)

To implement the integral algorithm in relation to
the problem under consideration, we selected the net-
works that showed the best results on the validation
set. The final implementation consisted of two Incep-
tionV3 networks trained with different optimizers and
a ResNet50 network. The result of each of the neural
networks contributes to the final result with a coeffi-
cient fitted using linear regression.

2.6. Development and Testing of a Prototype Application 
That Implements the Integral Algorithm

Having thus decided on the architecture, we began
on creating a working prototype. We prepared a sam-
ple of 100 000 practice and 25 000 validation photos
from 115 of the most common car models. This sample
was less balanced than the previous one and each
brand had contributed a different number of photo-
graphs from 300 to 5000. In addition, there was no
preprocessing and premoderation, for example, for
overlapping photos or night shots. Thus, the condi-
tions are as close as possible to real ones.

The accuracy of the resulting neural network on the
validation set was 88%. To analyze the results, we built
a recognition matrix. A fragment of such a matrix is
shown in Fig. 3.

Analyzing the results, we see that the problem with
the recognition of similar cars from the same manu-
facturer, in this case, especially of domestic produc-

( )= ×p wid Max ID P
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tion, becomes obvious. Usually, only the front part of
the car is shown in the photo, so it is virtually impos-
sible to distinguish, for example, Lada 21093 from
Lada 21099. To solve this problem, we decided to
combine indistinguishable brands into one class. Then
we trained the network again on the resulting sample
of 110 brands. As a result, we managed to achieve the
result of 91.6%. This result can already be considered
suitable for use in real conditions. The top five metric
was 97.2%.

3. MOTION-DETECTION AND VEHICLE 
TRACKER FRAMEWORK

3.1. Formulation of the Problem

In this section, we move from the task of classifying
vehicles by static images to the task of tracking them
from traffic cameras.

The tracking task is to build the trajectory of the
necessary objects on the input sequence of images. In
the tasks of detecting motion and tracking objects,
there are many different implementations, various
characteristics, and parameters that can be varied
depending on the problem being solved. So we pro-
pose to implement an object-oriented framework with
which it would be possible to solve such problems. A
framework is a software platform that defines the
structure of a software system and facilitates the devel-
opment and integration of various components of a
large software project. One of the first proposals for
such a merger was made by IBM in 1987 [29]. A
framework differs from the concept of a library in that
a library can be used in a software product simply as a
set of subroutines of similar functionality without
affecting the architecture of the software product and
without imposing any restrictions on it, while the
framework dictates the rules for building the architec-
ture of the application, setting the default behavior at
ol. 31  No. 2  2021
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the initial stage of development. The framework can
be extended and changed according to the specified
requirements.

A motion-detection framework should be able to
provide the following:

(1) work with streaming video or video stored on
disk;

(2) set the area for motion detection;
(3) to detect motion, use the background and

sequential image subtraction methods implemented in
the framework, independently setting and changing
some algorithm parameters, depending on the task
(different filter chains, binarization threshold, etc.);

(4) highlight the detected object with a rectangle or
outline;

(5) apply various filters for video frames, for exam-
ple, such as median filter, blur and binarization;

(6) save chains of filters as presets;
(7) adapt the algorithm for the users by writing their

own implementations of some methods; and
(8) implement interfaces for working with detected

objects, for example, for object recognition.
To demonstrate the capabilities of the framework,

we propose to implement the “Vehicle Tracker” appli-
cation, which will count the number of cars by lanes,
as well as their speed. In addition, the application
should be able to select a motion-detection method
and, in addition, provide f lexible filter settings for the
selected method.

3.2. Background Subtraction Method
The background subtraction algorithm imple-

mented in the framework consists of four steps:
Step 1. Take the first frame of the video, which will

later be the background.
Step 2. Find the absolute difference between the

current frame and the background for each subsequent
frame.

Step 3. Apply a chain of some filters for the
obtained difference (the chain of filters depends on
several factors, for example, the size of the detected
objects, lighting conditions, etc.). After applying a
chain of filters, one will get a binarized image, where
the background is black and the foreground is white.
The foreground objects will be our detected objects.

Step 4. Repeat steps 2 and 3 until the video ends or
the user stops the algorithm.

Through our experiments, we selected the follow-
ing chain of filters, which is applied to the absolute dif-
ference between the current frame and the back-
ground: binarization with an average threshold,
median filter, blur, and binarization with a low thresh-
old. This approach is consistent with the double bina-
rization approach proposed in [30]. Binarization
thresholds are algorithm parameters and are set in the
PATTERN RECOGNIT
application interface when calibrating for a specific
camera that is the source of images.

3.3. Sequential Image Method

The sequential image algorithm implemented in
our framework consists of the following steps:

Step 1. Take two consecutive frames of video.
Step 2. Find the absolute difference between

frames.
Step 3. Apply a chain of filters to the resulting abso-

lute difference between the two frames. We get a bina-
rized image with selected moving objects.

Step 4. Repeat steps 2 and 3 until the video ends or
the user stops the algorithm.

For the method of sequential images, we experi-
mentally selected the following filter chain : binariza-
tion with a low threshold, blurring, and binarization
with a low threshold.

3.4. Vehicle Tracker

To demonstrate an example of using the frame-
work, we developed the “Vehicle Tracker” applica-
tion. The application counts the number of vehicles in
each lane as well as the speed of each vehicle. In addi-
tion, the tool provides the ability to change the
motion-detection method while the program is run-
ning, as well as to edit filter chains for the selected
method. Fig. 4 shows the operation of this application
on a demo video, which is processed frame by frame.

The cars were counted relative to the lower frame
border. For each frame, we store how many cars are
currently on the frame. For each new frame, we check
whether the detected object has appeared at the bor-
der; if so, then we count their number and increase the
number of cars in this lane by this value. This
approach is consistent with the approach proposed in
[31]. The number of stripes and their sizes are set
during software configuration depending on the
shooting parameters of a particular camera. Since we
are counting the number of cars in lanes at the bottom
of the frame, we do not need to account for perspec-
tive distortion. If the camera is hanging on the side of
the road and one wants to count objects not on the
lower boundary, then one can use the complicated
model proposed in [32].

The speed is calculated according to the following
algorithm:

(1) For the first frame with detected objects,
remember the bounding boxes of each object.

(2) For subsequent frames with detected objects,
generate a list of bounding rectangles for each object.

(3) For each bounding rectangle on the new frame,
find the closest rectangle on the previous frame. The
distance between rectangles is defined as the absolute
ION AND IMAGE ANALYSIS  Vol. 31  No. 2  2021
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Fig. 4. Vehicle tracker application.
difference between the coordinates of the centers of
the rectangles.

(4) If the distance between the rectangles is less
than the specified threshold, then we find the position
of the object of the previous frame on the current one.
Now we need to convert the distance in pixels to
meters. Knowing the width of the marking strip in
centimeters and pixels, we can compose the propor-
tion and find how many centimeters corresponds to
one pixel.

(5) Knowing the frame rate, we find the time it
takes to change frames, and then divide the distance
traveled by the car, in meters, by the value of this time,
and find the speed of the car between two frames.

The considered method makes it possible to deter-
mine the speed of vehicles from road cameras without
using speed radars. The accuracy of determining the
speed in this way depends primarily on the correct cal-
ibration of the algorithm according to the parameters
of the camera frame rate and the conversion of pixels
to centimeters. For the camera hanging directly over
the lanes, when determining the speed of the car at the
bottom of the screen, we can achieve almost absolute
accuracy, which will decrease as the car moves away
from the camera (without taking into account per-
spective distortions), but this is sufficient to save a cer-
tain speed value into the database.

4. KCF BASED OBJECT
TRACKING WITH OBSTACLES

4.1. Analyzing Object-Tracking Problems
Over a long time, the object-tracking system based

on the basic algorithms can degrade. To maintain the
correct operation of such systems, approaches based
on empirical observations of a specific system are used
[9]. For example, in some systems where the camera is
known to be static, background noise may be present
due to slight changes in lighting or swaying trees. In
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this case, we used a technique based on the chains of
filters applied for each frame of the video stream.
However, over a long period of time, the background
can change significantly, which will lead to errors in
the tracking algorithm. In this case, reloading of the
algorithm with the construction of a new background
model can be used [33]. This approach has been
implemented and described above.

Tracking algorithms based on machine-learning
methods, in particular, on methods of object classifi-
cation, help to avoid the above problem. These algo-
rithms do not degrade their performance over time,
since they use new information obtained from previ-
ous frames and rebuild the model online for the train-
ing stage. To build the most accurate models, deep-
learning methods based on convolutional neural net-
works are sometimes used, however, these methods
are not always suitable for tracking tasks, since their
work requires large amounts of labeled data, which the
developer of the tracking system may not have.

It should also be mentioned that most of the track-
ing algorithms are tailored for tracking one object.
This fact does not allow us to use these algorithms to
solve a number of problems, for example, car lane
change, tracking football players during a football
match, or constructing trajectories of products when
they are sorted in an electronic color sorter [34]. It
should also be mentioned that many tracking algo-
rithms do not cope with obstacle handling: the tempo-
rary overlap of the tracking target by other objects.
Examples of obstacles here are pedestrians blocking
the tracking target, trees, road signs, passing cars,
lamp posts, etc. Handling such obstacles is an import-
ant feature of the tracking algorithm. After the analy-
sis, we formulate the following requirements for the
object-tracking algorithm:

1. Real-time work (the ability to process frames
received from the camera without gaps).

2. Unlimited tracking duration.
ol. 31  No. 2  2021
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Fig. 5. Visualization of the circulant.

C ( ) =
3. Using machine-learning algorithms to classify
objects.

4. Lack of the pre-training phase.
5. The ability to track multiple objects in the frame.
6. Handling obstacles.

4.2. KCF Algorithm
One of the main methods for tracking objects in a

video stream based on classical machine-learning
algorithms is the use of a discriminatory classifier [35],
which allows assigning an image fragment (patch) to
one of two classes: object or background.

Each new detection of an object on new frames
allows us to supplement and update the model. How-
ever, for the correct operation of the classifier algo-
rithm, we need not only positive patches, which repre-
sent an object, but also negative ones, which must be
classified by the algorithm as a background. The most
commonly used negative examples are patches from
different places in the image at different scales. Since
there are practically an unlimited number of such
patches per frame, modern algorithms based on the
discriminating classifier are forced to use only a few
such patches (from three to 15). In addition, these
patches may overlap in the image, in which case they
will have redundant information.

The authors of the KCF algorithm believe that the
number of negative patches is the main factor hinder-
ing tracking efficiency. The main idea behind the KCF
algorithm is to use several thousand patches without
overlapping. The use of so many patches was made
possible by the discovery that, in the field of signal
processing (Fourier space), some machine-learning
algorithms become simpler when more data is added
by using specific models for translation. The circulant
matrix [36] (Fig. 5) acts as such an analytical model.

The circulant is the bridge between popular
machine-learning algorithms and classical signal pro-
cessing algorithms. It is proposed to use a ridge regres-
sion tracker, which can be represented as the Kernel-
ized Correlation Filter (KCF).

Comparing the complexity of the simple patch
extraction algorithm and solving the regression prob-
lem, we can see that the solution to the ridge regres-
PATTERN RECOGNIT
sion problem has a computational complexity of
O( ), since it is necessary for its solution to use the
operation of matrix multiplication, which has the
given asymptotics. On the other hand, all operations in
equations based on linear regression, circular, and
Fourier transform are elementary and have linear
complexity O(n), with the exception of the discrete
Fourier transform, which has the asymptotics
O(n*log(n)). For data volumes used in practice, the
transition to the signal processing space allows us to
reduce the amount of stored data and also increases
performance by several orders of magnitude.

When implementing the KCF algorithm, we used
the material given in the original article describing this
algorithm [37]. In addition, we reclaimed the source
code of the OpenCV Tracking API as well as an open
source implementation of the algorithm distributed
under the BSD license [38].

4.3. Implementation of Tracking
with Obstacle Handling

The KCF algorithm calculates an object detection
score at every frame. If this estimate is less than the
threshold, we can say that the object has disappeared
from the frame or hidden behind an obstacle. The
obstacle-processing algorithm is that, after the object
has disappeared from the frame, we try to detect it in
the next few frames in the vicinity where it disap-
peared. To do this, template matching algorithms are
used to search for a template found in one of the pre-
vious frames [39]. To store templates from previous
frames, we implemented a data structure, which is an
array of length N, as well as methods for working with
it: adding a template, extracting a template that was
detected N frames ago, and a method for checking if
the array is full. The parameters of this obstacle-pro-
cessing algorithm are the following: the length of the
queue, the number of frames on which the template
matching should be performed, and the radius of the
template search.

We can state that the Hough transform [40] can be
used as the template matching algorithm. This method
is designed to search for objects belonging to a certain
class of figures using the voting procedure. The voting
procedure is applied to the parameter space from
which objects of a certain class of figures are obtained
by the local maximum in the storage space, which is
constructed when calculating the Hough transforma-
tion. The classical Hough transformation algorithm is
associated with the identification of straight lines in
the image, but the algorithm was later expanded with
the ability to identify the position of an arbitrary figure
and image templates.

3n
ION AND IMAGE ANALYSIS  Vol. 31  No. 2  2021



DEVELOPMENT AND TESTING OF ALGORITHMS 331

Fig. 6. Comparison of the operation of the standard KCF tracker (upper part) and the modified tracker with obstacle handling
(lower part).
Our obstacle handling algorithm consists of the fol-
lowing steps:

Step 1. Go to a new frame.
Step 2. If the sign of object loss is set, then go to step

9, otherwise go to step 3.
Step 3. Add a patch to the queue.
Step 4. Call the detect() method to detect an object

on the frame.
Step 5. If the method estimate is less than the

threshold, then go to step 6, otherwise go to step 1.
Step 6. Set the sign of object loss from the frame.
Step 7. Initialize counter for counting frames with-

out object.
Step 8. Get the patch from the queue.
Step 9. If the counter is less than the threshold,

then go to step 10, otherwise go to step 13.
Step 10. Run the template matching algorithm.
Step 11. If the object is found within the specified

radius, then go to step 12, otherwise go to step 1.
Step 12. Set the sign of object recovery, go to step 1.
Step 13. Stop the tracker.
As for test data to assess the quality of work, we

used image sets from the Visual Tracker dataset [41],
which meet the requirements for the presence of cars
and some static camera. In particular, Fig. 6 shows an
example of tracking a car when a motorcycle passes
between it and the camera, while the camera is moving
slightly. Tracking algorithms TLD (part of the
OpenCV Tracking API) and the original KCF lose the
vehicle, while the algorithm described above contin-
ues to track it.

5. CONCLUSIONS
In our studies, we developed and tested various

methods of processing information from photo and
video means of fixing the road situation. We imple-
mented several software tools, some of the develop-
PATTERN RECOGNITION AND IMAGE ANALYSIS  V
ments described in Section 2 are registered in the data-
base of Federal Institute of Industrial Property [42];
the framework described in Section 3 is issued in [43];
algorithms presented in Section 4 are available in [44].
These solutions can be integrated into existing traffic
control tools but may need to be brought to industrial
use depending on the current tasks and their param-
eters.
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