SPECIAL
ISSUE

Local Feature Descriptor Indexing for Image Matching
and Object Detection in Real-Time Applications

K. Halavataya*
Faculty of Radiophysics and Computer Technologies, Belarusian State University, Minsk, 220030 Belarus
*e-mail: katerina-golovataya @yandex.ru

Abstract—Local feature extraction and description algorithms can be used to address a large variety of com-
puter vision problems, including pattern recognition, frame stitching and 3D reconstruction. One of the most
computationally expensive and time-consuming stages of any method based on local features is keypoint
matching. This paper discusses possible ways to optimize matching for frame alignment and object detection
applications using Vantage-Point tree indexing to optimize pairwise keypoint matching, and image keypoint

graph indexing to optimize pose estimation.

Keywords: computer vision, local feature descriptor, keypoint matching, Vantage-Point trees

DOI: 10.1134/5105466182001006X

INTRODUCTION

Intelligent image analysis algorithms usually rely
on extracting meaningful and relevant information
from the image. Individual pixel brightness values are
often insufficient for any kind of processing, since
valuable characteristics of an image are usually associ-
ated with a presence or absence of a certain object that
can occupy an arbitrary number of pixels, have a dif-
ferent lighting condition, rotation or real to pixel span
size ratio (dpi). Thus, most of the analysis is usually
performed with some kind of alternate representation
of an image that includes all the relevant information
while ignoring or remaining invariant to the modifica-
tions caused by typical transforms that change individ-
ual pixel brightness values, but do not alter the seman-
tics of an image in processing context.

One of the popular ways of creating such a repre-
sentation is feature extraction. By itself, feature
extraction refers to a process of creating some vector-
based representation that contains relevant character-
istics of an image in the form of features. There are two
main types of image feature extraction algorithms —
global feature extractors and local feature extractors.
Global feature extractors produce a feature vector for
the whole image (globally) and are generally used to
describe an entire image in some way that can be used
as input for supervised or unsupervised machine learn-
ing, sometimes also providing a metric for comparing

Received September 28, 2019; revised October 13, 2019;
accepted October 21, 2019

feature vectors of different images. Local feature
extraction refers to a process of choosing a subset of
points of an image that are somewhat representative of
its contents and is generally divided into two separate
sub-problems — keypoint detection and keypoint
description [1].

One of the key applications of keypoint descriptors
and detectors is performing a full-image pairwise key-
point matching — i.e. detecting a set of keypoints on
both images, calculating their respective descriptor
values, and then finding a suitable pair keypoint on
one image for every keypoint detected on the other.
Because the number of keypoints across both images
can be quite high, full pairwise matching is quite com-
putationally expensive, which directly translates to
slower execution. Some problems, like real-time
object detection, may heavily rely on a specific com-
putational complexity of algorithms used to solve
them, and in such cases, it’s necessary to establish a set
of optimizations for keypoint matching.

For a singular point of reference image keypoint
matching with target image is, essentially, a nearest-
neighbor search problem, where the distance between
a pair of keypoints is determined by their specific
descriptor implementation. The aim of this paper is to
research and evaluate different keypoint indexing
methods, namely VP-trees and k-d trees, that would
allow to perform a single-point match with logarith-
mic asymptotic complexity instead of linear, in turn
reducing multiple point matching complexity to qua-
silinear, down from quadratic.

ISSN 1054-6618, Pattern Recognition and Image Analysis, 2020, Vol. 30, No. 1, pp. 16—21. © Pleiades Publishing, Ltd., 2020.

LOCAL FEATURE DESCRIPTOR INDEXING 17

Fig. 1. Specific object detection and homography recon-
struction in a scene using keypoint matching.

LOCAL IMAGE FEATURE EXTRACTORS
AND DESCRIPTORS

Local keypoint detector is an algorithm that, given
an image I of width w and height 4 produces an unor-
dered set of coordinates {(x;, y;)} of some of the points
that are present on that image:

e(I):M(w,h) = {(x,y,)} < (Lw)x(LA). (1)

A keypoint detector is essentially a per-pixel filter
that determines whether a particular point is represen-
tative enough of a unique characteristic of the image
region.

While there is no universal definition as to what
constitutes a good keypoint, most of the algorithms
rely on detecting sharp corners, edges, smaller blobs of
similar color, etc. Nevertheless, detection is assumed
to be invariant of typical transforms that individual
image objects might undergo. For instance, if a detec-
tor Algorithm 1 correctly detects a keypoint at the cor-
ner of an object frame, it is generally expected to detect
that same corner of the object even if the object itself
is moved, rotated, skewed, optically distorted, has dif-
ferent lighting conditions etc.

Keypoint descriptor is an algorithm that produces a
unique description vector of a point found by keypoint
detector. Some algorithms operate independently and
can produce a descriptor for any arbitrary point of the
image, while others operate only with a specific detec-
tor output. Generally, a descriptor can be expressed as a
projection of an image and individual point coordinates
into an arbitrary metric space D:

d(Lx,y): (M(w,h)x (Lw)x(LA) > D. (2)

Since descriptor projection in (2) is a metric space, an
appropriate square measure should be defined for it:

my (d,dy): D* = R. (3)

PATTERN RECOGNITION AND IMAGE ANALYSIS

Vol. 30

The measure (3) can be used to determine a dis-
tance between different descriptor vectors d;, d,. A
keypoint descriptor should be able to produce descrip-
tor values in such a way that descriptors uniquely
describe the spatial properties of an individual point
and typical object transformations produce a descrip-
tor that is similar, as defined by distance (3).

Individual descriptor values can be thought of as
local feature vectors of an image. Unique combina-
tions of relatively distant descriptor vectors can be
concatenated into a single global feature vector.

The typical application of keypoint detectors and
descriptors is keypoint matching. Given a sufficiently
stable detection and description algorithm, it is usually
possible to analyze a reference image by detecting and
describing its keypoints and then find the same points
on another image. For instance, if a known object is
used as a reference image, it should be possible to track
the location of this object’s keypoints on a different
image. This can be used to perform specific object
detection and correlate the location of points of the
same scene across the images depicting the scene from
various angles in order to stitch them together
(a method widely used in panorama photo recon-
struction) or to perform depth estimation and 3D
reconstruction.

Popular detector and descriptor implementations
include SIFT and SURF histogram detectors and
descriptors, FAST detector, BRIEF and FREAK
binary descriptors, and ORB — a combination of ori-
ented FAST detector and learned BRIEF binary
descriptor [1-3].

An example of keypoint-based specific object
detection using ORB is presented on Fig. 1. Lines
across the images denote keypoints that matched with
each other because their specific descriptor values
were similar across the images.

One of the most common distortions when search-
ing for reference objects on a target scene are perspec-
tive transforms; thus, a sufficiently stable detector and
descriptor must be invariant to rotation and scale of its
surrounding areas.

When several points of the reference image match,
it is possible to evaluate their respective positioning on
the image where the object is detected and produce a
homography from the reference image in order to
determine exact object position. For our example
scene, reconstructed homography bounding box for
reference image is displayed as outline on the scene.

One of the main limitations of such an approach to
object is the fact that it’s not able to generalize — it can
only perform exact object detection given its reference
image, but cannot use specific object features to form
more abstract or general representations of a broader
categories, like “book” or “cat”.

No.1 2020

18 HALAVATAYA

KEYPOINT MATCHING COMPLEXITY

Keypoint matching across two images is usually
performed as the following series of steps:

(1) Extract and describe keypoints on reference
image,

(2) Extract and describe keypoints on target image,

(3) For every keypoint on reference image, find a
corresponding keypoint on target image using their
descriptors in distance (3).

The third step presumes using exhaustive search.
For every keypoint of reference image, it is necessary
to iterate over every keypoint on the target image, i.e.
compare every possible pair of keypoints from refer-
ence and target image, in order to locate the point with
minimum distance. The number of pairs is generally
much larger than the number of individual points — a
phenomenon similar to the birthday paradox. The
number of all possible pairs asymptotically increases
as a square of the number of keypoints detected; that
is, in a big-O notation computational complexity of

comparing all possible pairs of n keypoints is O(cnz),
where ¢ is the complexity of individual comparison.

Since keypoint comparison is the most used oper-
ation, some algorithms optimize the process by intro-
ducing a more efficient comparison algorithm, i.e.
reducing the complexity c. A class of keypoint descrip-
tors called binary descriptors specifically address the
individual comparison complexity problem by using
bit strings (fixed-length sequences of only 2 possible
values — 0 and 1) as feature vectors. This allows to use
Hamming distance — the number of non-matching
bits across two bit strings — as distance (3), that can be
calculated efficiently using a small number of CPU
cycles, as opposed to, for instance, Euclidean distance
(L2-norm), that requires calculation of a square root
[2, 3]. However, as big-O notation implies, computa-
tional complexity of comparison is a constant factor
and doesn’t depend on the number of points, while
asymptotically the running time of an exhaustive
search will greatly increase as the number of points
increases.

For most applications, it is typically desirable to
operate with quite a small subset of keypoints that
only contain relevant features. For instance, in our
example on Fig. 1 there are around 10 keypoint
matches total across both images, each representing a
characteristic and unique feature point. In such
cases, keypoint matching performance is not much of
an issue, and, for some cases, optimizing it for lower
number of keypoints may actually increase matching
time. However, when using finer-grained features
and lower threshold values for keypoint detection,
the number of keypoints to match across images may

PATTERN RECOGNITION AND IMAGE ANALYSIS

be significant, and case asymptotic complexity of

O(nz) means that performance degrades quite fast as
number of points increases.

VANTAGE-POINT TREE INDEXING

The proposed way to enhance keypoint matching
performance is usage of indexing techniques. In gen-
eral, indexing refers to structuring the data in some
way that makes searching more computationally effi-
cient than complete traversal. For example, for strict
equality search with a partial order relation it’s possi-
ble to use binary search trees. Each node in binary
search tree contains an element and two subtree refer-
ences, one containing only elements that go before the
node element in the partial order relation, and the
other containing only elements that go after. When
performing a direct comparison search it’s possible to
compare target node with the next node using partial
order relation and choose one of the two subtrees
based on this comparison. If the data is distributed
evenly across the tree branches (i.e. if the tree is bal-
anced), each comparison effectively reduces the
amount of data needed to be processed by half, i.e. the

complexity of an individual search is O(logn), as

opposed to O (n) of exhaustive search. The downside
of such a search optimization is the need to build the
balanced tree every for every target dataset that will be
used for comparison.

However, when matching keypoints across images,
it’s required to find not an exact match, but instead a
keypoint that is closest to the target one based on a
specific distance. Direct implementation of binary
search trees does not allow to use distance measure for
comparison, since it can be only implemented based
on equality relation for direct match and partial order
relation for subtree selection. Therefore, a different
structuring algorithm must be used to index the key-
point descriptors based on their relative distance.
There are two well-known data structuring algorithms
that aim to solve this problem — k-d trees and vantage-
point trees.

K-d trees are a generalization of binary search trees
to k-dimensional space that separate it into subspaces
based on hyperplane division along alternating axes
through median point, effectively halving the search
space. Hyperplane division produces subspaces within
which two points can have a set maximum distance
between each other. However, when performing near-
est neighbor search, it is usually necessary to scan sev-
eral subspaces, since target and reference points can,
starting from a certain division factor, be placed in
multiple different subspaces, since the division uses
square regions. This means nearest neighbor search
Vol. 30

No. 1 2020

LOCAL FEATURE DESCRIPTOR INDEXING 19
350

L, 300 e — i —— —
g —
2250F _.—-— T
=
%200— r
S 150r |
% . vantage-point tree
2 100 _’ — . k-d tree

50

! 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000

Dataset size

Fig. 2. Comparison of vantage-point tree and k-d tree node comparison counts for different number of points.

performance in k-d trees degrades for higher-dimen-
sional vectors, which is the case for binary descriptors
— the typical ones usually have the length of up to 512
bits (64 bytes).

Vantage-point trees create a division based on
hyperspheres, with distances defined by an arbitrary
metric. Each subtree has a vantage point as its node, a
specific metric threshold value and two subtrees. The
first subtree contains nodes for which distance from
vantage point is smaller than node threshold (i.e. all
points that are within hypersphere with threshold as its
radius), and the second subtree contains remaining
points. Vantage point and metric threshold are
selected in such a way as to partition the target space
into subspaces with roughly equal amount of points.
During vantage point construction it is possible to
record the lowest encountered node distance (the
metric threshold for tree leaf nodes), so for nearest
neighbor search it is necessary to only scan subspaces
that may contain points as far as the lowest node dis-
tance from the target point; in best-case scenario it
will require a single subspace scan [4].

Using arbitrary metric has an advantage over k-d
trees in the fact that hypersphere subspace division
will produce lower number of subspaces to scan for
finer-grained nodes than hyperplane division, which
makes this algorithm perform significantly better on
high-dimensional spaces. To asses running time for k-
d trees and vantage-point trees for nearest neighbor
search, node comparison count was evaluated on a
sample keypoint matching problem using ORB 32-
byte (256 bit) descriptor. The results of the compari-
son are presented on Fig. 2. The analysis shows that
vantage-point tree performs a little worse for small
sample sizes (up to 500 points), but scales much better
when dataset size increases.

For keypoint matching problem, it is possible to
use distance measure (3) as a metric for vantage-point
tree indexing, provided it is a well-formed metric. A
metric, as opposed to a distance measure, must satisfy
4 conditions: non-negativity, identity of indiscernible

PATTERN RECOGNITION AND IMAGE ANALYSIS

Vol. 30

values, symmetry and triangle inequality. Non-nega-
tivity means that metric value for any pair of input vec-
tors is always greater than or equal to zero. Indiscern-
ible value identity means that distance between equal
values, as determined by the metric, is always zero,
and that zero distance as determined by the metric
means that input values are equal. Symmetry means
that order of the values in metric arguments doesn’t
matter and always produces the same distance.
Finally, triangle inequality states that distance
between a pair of points x and y is less than or equal
the sum of distances from x to any other point z and
from that point z to y, ie. m,(x,y) < m;(x,z) +
m, (z,y). Some popular distance measures used in
machine learning applications, like squared Euclidean
distance, cannot be used for vantage-point trees, since
they are not a well-formed metric and do not satisfy
some of those conditions; for instance, triangle
inequality is not satisfied by squared Euclidean. Ham-
ming distance, used to compare binary descriptors, is
a well-formed metric and can be used to produce van-
tage-point trees.

For keypoint matching problem, it is possible to
use distance measure (3) as a metric for vantage-point
tree indexing, provided it is a well-formed metric. A
metric, as opposed to a distance measure, must satisfy
4 conditions: non-negativity, identity of indiscernible
values, symmetry and triangle inequality. Non-nega-
tivity means that metric value for any pair of input vec-
tors is always greater than or equal to zero. Indiscern-
ible value identity means that distance between equal
values, as determined by the metric, is always zero,
and that zero distance as determined by the metric
means that input values are equal. Symmetry means
that order of the values in metric arguments doesn’t
matter and always produces the same distance.
Finally, triangle inequality states that distance
between a pair of points x and y is less than or equal
the sum of distances from x to any other point z and

from that point z to y, i.e. my(x,y) < m,(x,z) +

No.1 2020

20 HALAVATAYA

m, (z,y). Some popular distance measures used in
machine learning applications, like squared Euclidean
distance, cannot be used for vantage-point trees, since
they are not a well-formed metric and do not satisfy
some of those conditions; for instance, triangle
inequality is not satisfied by squared Euclidean. Ham-
ming distance, used to compare binary descriptors, is
a well-formed metric and can be used to produce van-
tage-point trees.

Vantage point nearest neighbor search has an
O(logn) complexity with respect to the number of
points to compare with, which means that keypoint
matching across images has a complexity of O(nlog n),

which is significantly faster than 0(n2) for full exhaus-
tive search matching and scales much better with
increase of keypoints to compare, for instance, when
using images of higher resolution. One of the disad-
vantages of such an approach is the fact that vantage-
point tree construction based on a set of keypoints
from one of the images is itself a O(nlog n) complexity
task, i.e. indexing an image incurs an overhead for
index calculation [4]. This makes such indexing suit-
able for matching a single reference images with mul-
tiple others, as is the case, for instance, for specific
object detection tasks.

IMAGE INDEXING
USING KEYPOINT GRAPH

When performing specific object search across
multiple images it may also be necessary to introduce
a measure of similarity across different image types.
Moreover, object detection based on keypoint relative
positioning and their respective descriptor values
allows for independent template-based object descrip-
tion that can be used to index specific images. An
appropriate representation of keypoint structure can
be used not only to detect specific objects, but also to
implement image similarity measure, image indexing
and similar image lookups.

The proposed method for keypoint-based image
indexing uses the representation of detected image
keypoints as a graph. The vertices of the graph are
detected keypoints, while arcs are established between
keypoints based on their mutual position and distance.
Two vantage-point trees are created to index image
points. The first tree is used to evaluate point position
and is created using point coordinates on the image as
values and Euclidean distance as distance metric. The
second tree is created based on keypoint descriptor
distance, as discussed previously. To establish the arcs
in keypoint graph, positional vantage-point tree is tra-
versed post-order, and sequential traversed nodes are
connected with an edge. The first established edges are
placed between keypoints that are situated close to
each other on the image, while the several final edges
will correspond to point cloud centers. These edges can
be used to cluster the points based on their position.

PATTERN RECOGNITION AND IMAGE ANALYSIS

After initial graph composition, it is incrementally
simplified by replacing pairs of points that have similar
descriptor values, as determined by descriptor distance
vantage-point tree, with a single point with averaged-
out descriptor value, using post-order traversal of
descriptor distance tree, but only for points where an
arc exists in composed keypoint graph; points where
no arc exists that are spatially close enough to each
other are instead connected with an arc. This elimi-
nates groups of similar keypoints that describe the
same feature.

The remaining graph is then partitioned into sev-
eral subgraphs using Kernighan-Lin algorithm until a
sufficient simplicity is achieved. Graph vertices retain
their respective descriptor values [4].

A graph isomorphism can be approximated to
compare one simplified graph to another. For suffi-
ciently simplified graphs (10—15 vertices) direct node
permutation comparison can be performed to deter-
mine their similarity, that can be further quantified by
aggregate corresponding keypoints distance. This sum
of distances can be used, in turn, as distance measure
between two graphs; two keypoint graphs recon-
structed from a single image using the presented algo-
rithm can be used to evaluate respective image pair
similarity. The limitation of proposed method is its
requirement to calculate descriptor distance vantage-
point tree; however, in common object detection tasks
based on keypoint correspondence, keypoint vantage-
point tree may already be available as a side-effect of
real time detection optimization.

CONCLUSIONS

Local feature extractors and descriptors can be
used in various important computer vision problems,
including object detection and image matching. The
paper discussed the way to optimize keypoint match-
ing of detector and descriptor algorithms by building
an index of described keypoints. K-d trees and van-
tage-point trees were evaluated and compared; van-
tage-point trees were shown to have a better perfor-
mance on high-dimensional descriptors, like most of
the binary descriptors. Resulting keypoint indices can
be used to speed up pairwise keypoint matching,
requiring only logarithmic time to find a match, as
opposed to linear-time full scan.

Created vantage-point trees can be further utilized
to create a spatially-aligned keypoint representation in
the form of keypoint graph, that combines keypoint
relative positioning information with their specific
descriptor values. Simplified keypoint graphs can be
used to index individual images and to determine
image similarity.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Vol. 30 No.1 2020

LOCAL FEATURE DESCRIPTOR INDEXING 21

REFERENCES

. S. Krig, Computer Vision Metrics: Survey, Taxonomy,
and Analysis (Apress, Berkeley, CA, 2014).

. D. G. Lowe, “Distinctive image features from scale-in-
variant keypoints,” Int. J. Comput. Vision 60 (2), 91—
110 (2004).

. E. Rublee, V. Rabaud, K. Konolige, and G. Bradski,
“ORB: An efficient alternative to SIFT or SURFE,” in
Proc. 2011 IEEE Int. Conf. on Computer Vision (ICCV
2011) (Barcelona, Spain, 2011), IEEE, pp. 2564-2571.

. P. N. Yianilos, “Data structures and algorithms for
nearest neighbor search in general metric spaces,” in
Proc. 4th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’93) (Austin, TX, USA, 1993) (SI-
AM, Philadelphia, PA, 1993), pp. 311-321.

PATTERN RECOGNITION AND IMAGE ANALYSIS

Halavataya Katsiaryna. Date of
birth: 21.07.1993. Education: bach-
elor honors degree (grad. 2015),
master’s degree (grad. 2016), cur-
rently PhD student. Affiliation:

.~ Belarusian State University, Fac-

ulty of Radiophysics and Computer

1 Technologies, Intelligent Systems

dept.: Position: Sr. lecturer. Area of
research: Computer vision, 3D
reconstruction from images,
machine learning and deep learn-
ing, computer graphics, virtual and

augmented reality. Number of publications: 30 articles and
conference proceedings materials.

Vol. 30

No. 1

2020

	INTRODUCTION
	LOCAL IMAGE FEATURE EXTRACTORS AND DESCRIPTORS
	KEYPOINT MATCHING COMPLEXITY
	VANTAGE-POINT TREE INDEXING
	IMAGE INDEXING USING KEYPOINT GRAPH
	CONCLUSIONS
	CONFLICT OF INTEREST
	REFERENCES

		2020-03-19T11:51:30+0300
	Preflight Ticket Signature

