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Abstract—In the construction industry, about 80–90% of accidents are caused by the unsafe actions and
behaviors of employees. Thus, behavior management plays a key role in enhancing safety. In particular,
behavior observation is the most critical element for modifying workers’ behavior in a safe manner. However,
there is a lack of practical methods to measure workers’ behavior in construction as current literature only
focuses on a few unusual signs such as not wearing personal protective equipment. This paper proposes a sys-
tem for recognizing workers’ dangerous behaviors. To that end, an image dataset has been collected, labeled
for three such behaviors. Based on the dataset obtained, the transfer-learning approach is used with three pre-
trained models, VGG19, Inception_V3 and InceptionResnet_V2. The results indicate that InceptionRes-
net_V2 performs better than VGG19_ and Inception_V3 for classifying unsafe behaviors and after 150
epochs, its accuracy reaches 92.44%.
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1. INTRODUCTION
Considering that the unsafe actions and behaviors

of employees in the construction industry account for
about 80–90% of incidents [1], [2], and there is a
meaningful correlation between behavior measure-
ment and incident rates [3], worker behavior manage-
ment therefore plays a critical role in the success of
construction projects. Consequently, the most effec-
tive way to enhance safety can be considered behavior
measurements (e.g. finding the frequency of unsafe
actions and postures) and modifications (e.g. offering
feedbacks, setting goals, and engaging workers) [4–8].
The industry, however, lacks cost-effective and robust
methods to measure workers’ behavior [9]. Behavior
observation requires (1) a time-consuming and labor-
intensive task in collecting and analyzing records [10],
(2) plenty of data to deal with inconsistent and biased
results [11], and (3) active worker participation in
observing and reporting their own and colleague’s
unsafe behavior [12]. These requirements impose
practical constraints on behavior measurement, and
thus hinders the key to behavior-based safety manage-
ment [13, 14].

Computer vision techniques have previously been
used in construction-related research, focusing on the
detection of construction workers, site machinery and
on progress tracking [15–19]. In [20], Teizer described
the status quo and challenges in computer vision in
ISSN 1054-6618, Pattern Recognition and Image Analysis, 2021, Vol. 31, No. 2, pp. 271–

Received October 8, 2020; revised January 16, 2021;
accepted January 22, 2021
construction. Among computer vision techniques,
histogram of oriented gradients (HOG) is one of the
most widely used. Park and et al. [15] used HOG and
the histogram of HSV (Hue, Saturation, Value) colors
as inputs for a k-nearest neighbors (KNN) classifier.
HOG, Histogram of Optical Flow (HOF), Motion
Boundary Histogram (MBH) were used for the recog-
nition of construction worker actions in [21]. Besides
HOG, Haar Cascade [22] is another popular tech-
nique used in construction. Du et al. [23] used an
approach based on the Haar Cascade to detect the
workers’ hard hats at construction sites. Kim et al. [24]
used a combination of KNN and Scale Invariant Fea-
ture Transform (SIFT) algorithms to parse a complete
image from a construction site. For traditional com-
puter vision technologies, it is quite straightforward in
that the extracted features are used to code one image,
and then to conduct classification and clustering for
labeling other images. However, the features are
extracted by the predefined and special-purpose opti-
mized models and these models can only be manually
developed where high-dimensional features are
required. Therefore, when multi-feature models are
simultaneously considered, these traditional methods
(HOG, HOF, MBH, etc.) lose their advantages or
even may fail to perform the designed tasks.

Convolutional Neural Networks (CNN) have
stood out as an effective method for solving image-
based object detection and classification in construc-
tion-related problems [25]. Numerous studies have
applied CNN-based algorithms to detect unsafe
behavior in construction site. In [26], a Faster
284. © Pleiades Publishing, Ltd., 2021.
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Fig. 1. Overview of the proposed method.
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R-CNN and deep CNN model were developed by W.
Fang et al to identify workers and their harnesses. Pre-
cision and recall rates for the Faster R-CNN to detect
workers were 99% and 95%, respectively, while those
for the CNN to detect people not wearing their safety
harnesses were 80% and 98%, respectively. In [27], Q.
Fang et al introduced a deep-learning-based occlusion
mitigation method for personal protective equipment
(PPE) checking. Their experimental results have
demonstrated that the method is robust under various
conditions. In [28], Q. Fang et al developed an algo-
rithm based on deep learning for non-hardhat-use
(NHU) detection using more than 100.000 construc-
tion worker images. The results showed high precision
and recall rate and that the proposed method can
facilitate safety inspection and supervision.

When applying CNN to image classification prob-
lems, a pre-trained network, a network that was previ-
ously trained on a large-scale image dataset and had
proved itself highly effective in dealing with small
dataset cases, is often used. CNN architectures such as
the VGG family [29], Inception_V3 [30], and Res-
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net50 [31] are typically trained on the ImageNet data-
set [32] and have obtained very good results for general
image classification. Inspired by such an accomplish-
ment, K. Zdenek et al. [33] retrained the VGG-16
deep learning network on 4000 augmented images.
The authors used the core part of a deep CNN called
VGG-16 to transfer the image feature knowledge
stored in the VGG-16 model to the guardrail detection
model. Then, the MLP model was trained to process
the output of the core VGG-16-based object detec-
tion. Its performance was shown to be better than a
support vector machine (SVM) in the conclusion.

In summary, the previous studies were primarily
limited to the detection of dangerous signs related to
safety equipment such as helmets, protective clothes,
guardrails. In addition, the datasets came from ideal
laboratory conditions, not actual working environment.

The main contribution of this paper is a method for
classifying three unsafe behaviors based on machine
vision and deep learning technologies. The aim is to
recognize a worker’s dangerous behavior and to accel-
erate risk analysis and assessment with high accuracy.
ION AND IMAGE ANALYSIS  Vol. 31  No. 2  2021
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Fig. 2. Dataset sample. (a) Unsafe action 1: Human reach out, (b) Unsafe action 2: Human legs out, (c) Unsafe action 3: Human
Climb Wrong.

(a) (b) (c)
The CNN architecture is used in combination with
the transfer learning approach and optimizations of
the model’s helper parameters. In addition, a dataset
with three labeled classes is made available to the
research community on GitHub [34]. The study con-
siders only the problem of classification of types of
unsafe behavior. It is preceded by the problem of
detection of any type of unsafe behavior, which must
be also solved by an automated system coupled with
video surveillance equipment.

The remainder of the paper is organized as follows.
Section 2 describes the proposed method. Then, the
results are analyzed in Section 3. Finally, brief conclu-
sions are made in Section 4.

2. METHODOLOGY

2.1. Overview of the Proposed Method

The proposed method for classifying unsafe behav-
ior includes five stages: (1) data collection, (2) data
preprocessing, (3) learning rate optimization, (4)
implementing the CNN with the transfer – learning
approach and (5) experimentation and evaluation
(Fig. 1). First, images are captured from an actual
construction site in a variety of settings. Next, usable
images are selected from the collected set during pre-
processing. Then, optimal learning rate is figured out
through an automatic finder algorithm. After that, the
transfer – learning approach is used to enable the
training of Deep Neural Networks without the need
for millions of labeled data points typically for such
complex models. Finally, the results are evaluated,
analyzed and compared to a number of typical CNN
architectures.
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2.2. Data Collection

When using machine learning for digital image
classification, the number and variety of the images in
the dataset will greatly affect the classification accu-
racy. Currently, common datasets for classifying
unsafe behaviors are either limited in quantity or are
not collected from real working environment, there-
fore reducing the practicality of research based on
such datasets. In this study, images are gathered from
a real environment to obtain a more diverse selection.
There is a total of 5000 images, captured using super-
vision camera from a real construction site in Japan,
and divided into three dangerous behaviors as shown
in Fig. 2.

2.3. Data Pre-processing

The collected images at 1200-by-1080 pixels are
then pre-processed through the following steps:

• Step #1 – Detect and remove blurry images: This
can be done by either of the two methods: Laplacian
[35] operator or Fast Fourier Transform (FFT) [36].
Although the FFT method requires some manual tun-
ings, it has proved to be more robust and reliable in
blur detection than the variance of Laplacian method.

• Step #2 – Detect and remove irrelevant images:
Images that do not contain unsafe actions are manu-
ally removed.

• Step #3 – Detect and remove duplicate images:
Duplicate images introduce bias into dataset, making
the deep neural network learn patterns specific to
those. In addition, they hurt the model’s ability to
ol. 31  No. 2  2021



274 HUNG, SU

Fig. 3. Image-hashing function.
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generalize to new images outside of what it was trained
on. To detect and remove duplicate images, a method
called “image hashing” is used [37] (Fig. 3).
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The processed images are then separated into three
parts: training, testing, and validation with a ratio of
8:1:1, respectively. Before training, the images are also
augmented [38] and resized to fit model’s input
requirement.

2.4. Learning Rate Optimization
The automatic learning rate finder algorithm works

through the following steps (Fig. 4):
• Step #1: Start by defining an upper and lower

bound on the learning rate. The lower bound should
be very small (1 × 10–10) and the upper bound should
be very large (1 × 101). At the lower bound, the learn-
ing rate should be too small for the network to learn,
and at the upper bound, the learning rate should be
too large, and the model would overfit.

• Step #2: Start training the network from the
lower bound. After each batch update, the learning
rate is exponentially increased.

• Step #3: Continue training until the learning rate
hits the maximum value. Typically, this entire training
process/learning rate increase takes 1–5 epochs.

• Step #4: After training is complete, a graph of
loss versus learning rate is plotted, to identify the
points where the learning rate is:

▪ Large enough for the loss to decrease
ION AND IMAGE ANALYSIS  Vol. 31  No. 2  2021
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Fig. 5. Learning rate finder algorithm output.
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Table 1. Pre-trained model properties

Model Parameters Depth

VGG19 143,667,240 26
Inception_V3 23,851,784 159
Inception Resnet_V2 55,873,736 572
▪ Too large, to the point where loss starts to
increase.

The following figure shows the visualized output of
the learning rate finder algorithm on the dataset using
a variation of VGG19 network (Fig. 5).

Notice that from 1 × 10–10 to 1 × 10–8 the loss only
slightly decreases, meaning the learning rate is too
small for the network to actually learn. Starting at
approximately 1 × 10–7 the loss starts to decline – this
is the smallest learning rate where the network can
actually learn.

By the time we hit 1 × 10–6 the network is learning
very quickly. At a little past 1 × 10–4, there is a small
increase in loss, but the big increase doesn’t begin
until 1 × 10–1.

Finally, by 1 × 101 the loss has exploded – the
learning rate is now far too high for the model to learn.

Given this plot, through visual examination, the
lower and upper bounds on the learning rate for the
Cyclical Learning Rate (CLR) [39] can be determined
to be 1 × 10–7 and 1 × 10–4 respectively.

2.5. Implementing Transfer-learning
A CNN architecture typically consists of several

convolutional blocks and a fully connected layer. Each
convolutional block is composed of a convolutional
layer, an activation unit, and a pooling layer. A convo-
lutional layer performs convolution operation over the
output of the preceding layers using a set of filters or
kernels to extract the features that are important for
classification.

Although the development of a deep learning
model for dangerous behavior recognition and classi-
fication is the key part of this research, training a
model from scratch takes a considerable amount of
time even with a workstation-level computer. For
example, the training of the famous CNN classifier
AlexNet [40], takes five to six days on NVIDIA GTX
580 3GB GPUs due to the large number of images.
This long training time prevents quick validation of a
trained classifier with various training options.

Transfer learning is an effective approach in reduc-
ing training time by fine-tuning a deep learning model
that has previously been trained for a similar purpose. It
is currently very popular in the field of Deep Learning
because it enables the training of Deep Neural Net-
works with comparatively little data. In the present
study, three different pre-trained CNN models includ-
ing VGG19, Inception_V3 and InceptionResnet_V2
are experimented with to evaluate their performance.

The VGG network architecture was introduced by
Simonyan and Zisserman in their 2014 paper [41].
This network is characterized by its simplicity, using
only 3 × 3 convolutional layers stacked on top of each
other in increasing depth. Volume size reduction is
handled by max pooling. Two fully connected layers,
PATTERN RECOGNITION AND IMAGE ANALYSIS  V
each with 4.096 nodes are then followed by a softmax
classifier. The number “19” stands for the number of
weight layers in the network. VGG19 is a widely used
convolutional architecture pre-trained on the Ima-
geNet dataset. The second pre-trained model, Incep-
tion-v3, achieves state-of-the-art accuracy for recog-
nizing general objects with 1000 classes, for example,
“Zebra”, “Dalmatian”, and “Dishwasher”. This model
first extracts general features from input images and
then classifies them based on those features [42].
Meanwhile, Inception-ResNet-v2 is a convolutional
neural network that achieves a new level of accuracy on
the ILSVRC image classification benchmark [43]. It is
a variation of the earlier Inception V3 model with ideas
borrowed from Microsoft’s ResNet papers [44, 45].
Residual connections allow shortcuts in the model for
researchers to successfully train even deeper neural net-
works, which have led to even better performance. The
information for the VGG19, Inception_V3, and Incep-
tionResnet_V2 models is illustrated in Table 1.

For transfer learning, first, only the convolutional
part of a model up to the fully connected (FC) layers
(i.e. excluding the top FC layers) is initiated. Then it is
run on the training and validation image data only
once and the output of the last layer before the FC
layer, i.e. the output features, is saved. After that, a
customized FC layer is trained on top of these output
features. The output of the last convolutional layer is
f lattened and connected to the ReLU-activated units
of the FC layer. The output layer consists of a single
unit with a softmax activation [46], i.e. a function that
turns numbers, a.k.a. logits, into probabilities that sum
ol. 31  No. 2  2021
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Fig. 7. VGG19 pre-trained model architecture.

Total params: 20,024,384
Trainable params: 20,024,384
Non-trainable params: 0

Layer (type) Output Shape Param #

input_3 (Input Layer) (None, 227, 227, 3) 0

block1_conv1 (Conv2D) (None, 227, 227, 64) 1792

block1_conv2 (Conv2D) (None, 227, 227, 64) 36928

block2_conv1 (Conv2D) (None, 113, 113, 128) 73856

block2_conv2 (Conv2D) (None, 113, 113, 128) 147584

block1_pool (MaxPooling2D) (None, 113, 113, 64) 0

block2_pool (MaxPooling2D) (None, 56, 56, 128) 0

block3_pool (MaxPooling2D) (None, 28, 28, 256) 0

block4_pool (MaxPooling2D) (None, 14, 14, 512) 0

block5_pool (MaxPooling2D) (None, 7, 7, 512) 0

block3_conv1 (Conv2D) (None, 56, 56, 256) 295168

block3_conv2 (Conv2D) (None, 56, 56, 256) 590080

block3_conv3 (Conv2D) (None, 56, 56, 256) 590080

block3_conv4 (Conv2D) (None, 56, 56, 256) 590080

block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160

block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808

block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808

block4_conv4 (Conv2D) (None, 28, 28, 512) 2359808

block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808

block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808

block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808

block5_conv4 (Conv2D) (None, 14, 14, 512) 2359808

Fig. 6. Customized FC layers architecture.

Layer (type) Output Shape Param #

flatten_1 (Flatten) (None, 51200) 0

dense_1 (Dense) (None, 128) 6553728

dropout_1 (Dropout) (None, 128) 0

dense_2 (Dense) (None, 5) 645

Total params: 6,554,373
Trainable params: 6,554,373
Non-trainable params: 0
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Table 2. Hyper-parameters

Hyper-parameter Value

Epoch 150
Learning rate CLR[1e-7, 1e-4]
Batch size 32
to one. It outputs a vector that represents the probabil-
ity distributions of a list of potential outcomes, in this
case are the three classes. The dropout layers are
added after the activation layers to avoid overfitting.
Meaning that the customized fully connected output
layer of the network should have three classes expected
instead of those in the pre-trained models.

Next, the model is compiled on the few last layers
of the network in order to adjust the pre-trained weight
using loss functions such as Categorical Cross-entropy
and optimizers such as Adam [47]. The training is per-
formed using the Keras framework with a TensorFlow
backend, an open-source deep learning framework
[48]. The hardware used is a personal computer with
the following configurations: Intel® Core™ i7-
7700HQ CPU (4 cores, 8 threads) @ 2.80 GHz, 16GB
of RAM and a GeForce® GTX 1050 4GB GPU. Fig-
ure 6 shows the customized FC layers architecture,
and Fig. 7 demonstrates the VGG19 pre-trained
model architecture.

3. EXPERIMENTATION AND EVALUATION
The classifiers are trained with the following

hyper-parameters (Table 2).
For evaluation, the training dataset is used to fit the

model. The validation dataset is used to provide an
unbiased evaluation of a model fit the training dataset
while tuning the model hyper-parameters. The trained
network is asked to predict the label for each image in
our testing set, which used to provide an unbiased
evaluation of a final model fit on the training dataset.
These predictions are compared to the ground-truth
labels, the category of the actual images of the testing
set. From there, the number of predictions that are
PATTERN RECOGNITION AND IMAGE ANALYSIS  V

Fig. 8. Confusion matrix.
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correct can be computed into aggregate reports pre-
sented as the confusion matrix (Fig. 8). Precision,
recall, f-measure and accuracy are used to quantify the
performance of the network as a whole.

Recall is the ratio of the Actual Positives the model
managed to identify (True Positive).

Precision is how precise/accurate the model is, i.e.
out of the predicted positive, how many of them are
actual positive.

F1 Score is a balance between Precision and
Recall.

Accuracy is the ratio of predictions the model pre-
dicted correctly.

Comparing the three pre-trained models during
the training process (Figs. 9, 10, 11, 12), the accuracy
of InceptionResnet_V2 is always higher than those of
Inception_V3 and VGG19. The accuracy of Incep-
tion_V3 is lower than that of VGG19. The pattern, is
maintained during validation process, the accuracy of
VGG19 is much higher than Inception_V3 but lower
than InceptionResnet_V2. In terms of loss value,
InceptionResnet_V2’s loss value is always lower than
the other two models. The same also happens here
where the loss value of Inception_V3 is higher than
VGG19 during training and evaluation, and the loss
value of InceptionResnet_V2 is much lower than
Inception_V3 and slightly lower than VGG19.

The training/validate accuracy curves and train-
ing/validation loss curves are shown in figures from
Figs. 13 to 15. For two VGG19 and InceptionRes-
net_V2 models, it is clear that their accuracy and loss
values increase and decrease gradually, respectively,
throughout the training/evaluation process. Mean-
while, the accuracy and loss values of Inception_V3 do
not seem to possess such trend.

Figures 16, 17, and 18 are the confusion matrices of
the three models. It is easy to see that Inception_V3
cannot distinguish among three unsafe actions. The
average percent of images predicted correctly as their
actual labels by InceptionResnet_V2 is the higher than
that in VGG19 model and Inception_V3.

Lastly, in Figs. 19, 20, 21, the average F1 score of
InceptionResnet_V2 is greater than the other two
models. The F1 scores of InceptionResnet_V2,
VGG19 and Inception_V3 models are 0.91, 0.90 and
0.41, respectively.

In conclusion, InceptionResnet_V2 has shown the
best results to solve the problem mentioned in this
paper. The high accuracy of this model, 92.44%, also

= TP/(TP+FN)Recall

= TP/ TP+F( )PPrecision

= × × +
 

2 Precision Recall/(Precision Recall)
F1 Score

= (TP+TN)/(TP+TN+FP+FN)Accuracy
ol. 31  No. 2  2021
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Fig. 9. Training accuracy curves of three pre-trained models.
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Fig. 10. Validation accuracy curves of three pre-trained models.
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Fig. 11. Training loss curves of three pre-trained models.
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Fig. 12. Validation loss curves of the three models.
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Fig. 13. Training/validation accuracy and training/validation loss curves of VGG19 model.
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Fig. 14. Training/validation accuracy and training/validation loss curves of Inception_V3 model.
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Fig. 15. Training/validate accuracy and training/validation loss curves of InceptionResnet_V2 model.
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Fig. 16. Confusion matrix of VGG19 model.
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confirms that the transfer learning approach is effec-
tive while also cut down on training time.

4. CONCLUSIONS AND PERSPECTIVE
In this study, a method for classifying workers’ dan-

gerous behaviors based on machine vision and deep
learning technologies is proposed. A new dataset with
three labeled classes is created and published on
GitHub for the research community. This dataset was
collected from a real construction environment using
cameras, which is then reviewed by occupational safety
experts. They are the quality assurance for this research.

Based on the image dataset obtained, the transfer-
learning approach is used with three pre-trained mod-
PATTERN RECOGNIT
els, VGG19, Inception_V3 and InceptionResnet_V2.
Customized FC layers are defined and associated with
the above models to perform classification. The results
indicate that InceptionResnet_V2 performs better
than VGG19 and Inception_V3 for classifying work-
ers’ dangerous behaviors. After 150 epochs, its accu-
racy reaches 92.44%, compared to the 91.16% and
47.06% of VGG19 and Inception_V3, respectively.

The proposed approach is not limited to the num-
ber of classes in the output classification. This chal-
lenge can be extended to building a large dataset that
can cover more types of unsafe behavior in the future
according to actual needs.

This work can serve as a reference for problems in
Pattern Recognition and Object Classification. It can
ION AND IMAGE ANALYSIS  Vol. 31  No. 2  2021
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Fig. 17. Confusion matrix of Inception_V3 model.
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Fig. 18. Confusion matrix of InceptionResnet_V2.
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Fig. 19. Classification report of VGG19.

precision recall f1-score support

Human_Climb_Wrong 0.94 0.91 0.93 222
Human_Reach_Out 0.92 0.84 0.89 317

Human_Leg_Out 0.84 0.92 0.88 252

accuracy 0.90 791
macro avg 0.90 0.90 0.90 791

weighted avg 0.90 0.90 0.90 791
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Fig. 20. Classification report of Inception_V3.

precision recall f1-score support

Human_Climb_Wrong 0.00 0.00 0.00 222
Human_Reach_Out 0.40 1.00 0.58 317

Human_Leg_Out 1.00 0.03 0.06 252

accuracy 0.41 791
macro avg 0.47 0.34 0.21 791

weighted avg 0.48 0.41 0.25 791

Fig. 21. Classification report InceptionResnet_V2.

precision recall f1-score support

Human_Climb_Wrong 0.98 0.94 0.96 222
Human_Reach_Out 0.92 0.88 0.90 317

Human_Leg_Out 0.86 0.94 0.89 252

accuracy 0.91 791
macro avg 0.92 0.92 0.92 791

weighted avg 0.92 0.91 0.91 791
also be a reference for many fields in Deep learning,
for example, Computer Vision, Parameterized Learn-
ing in Deep learning, Optimization Methods and Reg-
ularization in Deep learning, etc.
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