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Abstract—In real applications, it is quite common that shapes may have changes in orientation, scale, and
viewpoint; a shape retrieval method should be unaffected by translation, rotation, and scaling. Zernike
moments are widely used in shape retrieval, due to its rotation invariance. However, Zernike moments are not
directly invariant under scaling and translation. Recently, Cartesian Zernike Moments Invariants (CZMI)
were introduced to make Zernike moments directly invariant under scaling and translation. Although CZMI
reduce the scale errors considerably, they are inconsistent and the scale errors increase for high aspect ratio
shapes. In this paper, we introduce a scale invariance parameter which reduces the scale errors, improves the
stability of the scale invariance and is more robust for wide range of shapes; even if the shapes are corrupted
by different kinds of noises, such as Gaussian, Salt & Pepper and Speckle noise, our combined scale invari-
ance parameter still has good performances.
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1. INTRODUCTION

Shape plays an important role in human recogni-
tion and perception [1–3]. Deriving shape descriptors
is an important task in content-based image retrieval
[4–6]. In real applications, it is quite common that
shapes may have changes in orientation, scale, and
viewpoint; a robot shape descriptor should be unaf-
fected by translation, rotation, and scaling.

There are mainly two classical approaches to shape
representation: the boundary-based approaches and
the region-based approaches. The boundary-based
approaches only use the boundary of a shape to extract
its features, such as Fourier descriptors [7], curvature
scale space [8], wavelet descriptors [9], chain codes
[10], autoregressive models [11], Delaunay triangula-
tion technique [12], point set matching and dynamic
programming [13, 14]. Exploiting information only
from the boundary of a shape, the boundary-based
approaches ignore potentially important information
from the interior region of a shape; the region-based
approaches utilize information from both of the
boundary and interior region of a shape. These meth-
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ods include geometrical moments [15–18], radial
moments [19], Zernike moments [18, 20–28], Legen-
dre moments [26], Tchebychev moments [29], generic
Fourier descriptors [30], wavelet descriptors [31–33],
shape matrix [34], hypergraph [35, 36], kernel entropy
component analysis [37] and compound image
descriptors [38]. Soft computing [39, 40] proposed by
L. Zadeh in 1990, dealing with approximation, uncer-
tainty, imprecision, can partial truth to effectively
achieve practicability, robustness and low solution
cost; it has been successful applied in image analysis.
There are shape representations based on fuzzy sets
[31, 41–44], neural networks [42, 44–46], and granu-
lar computing [32], respectively.

Zernike moments are highly effective in terms of
shape representation [47–49]. They have good feature
representation capability [22–24, 27, 48], invariance
to linear transformations, geometric invariance with
respect to rotation [21, 25], better image reconstruc-
tion [6, 50], and low noise sensitivity [48, 51]. Zernike
polynomials are orthogonal within the unit circle,
which implies no redundancy that exists between
moments of different orders [48, 52].

However, Zernike moments are not directly invari-
ant under scaling. There are two common approaches
to achieve sale invariance of Zernike moments: the
437. © Pleiades Publishing, Ltd., 2019.
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preprocessing approach [52] and the indirect
approach [53]. In the preprocessing approach, scale
invariance is achieved by rescaling the object in the
unit circle; in the indirect approach, Zernike moments
are expressed in terms of the regular moments where
the indirect Zernike moments invariants (ZMI) can be
achieved. However, both of these approaches have
high computation complexity. Another popular
method for achieving the scale invariance of Zernike
moments [25, 54, 55] is based on normalizing the area
of a shape, that is the zero order of its geometric
moments, to a constant number. However this method
may lead to computation errors: first, the changes of
the area are not always linearly dependent on the
changes of the size with respect to the same shape;
second, when the order of moments becomes larger,
the dynamic range increases, which in turn amplifies
the numerical errors; third, the conversion from geo-
metric moments to Zernike moments increases the
computation complexity; finally, this method requires
that the objects must be clearly separated from its
background.

To reduce computation complexity and computa-
tion errors, Belkasim et al. [20] expressed Zernike
moments in Cartesian coordinates and used the zero
order and the second order of Cartesian Zernike
moments to develop three scale invariance parame-
ters. Through using one of these parameters, the scale
errors can be reduced considerably and efficiently.
However these scale parameters are unstable for pro-
cessing shapes with large scale variations. Addition-
ally, these scale invariance parameters cannot be
uniquely represented by a single quantity. Zhao et al.
[28] proposed a method to combine the scale invari-
ance parameters [1] into one single quantity, which
reduces the invariance errors over shapes with large
scale variations. In this paper, we explore the proper-
ties of this combined scale invariance parameter fur-
ther and find its good capability to noise; even if the
shapes are corrupted by different kinds of noises, such
as Gaussian, salt & pepper, and speckle noise, this
combined scale invariance parameter still has good
performances.

Our paper is organized as follows: in Section 1, we
give the introduction; in Section 2, we introduce Car-
tesian Zernike moments and Cartesian Zernike
moments invariants, especially for the three scale
invariance parameters of Cartesian Zernike moments
proposed by Belkasim et al. [20]; in Section 3, we
introduce the combined scale invariance parameter to
improve the stability of the scale invariance and the
noise tolerance; in Section 4, we present the simula-
tion to demonstrate the capability of our proposed
scale invariance parameter in terms of reducing the
scale errors and stabilizing the scale invariance, espe-
cially for processing the image data that are corrupted
PATTERN RECOGNIT
by different kinds of noises; in Section 5, we present
the conclusion and the future work.

2. CARTESIAN ZERNIKE MOMENTS 
AND CARTESIAN ZERNIKE MOMENTS 

INVARIANTS
Direct translation and rotation invariance of

Zernike moments can be achieved through explicitly
expressing the original Zernike moments in their Car-
tesian coordinates form. In this section, we introduce
Cartesian Zernike Moments and Cartesian Zernike
moments invariants, especially for the three scale
invariance parameters of Cartesian Zernike moments
proposed by Belkasim et al. [20].

2.1. Cartesian Zernike Moments
Zernike moments are defined in terms of a set of

orthogonal functions with simple rotation properties
known as Zernike polynomials [26, 56]. Zernike poly-
nomials can be expressed in Cartesian coordinates as
follows [20]:

(1)

where ; ;  is non-negative
integer,  is positive integer subject to the constraints

 is even and ,  is real valued
Zernike polynomials, which are defined as follows:

(2)

 and  are defined with respect to  as the follows:

The complex Cartesian Zernike moments  of
order  and repetition  for a digital image  is
defined in Cartesian coordinates as follows:

(3)
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From the Eqs. (1)–(3), Cartesian Zernike
moments  can be further expressed as follows [20]:

(4)
where

(5)

(6)

Note that for , .

2.2. Cartesian Zernike Moments Invariants
Based on the Cartesian Zernike moments above,

Belkasim et al. [20] proposed a set of Cartesian
Zernike moments invariants (CZMI) that descript
image features directly invariant under scale, transla-
tion and rotation without using regular moments,
which avoids preprocessing or resizing the original
image. This set of CZMI is computed as follows [20]:
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(5) use  and Eqs. (5), (6) to
compute updated , , and 

(12)

(13)

(14)

(6) use updated , ,  and Eqs. (7)–(9) to
compute CZMI.

2.3. Three Scale Invariance Parameters
The scale invariance of CZMI can be achieved

using one of the three parameters [20]:
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large scale variations. Furthermore, having several
parameters to normalize the variations in scale is
inconvenient for automating the process of feature
extraction; therefore we introduce an approach that
combines these scale parameters into one scale
parameter β.

3. THE COMBINED β SCALE
INVARIANCE PARAMETER

In this section, we introduce an approach that
combines the above scale parameters into one scale
parameter β to improve the stability of scale invari-
ance.

Our combined scale invariance parameter  is pro-
posed as follows [28]:

(21)

Furthermore we substitute (16) and (17) into (21):

(22)

The reason that we only combine  and  is that
 and  contain the information of .  directly

related to the area, which can be shown as follows:
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(28)

(29)

(30)

Therefore the condition number of the linear trans-
formation  can be defined as follows:

(31)

The condition number of a function measures the
worst case change with respect to small changes.

Since  is more effective in most shapes than 

[20]. We consider the quantity , that is  as

the ratio or weight factor of  to derive the combined

scale invariance parameter: .

This combined parameter  includes the informa-
tion of the area and variance about an image; therefore
it is more powerful to process different kinds of shapes
and more robust to process data corrupted by noise.

4. SIMULATION
4.1. Simulation Data
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test robustness of their methods under changes of
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per noise with noise density = 0.05, and speckle noise
with mean = 0 and variance = 0.15. Therefore, for
each of these two databases, we have four sample data
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Table 1. Simulation results of ZMI, CZMI , CZMI , CZMI , CZMI  for Mpeg7

Data sets Measurements
Five methods

ZMI CZMI β00 CZMI β+ CZMI β– CZMI β

Clean Mpeg7 Mean of Er 8.49478738 2.22608550 8.12308828 2.19781610 2.15117764
Variance of Er 15.40411964 0.60743702 20.55217316 0.61983888 0.39839661

Mpeg7 with 
Gaussian noise

Mean of Er 9.68984845 2.27486593 9.88828344 2.23435448 2.17036046
Variance of Er 68.76435589 0.96440181 320.58595500 0.89107979 0.48854449

Mpeg7 with salt 
&pepper noise

Mean of Er 13.59932777 2.41616352 8.32432253 2.33013316 2.20996588
Variance of Er 739.29411972 2.75534205 24.10664530 1.58955371 0.61127682

Mpeg7 with 
speckle noise

Mean of Er 9.18057724 2.27108340 8.00545856 2.22494571 2.16595454
Variance of Er 44.54609015 0.84938413 21.21100750 0.75017766 0.43332694

β00 +β −β β
Gaussian noise, the sample data set with salt & pepper
noise, and the sample data set with speckle noise.

4.2. Simulation Process

Our simulation is based on comparing the perfor-
mances of CZMI using our combined scale invariance
parameter  [28] with other four methods: indirect
Zernike moment invariants (ZMI) [53], CZMI using
area normalization parameter  [20], CZMI using
positive scale invariance parameter  [20], and
CZMI using negative scale invariance parameter 
[20].

For each of these five methods, moment invariants
were computed for each untransformed shape (image)
and its related transformed shape (image) respectively.
Under order , we have  moment invariants for each
untransformed shape (image) and its related trans-
formed shape (image) respectively. We use the abso-
lute relative mean error  to quantify the scale accu-
racy of each method for a pair of untransformed and
transformed shape (image):

(32)

where  is value of the th moment invariant for
an untransformed shape (image) under order ; 
is value of the kth moment invariant for the related
transformed shape (image) under order ; k = 1, 2, 3,
..., N.

To evaluate stability of the scale accuracy of each
method we compute the variance of the absolute rela-
tive mean error  among  pairs of untransformed
and transformed shape (image):
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where

(34)

 is id of a pair of untransformed and transformed
shape (image); .

4.3. Simulation Results Analysis

Tables 1, 2 show simulation results of the five
methods: ZMI, CZMI using area normalization
parameter , CZMI using positive scale invariance
parameter , CZMI using negative scale invariance
parameter , and CZMI using combined scale invari-
ance parameter , for two standard image databases
Mpeg 7 and LEAF respectively. These two tables
clearly demonstrate that for both Mpeg7 and LEAF,
our method (CZMI using combined scale invariance
parameter ) always achieves the lowest mean of 
and the lowest variance of , even if data sets are cor-
rupted by different kinds of noises, such as Gaussian,
salt & pepper, and speckle, which reveals that our
method has the highest scaling accuracy and stability.

Tables 1, 2 also show clearly that the two methods:
ZMI and CZMI using positive scale invariance
parameter  have much worse performances (higher
mean of  and higher variance of ) than the other
three methods. To compare the performances of the
other three methods in detail, we will use Figs. 1–8.

Figures 1–8 show the simulation results of the
three methods: CZMI using area normalization
parameter , CZMI using negative scale invariance
parameter , and CZMI using combined scale invari-
ance parameter . In each figure, the error means the
absolute relative mean error  and the shape label
means ID of an image in the database. The database
Mpeg7 has 70 images; therefore, the shape label of
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Table 2. Simulation results of ZMI, CZMI , CZMI , CZMI , CZMI  for LEAF

Data sets Measurements
Five methods

ZMI CZMI β00 CZMI β+ CZMI β– CZMI β

Clean LEAF Mean of Er 13.85802260 3.57242660 14.46659598 3.44142888 3.36134466

Variance of Er 529.02257306 3.73646565 443.52179247 2.63933370 2.17815234

LEAF with 
Gaussian noise

Mean of Er 13.47573367 3.56888656 14.70703948 3.43323374 3.35719478

Variance of Er 478.56790966 3.77996665 530.93305710 2.56217411 2.16687967

LEAF with salt 
&pepper noise

Mean of Er 13.49169140 3.56901362 15.25790519 3.44192091 3.36314110

Variance of Er 742.42239206 3.71543802 1862.36979583 2.83477123 2.31244687

LEAF with 
speckle noise

Mean of Er 13.28157600 3.61580766 14.11753132 3.44449501 3.37797391

Variance of Er 369.54336356 5.40114564 334.06251926 2.64471957 2.24203404

β00 +β −β β
each figure related to Mpeg7 is 1, 2, 3, …, 70. The
database LEAF has 795 images; therefore, the shape
label of each figure related to LEAF is 1, 2, 3, …, 795.
Each of these figures demonstrate that our method
(CZMI using combined scale invariance parameter )
generates the lowest variance of errors among the
three methods. Furthermore, the results show that
high prediction errors might occurred regardless the
technique used. However, our technique shows lower
error counts than the rest of the approaches in the
comparative.

The simulation results clearly demonstrate that our
method (CZMI using combined scale invariance

β
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Fig. 1. Simulation results of CZMI 
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parameter ) reduces the scale errors and improves the
stability of the scale invariance. Our method has good
capability to noises; even if the images are corrupted
by different kinds of noises, such as Gaussian, salt &
pepper and speckle noise, our method still has good
performances.

5. CONCLUSIONS AND FURTHER WORK
In real applications, it is quite common that shapes

may have changes in orientation, scale, and viewpoint;
a shape descriptor should be unaffected by translation,
rotation, and scaling. Zernike moments have been

β
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Fig. 2. Simulation results of CZMI , CZMI , CZMI  for Mpeg7 with Gaussian noise. 
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Fig. 3. Simulation results of CZMI , CZMI , CZMI  for Mpeg7 with salt & pepper noise. 
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widely applied in shape retrieval, due to its rotation

invariance. However, Zernike moments are not

directly invariant under scaling and translation. Belka-

sim et al. [20] expressed Zernike moments in Carte-
PATTERN RECOGNITION AND IMAGE ANALYSIS  V
sian coordinates to explicitly make them invariant to

translation, rotation and scale; this method reduces

the computation complexity and improves the accu-

racy rate. However, when Cartesian Zernike moments
ol. 29  No. 3  2019
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Fig. 4. Simulation results of CZMI , CZMI , CZMI  for Mpeg7 with speckle noise. 
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Fig. 5. Simulation results of CZMI , CZMI , CZMI  for clean LEAF. 
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are applied to shapes with large scale variations, the

accuracy rate becomes unstable. In this paper, we

introduce a combined scale invariance parameter

which can reduce the scale errors and improve the sta-

bility of the scale invariance. Our combined scale
PATTERN RECOGNIT
invariance parameter also has good capability to

noises; even if the shapes are corrupted by different

kinds of noises, such as Gaussian, salt & pepper and

speckle noise, our combined scale invariance parame-

ter still has good performances. Our combined scale
ION AND IMAGE ANALYSIS  Vol. 29  No. 3  2019
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Fig. 6. Simulation results of CZMI , CZMI , CZMI  for LEAF with Gaussian noise. 
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Fig. 7. Simulation results of CZMI , CZMI , CZMI for LEAF with salt & pepper noise. 
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invariance includes the information from both of the

area and variance of an image; it is more powerful to

process different kinds of shapes and more robust to

process data corrupted by different kinds of noises.
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Our simulation is based on comparing the perfor-

mances of CZMI using our combined scale invariance

parameter with other four popular methods: indirect

Zernike moment invariants (ZMI), CZMI using area
ol. 29  No. 3  2019



434 ZHAO et al.

Fig. 8. Simulation results of CZMI , CZMI , CZMI  for LEAF with speckle noise. 
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normalization parameter, CZMI using positive scale
invariance parameter, and CZMI using negative scale
invariance parameter. We choose two standard image
databases: (1) MPEG7_70_OBJECTS: 70 shapes
from 70 different kinds of objects (2) LEAF: 795
shapes of the leaves that belong to 90 wood species.
These two standard databases are carefully designed
to include most challenges in shape analysis and have
been used by many researchers to test robustness of
their methods under changes of rotation, scale and
translation. For each shape (image) of the above two
databases, there are two copies with different sizes
(untransformed and transformed shape) to test the
scale invariance. To test the robustness, we add three
kinds of noise respectively to these two databases:
Gaussian, salt & pepper and speckle noise. The sim-
ulation results based on the two above databases
clearly demonstrate that CZMI using our combined
scale invariance parameter always generates the low-
est variance of errors and the lowest mean of the
errors whenever processing clean data or data cor-
rupted by different kinds of noises. Furthermore, the
results show that high errors might occurred regard-
less the technique used. However, our technique
shows lower error counts than the rest of the
approaches in the comparative.

Further work would involve the use of emerging
technologies such as deep learning which has been
proven to obtain promising results for image process-
ing and computer vision. However, using this
approach would require a considerably higher number
PATTERN RECOGNIT
of data sets and may have a high computational com-
plexity. This would be subject of study in the near
future. Nevertheless, Zernike moments with our scale
invariance have been proven to be an excellent image
processing approach when dealing different scales for
a large data set.
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