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Abstract—In this paper, we propose a new set of 2D and 3D rotation invariants based on orthogonal radial
Meixner moments. We also present a theoretical mathematics to derive them. Hence, this paper introduces
in the first case a new 2D radial Meixner moments based on polar representation of an object by a one-dimen-
sional orthogonal discrete Meixner polynomials and a circular function. In the second case, we present a new
3D radial Meixner moments using a spherical representation of volumetric image by a one-dimensional
orthogonal discrete Meixner polynomials and a spherical function. Further 2D and 3D rotational invariants
are derived from the proposed 2D and 3D radial Meixner moments respectively. In order to prove the pro-
posed approach, three issues are resolved mainly image reconstruction, rotational invariance and pattern rec-
ognition. The result of experiments prove that the Meixner moments have done better than the Krawtchouk
moments with and without nose. Simultaneously, the reconstructed volumetric image converges quickly to
the original image using 2D and 3D radial Meixner moments and the test images are clearly recognized from
a set of images that are available in a PSB database.
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1. INTRODUCTION

The 3D object recognition and 3D pattern classifi-
cation play crucial roles and interesting part of image
analysis tasks and computer vision. In general, 3D
image classification or recognition is obtained by
looking for descriptors representing the 3D object
without taking into account certain deformations
and/or transformations.

3D moment invariants were demonstrated to be
very great means for pattern representation and it has
often been proved that 3D moment invariants act out
efficiently in 3D object recognition [1].

Up to now, different kinds of 3D moment invari-
ants to spherical transformations of the 3D object have
been suggested. Among all transformations TRS
(translation, scaling, and rotation) that have been ana-
lyzed in this context, rotation plays a crucial role.

3D image rotation is found almost in all our appli-
cations, though the imaging system is well established
and the experiment has been developed in a labora-
tory. On the other hand, rotation is unimportant to
deal with mathematically, for these causes, researches
have been interested on invariants to rotation since the
beginning.

1 The article is published in the original.
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With the quick improvement of mathematics and
sensor, 3D image processing, arises engineering and
practice thanks to its more precise and flexible
descriptions of 3D images.

Without doubt, developing rotation invariants for
3D images has become an interesting topic in the
computer vision community.

The moments are the coefficients of projections of
the image on a polynomial basis. These latter are
widely used in image analysis. Indeed, the theory of
moments are considered as efficient descriptors of the
images and have been used to extract the characteris-
tics of the images for object recognition [2–13], edge
detection [14], watermarking [15], and the compres-
sion [16]. Hu is the first to introduce the invariant geo-
metric moments and defined seven descriptors for the
classification of images. The geometrical moments are
not orthogonal this causes the redundancy of the
information when the use of these in the analysis of the
images. To overcome this problem, Teague introduced
the continuous orthogonal moments based on the
polynomials of Legendre and Zernike. Recently, a
series of discrete orthogonal moments such as Tchebi-
chef moments, Krawtchouk moments, Meixner
moments, Charlier moments and Hahn moments are
used for the image representation [8, 9]. The use of
discrete orthogonal moments based on discrete
orthogonal polynomials eliminates the need for a
numerical approximation and precisely satisfies the
orthogonality property.
216. © Pleiades Publishing, Ltd., 2018.
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Comparing two images, Kazhdan [17] employed
a similar phase correlation based on spherical har-
monics.

In this specific example, it was employed for regis-
tration, but it can also be employed for recognition.

Fehr [18] describing an image composed of patches
by employing the power spectrum and bispectrum cal-
culated from a tensor function.

In [19], the same researcher used local binary
object features and in [20] he employed harmonic
local histograms of oriented gradients.

Compared to traditional geometric or complex
moments, the most important advantage of orthogo-
nal moments is their outstanding numerical stability,
limited types of values, and the recurrent existing rela-
tions for their computation.

Therefore, many authors have tried to extract the
2D invariants from discrete orthogonal moments.

Yet, the extraction of 3D moments becomes more
difficult than in 2D. The favorable numerical proper-
ties are still preserve by 3D orthogonal moments.

There are polynomials orthogonal inside a cube
and others that are orthogonal on the sphere.

In the same way, the polynomials defined on a
cube are less convenient than the sphere for extracting
rotation invariants. This method was employed by
Canterakis [21] using 3D continuous orthogonal
Zernike moments.

In this paper, we suggest a new set of 2D and 3D
rotation invariants based on discrete orthogonal radial
Meixner moments as well as a theoretical mathematics
to derive them. This paper introduces, in a first case, a
new 2D radial Meixner moments employing polar
representation of an object by a one-dimensional dis-
crete Meixner polynomials and a polar function. In
the second case, we present a new 3D radial Meixner
moments employing a spherical representation of vol-
umetric image by a one-dimensional discrete Meixner
polynomials as well as a spherical function. Moreover,
2D and 3D rotational invariants are extracted from the
suggested 2D and 3D radial Meixner moments respec-
tively. We show that the transformation of Meixner
moments under rotation may be inferred in an indirect
way without clear investigation of this transformation.

Therefore, it is clear in the article that the rotation
invariants from Meixner moments and from Kraw-
tchouk moments have the same forms in 2D and 3D
space.

This is an outstanding outcome because it permits
to cat down rotation invariant extraction from Meix-
ner moments to that from Krawtchouk moments in
2D and 3D space, which are not difficult to improve,
still taking advantage from the image reconstruction of
Meixner moments.
PATTERN RECOGNIT
The transition from 2D to 3D is difficult and need
a careful study because the 3D rotation has three
degrees of freedom opposed to 2D rotation that has
only one parameter.

Therefore, any 3D images and structures linked to
rotation are richer than in 2D. What distinguishes
between the 3D problem and the 2D is that rotation in
3D is not commutative.

That’s why the generalization from 2D to 3D
should be investigated carefully and not done auto-
matically.

Such studies may find out a similarity with 2D and
may come up with different outcomes.

The core idea of the proposed work is that the
radial Meixner polynomials are orthogonal in ball and
are more appropriate for extracting 2D and 3D rota-
tion invariants. To prove the suggested method, three
issues are resolved mainly 2D/3D image reconstruc-
tion, 2D/3D rotational invariance and pattern recog-
nition. The result of the experiment prove that the
Meixner moments have done better than the Kraw-
tchouk moments in terms of 2D/3D image recon-
struction capability. At the same time, the recon-
structed 2D/3D image converges quickly to the origi-
nal image using radial Meixner moments and the test
of volumetric images are clearly recognized from a set
of images that are found in a PSB database.

The rest of the paper is organized as follows. Sec-
tion 2 presents an overflow to rotation invariant of
2D/3D Meixner moments. Section 3 introduces the
simulation results of 2D/3D invariant Meixner
moments. Finally, Section 4 concludes this paper.

2. THE ROTATION INVARIANT 
OF 2D/3D MEIXNER MOMENTS

In this section, we present a brief background of
radial Meixner moments for 2D and 3D case.

2.1. 2D Radial Meixner Moments
In this subsection, we present a brief background of

2D radial Meixner moments based on the polar repre-
sentation of a 2D image.

The rotational invariants are extracted from the
radial Meixner moments. Radial polar coordinate of
image intensity f(r, θ) are used to extract the radial
moments by one-dimensional polynomials by a circu-
lar function. Figure 1 displays the region for comput-
ing the radial Meixner moments for an image of size
N × N with  and η represent the number of pixels
along the radius r and perimeter, respectively.

The discrete angle θs is given by

(17)

with s = 0, … η − 1.

v

πθ =
η

2
s

s
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Fig. 1. The computation’s region of radial Meixner
moments.

r
Angle θu
The radial Meixner moments are presented as

. (1)

The transform inverse of moments are defined as

. (2)

The Cartesian coordinates (x, y) of each pixel will be
obtained from the polar coordinate relations given by

(3)

with r = 0, 1, …,  – 1 and s = 0, 1 , …, η – 1.
To extract the rotational invariants of the radial

Meixner moments we will use an image rotated by an
angle θ' around the center of the ring.

The radial Meixner moments  with order (n +
m) for a rotated image is defined as

(4)

The norm of radial Meixner moment M' after the
rotation is the same as the norm radial moment M

(5)

The  are considered as the rotational
invariants of the proposed radial Meixner moments.

2.2. 3D Radial Meixner Moments

To enlarge this method directly to 3D, we will use
the Euler angles for any orientations/rotations in spe-
cial orthogonal system in 3D case SO(3). With three
successive rotations of angles θ ∈ [0, 2π], ϕ ∈ [0, π],
and ψ ∈ [0, 2π] around the x, y, and z axes we can rep-
resent any three-dimensional rotation by

, (6)
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where , , and  are given by

,

, (7)

.

The rotation of the volumetric images are only
defined for any choice of angles with ϕ ≠ 0. For ϕ = 0,
we obtain a rotation of angle θ + ψ around the princi-
pal z-axis which are obtained by any mixture of values
θ and ψ. This discretization is avoided by switching the
values of ϕ by half of the step size of our discretization.

The 3D radial Meixner moments Mklmn with order
(k + n + m + l) for an image with intensity f(r, θs, ϕt,

 are defined as

(8)

where
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If the image is rotated randomly in steps of the
given discretization defined by α', β', γ' the rotated 3D
images will have in this case as intensity f(r, θs + α',
ϕt + β', ψu + γ').

The moment of 3D radial Meixner moments noted
 for the rotated image are given by

(10)

The norm of 3D radial Meixner moment M' after
the rotation is the same as the norm 3D radial
moment M

.

The 3D radial Meixner rotational invariant called
φklmn are defined by

. (11)

2.3. The 2D and 3D Pattern Recognition

In this section, we present two new set of 2D and
3D radial Meixner moments invariants.

2.3.1. Characteristic vectors for 2D case. These 2D
radial Meixner moments can then be used to form the
descriptor vector of every 2D object. Specifically, the
descriptor vector is composed of 2D radial Meixner
moments up to order s, where s is experimentally
selected.

The characteristic vectors V2D is represented as

. (12)

2.3.2. Characteristic vectors for 3D case. These 3D
radial Meixner moments can then be also used to form
the descriptor vector of every 3D object. Specifically,
the descriptor vector is composed of 3D radial Meix-
ner moments up to order s, where s is experimentally
selected.

The characteristic vectors V3D is represented as

. (13)

2.3.3. 2D and 3D objet recognition. To perform the
recognition of 2D and 3D objects to their appropriate
classes. we use two method based on Euclidean dis-
tances and distance of correlations measuring the dis-
tance from Vquery and Vtest where V represent the char-
acteristic vectors V2D for 2D and V3D for 3D case

(14)

and

(15)

where the T-dimensional feature Vquery is represented as

, (16)

and the T-dimensional training vector of class K is rep-
resented as

. (17)

2.3.4. Classification criteria. Therefore, to classify
the images, one takes the minimum values for dEuclidean
and the maximum values for dcorrelation.

The recognition precision is represented as

. (18)

To prove the accuracy of the reconstruction, classi-
fication and recognition images using radial Meixner
moment invariants for 2D and 3D image recognition,
we will use two databases of image. Columbia Object
Image Library database [23] in 2D case, and PSB
database [24] in 3D case.

3. SIMULATION RESULTS

In this section, we present the simulation results of
2D and 3D radial Meixner moments invariant for the
invariability, recognition and classification.
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Fig. 2. Comparative study of reconstruction error of 3D Tchibechif, Krawtchouk, and Meixner moment. 
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Fig. 3. An image with various rotations.

θ' = 0° θ' = 30°

θ' = 120° θ' = 230°
3.1. Invariability for Radial Meixner Moment

In this subsection, we will discuss the invariability
for 2D and 3D case.

3.1.1. Invariability for 2D radial Meixner moment.
To validate the rotational invariant property of the
radial Meixner moments, the same image Lena is
selected Fig. 3. The image is rotated by 0°, 50°, 130°,
and 230°. The selected order of the invariants Φ00, Φ01,
Φ10, Φ11 with η = N/2 and δ = 4N are computed for
each of these images. The results are entered in
Table 1.

To measure the similarity (changeability) of the
proposed invariants under different image rotation, we
will use the formula σ/μ(%) where σ represent the
standard deviation of radial Meixner’s invariant
moments for the different angle of each rotation, and
μ is the average value.

The Table 1 show that the ratio σ/μ is very low and
consequently the radial Meixner’s moment invariants
are very stable under different types of image rotation.
Hence, the property of invariability of radial Meixner
moments will be used to pattern recognition.

3.1.2. Invariability for 3D radial Meixner moment.
To validate the rotational invariant property of the 3D
radial Meixner moments, the 128 × 128 × 128 teddy
bear image and there rotated version (φ = 10°; θ =
‒90°; ψ = 120°), (φ = 45°; θ = 30°; ψ = –75°), and
(φ = –60°; θ = –35°; ψ = –120°) shown in Fig. 4 will
be used. The selected order of the invariants Φ0000,
Φ0001, Φ0010, Φ0100, Φ1000, Φ0011, Φ0101, Φ1001, and Φ1100

with η = N/2, δ = 4N, , and  are com-
puted for each image.

The results of simulation are shown in Tables 2 tak-
ing a = 10, b = 10 for Meixner moment parameters.

μ = 4N λ = 4N
PATTERN RECOGNITION AND IMAGE ANALYSIS  V
Lastly, the ratio σ/μ can used to measure the capa-
bility of the proposed 3D rotation invariants under dif-
ferent image transformation.

Where σ represents the standard deviation of radial
Meixner moment for the different factors of each rota-
tion, and μ is the equivalent mean value.

The Table 2 show that the ratio σ/μ is very low
and consequently the 3D radial Hahn’ s moment
invariants are very stable under different types of 3D
image rotation. Hence, the property of invariability
of radial Hahn moments well be used to pattern rec-
ognition.
ol. 28  No. 2  2018
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Table 1. Selected order of rotational invariants of radial
Meixner moments computed for Lena image with arbitrary
rotation angles

θ', deg Φ00 Φ01 Φ10 Φ11

θ' = 0 0.107335 0.074840 0.112730 0.063419

θ' = 30 0.103365 0.274847 0.102737 0.063414

θ' = 120 0.103365 0.274849 0.102739 0.063415

θ' = 230 0.103365 0.274850 0.102742 0.063418

σ/μ(%) 0.00 e00 1.492 e−03 8.272 e−04 6.870 e−03
3.2. Classification

In this subsection, we will discuss the classification
for 2D and 3D case.

3.2.1. Classification for 2D radial Meixner moment.
To validate the proposed approach for classification,
we have taken the image from the Columbia object
PATTERN RECOGNIT

Fig. 4. A set of transformed pattern of the origina
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Library (COIL-20) database [22]. The total number of
images is 1.440 distributed as 72 images for each
object. All images of this database have the size 128 ×
128. Figure 5 displays a collection of the six objects.
The test set also is degraded by salt and pepper noise
with noise densities 1, 2, 3, and 4%. The feature vector
based on rotational Meixner’s moment invariants is
used to classify these images and its recognition accu-
racy is compared with that of radial Krawtchouk
moment invariants. The results of the classification
using all features are presented in Tables 3, 4.

3.2.2. Classification for 3D radial Meixner moment.
To prove the proposed method for classification, we
have taken the image from the Princeton Shape
Benchmark (PSB) Database [24]. Being known, this
database consists of 907 3D models classified into 35
main categories and 92 subcategories. All images of
this database have the size 128 × 128 × 128. In Table 5,
we find that the measure between the query of volu-
metric image and same images of classes from PSB
ION AND IMAGE ANALYSIS  Vol. 28  No. 2  2018
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Table 2. The proposed extracted invariants for the teddy bear image and its transformed versions

Original image Transformation no. 1 Transformation no. 2 Transformation no. 3 σ/μ

Φ0000 6.5520 e+13 6.5520 e+13 6.5520 e+13 6.5520 e+13 0.000000 e+00

Φ0001 6.5570 e+13 6.5572 e+13 6.5571 e+13 6.5572 e+13 1.492678 e−03

Φ0010 6.5541 e+13 6.5540 e+13 6.5542 e+13 6.5541 e+13 8.272308 e−03

Φ0100 6.5533 e+13 6.5531 e+13 6.5532 e+13 6.5532 e+13 1.452688 e−03

Φ1000 3.3279 e+13 3.3279 e+13 3.3278 e+13 3.3278 e+13 1.492612 e−03

Φ0011 3.3274 e+13 3.3275 e+13 3.3276 e+13 3.3276 e+13 6.876412 e−03

Φ0101 3.3280 e+13 3.3280 e+13 3.3281 e+13 3.3281 e+13 6.8764140 e−03

Φ1001 2.2265 e+13 2.2266 e+13 2.2267 e+13 2.2267 e+13 6.876418 e−03

Φ1100 2.2340 e+13 2.2342 e+13 2.2342 e+13 2.2341 e+13 6.876445 e−03

Fig. 5. Collection of the COIL-20 objects [20].
database of the two vectors Vquery and Vtest(class) using
dEuclidean and dcorrelation.

The test set also is degraded by salt and pepper
noise with noise densities 1, 2, 3, and 4%. The feature
vector based on 3D rotational radial Meixner’s
moment invariants is used to classify these images and
its recognition accuracy is compared with that of 3D
radial Krawtchouk moment invariants. The results of
the classification using all features are presented in
Table 6.

4. CONCLUSION

In this article, we propose a new set of 2D and 3D
rotation invariants based on orthogonal radial Meix-
ner moments. We have found a theoretical mathemat-
ics to derive them. Therefore, this paper introduces, in
a first case, a new 2D radial Meixner moments using
polar representation of an image by a one-dimensional
orthogonal discrete Meixner polynomials and a circu-
lar function. In the second case, we present a new 3D
radial Meixner moments using a spherical representa-
tion of volumetric image by a one-dimensional
orthogonal discrete Meixner polynomials and a spher-
ical function. Further 2D and 3D rotational invariants
are derived from the proposed 2D and 3D radial Meix-
ner moments respectively.

In order to prove the proposed approach, three
issues are resolved mainly image reconstruction, rota-
tional invariance and pattern recognition. Experimen-
tal results prove that the radial Meixner moments have
perform better than the radial Krawtchouk moments
in terms of volumetric image reconstruction capability
simultaneously, the reconstructed volumetric image
converges quickly to the original image using 2D and
3D radial Meixner moments and the test images are
correctly recognized from a set of images that are
available in a PSB database.
PATTERN RECOGNITION AND IMAGE ANALYSIS  V
APPENDIX
Meixner moments. Meixner moments Hnm of order

(n, m) for an intensity image f(x, y) of size N × M are
given by

. (1A)

To ensure the numerical stability of weighted
Meixner polynomial  is presented as

, (2A)

where  the nth order Meixner polynomial,
which is defined by employing a hypergeometric func-
tion as [22]
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Table 3. Classification results of COILL-20 object database
by using d1 distance

Invariant 
moments

Noise 
free, %

Salt and pepper noise, %

1 2 3 4

Radial
Krawtchouk

100 89.62 86.15 80.47 61.16

Proposed 
method

100 93.12 90.22 85.25 62.43

Table 4. Classification results of COILL-20 object database
by using d2 distance

Invariant 
moments

Noise 
free, %

Salt and pepper noise, %

1 2 3 4

Radial
Krawtchouk

100 89.61 86.25 80.97 61.36

Proposed 
method

100 93.12 90.762 84.35 62.03
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and the Pochhammer symbol  is given by
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and the square norm  is defined as
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With the orthogonal property of normalized
orthogonal polynomial can be rewritten as
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where

,

,

,

,

with .
The first orders of discrete normalized Meixner

polynomials are calculated from the above equations

, (11A)

(12A)

The weighted Meixner polynomials form an ortho-
normal system, the reconstruct image can be deduced by

. (13A)

For computed the 2D moments to order Mmax, we
can approximated the reconstructed image in
Eq. (13A) by

(14A)

The 3D Meixner moments of order n + m + l for a
volumetric image function  of size N × M × L
are defined as

(15A)

Using the orthogonality property, The inverse
transform of Meixner moments are given by
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Table 5. The Euclidean distance and correlation coefficient between request free-noise image and same images of classes
from PSB database

Original volumetric airplane image of size 128 × 128 × 128 voxels

dEuclidien 0.014 3.3287 2.8736 2.8260 2.4631
dcorrelation 0.9992 0.2392 0.4541 0.3742 0.1246

dEuclidien 3.7735 1.7735 2.5620 4.0931 2.7377
dcorrelation 0.8658 0.8991 0.2390 0.7634 0.3742

dEuclidien 2.7416 2.8865 2.2697 3.9879 2.6452
dcorrelation 0.1659 0.1235 0.1291 0.4291 0.4310
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For computed the 2D moments to order Mmax, we
can approximated the reconstructed image in
Eq. (16A) by

(17A)
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Table 6. Classification results of Princeton shape bench-
mark (PSB) using dEuclidien distance

3D Invariant 
moments

Noise 
free, %

Salt and pepper noise, %

1 2 3 4

3D Radial
Krawtchouk

100 89.61 86.25 80.97 61.36

Proposed 
method

100 93.25 90.32 85.35 69.03
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