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Abstract—We consider the strongly NP-hard problem of partitioning a finite set of Euclidean points into two
clusters so as to minimize the sum (over both clusters) of the weighted sums of the squared intra-cluster dis-
tances from the elements of the cluster to its center. The weights of the sums are equal to the cardinalities of
the clusters. The center of one of the clusters is given as input, while the center of the other cluster is unknown
and is determined as the mean value over all points in this cluster, i.e., as the geometric center (centroid). The
version of the problem with constrained cardinalities of the clusters is analyzed. We construct an approxima-
tion algorithm for the problem and show that it is a fully polynomial-time approximation scheme (FPTAS)
if the space dimension is bounded by a constant.
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INTRODUCTION
The subject of this study is the strongly NP-hard

quadratic problem of partitioning a finite set of points
in Euclidean space into two clusters with a fixed center
of one of the clusters. Our goal is to substantiate an
approximation algorithm that solves this problem.

The research is motivated by the fact that the prob-
lem has been poorly studied from an algorithmic
standpoint and is important for applications includ-
ing, in particular, problems in cluster analysis, approx-
imation theory, and data interpretation; statistical
problems of joint evaluation and hypothesis testing
with heterogeneous samples; geometric problems, etc.
(see, for example, [1–12], the references therein, and
the next section).

The paper1 develops the results presented in [1–3]
and is structured as follows. Section 1 contains the for-
mulation of the problem and examples of its applica-
tions. Additionally, known results are given and the
result obtained in this paper is announced. In
Section 2, geometric statements are formulated and
proved that provide the establishment of performance
estimates (accuracy and time complexity) for the pro-
posed algorithm. Finally, in Section 3, an approxima-
tion algorithm is substantiated and it is shown that the

1 A short preliminary version of the paper has been published in
the proceedings of the conference [23].

proposed algorithm for the space of fixed dimension is
a fully polynomial-time approximation scheme
(FPTAS).

1. FORMULATION OF THE PROBLEM, ITS 
INTERPRETATION, AND APPLICATIONS. 

KNOWN AND OBTAINED RESULTS

In what follows,  is the set of real numbers,  is
the set of positive real numbers,  is the set of integers,

 is the Euclidean norm, and  is the scalar product.
The problem under consideration is formulated as

follows (see [1–3], [23]).
Problem 1 (Cardinality-weighted variance-based 2-

clustering with given center). Given: a set  = 
of points from  and a positive integer . Find: a
partition of the set  into two nonempty clusters 
and \  such that

(1)

where  is the geometrical center

(centroid) of the cluster  under the constraint  = M.
Problem 1 has a simple (easily verifiable) geomet-

rical interpretation. It represents partitioning a finite
set of points in Euclidean space into two subsets by the
optimal (according to (1)) second-order separating
surface. As is known, the construction and application
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of optimal nonlinear separating surfaces (decision
functions), in particular of second-order surfaces, is
one of the traditional directions of research in data
analysis and pattern recognition (see, for example, [5–
12] and the reference therein).

In formula (1), the cardinalities of the desired clus-
ters are the weight factors of the intra-cluster sums.
Therefore, Problem 1 can be treated as a problem of
optimal summing weighted by the cardinalities of the
clusters.

In addition, Problem 1 has applications in an inter-
disciplinary data-mining problem (see, e.g., [4], [8],
[10], [11]). The essence of this multifaceted problem is
the approximation of the data with some mathemati-
cal model that allows us to adequately interpret these
data and plausibly explain their origin in terms of the
approximating model. In particular, the following sta-
tistical hypothesis may be such a model: whether it is
true that the input data  is an inhomogeneous sam-
ple from two probability distributions, where one of
these distributions has a zero mean, while the mean of
the second is unknown and not equal to zero. It is
assumed that the correspondence of the sample ele-
ments to the distribution is not known and the sample
data from the cluster \  are taken from the distribu-
tion with zero mean. To test this hypothesis, we first
need to find the optimal solution of Problem 1 (i.e.,
the partition into two clusters—homogeneous sam-
ples), and only then we will be able to use the classical
results in the field of statistical hypothesis testing for
homogeneous samples.

As is known, the basic mathematical tools for
applied researchers who study and analyze data are
algorithms for solving a variety of clustering problems
in which the clusters consist of similar objects or
objects close by a certain criterion. The design of new
mathematical tools for solving data-mining problems
causes the development of effective algorithms with
guaranteed performance estimates of accuracy and
time complexity.

Recall that Problem 1 under consideration (with
one unknown centroid) is close in its statement to the
intractable problem of weighted clustering (with two
unknown centroids) [13, 14], in which, instead of sum
(1), it is required to minimize the sum

 + .
For this problem, a number of algorithmical results
have been obtained, particularly in [14–18]. These
results cannot be transferred directly to Problem 1
because the latter is not equivalent to the above-men-
tioned known problem and is not its particular case.
Problem 1 requires individual algorithmic studies.

It is shown in [2, 3] that Problem 1 is strongly NP-
hard. Therefore, according to [19], there exist neither
exact polynomial-time nor exact pseudopolynomial-
time algorithms for this problem if the hypothesis
P NP is true. In addition, it is proved in [2, 3] that
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there is no FPTAS for Problem 1 with numerical
inputs unless P = NP. For this reason, it is of interest
to find subclasses of this problem for which such
schemes exist.

At present, there is only one algorithmic result
obtained for Problem 1; namely, for the case of this
problem with integer input points, an exact algorithm
has been constructed [1]. This algorithm finds a solu-
tion in  time, where  is the maxi-
mum absolute value of the coordinates in the input set
of points. If the dimension  of the space is bounded
by a constant, then the runtime of the algorithm is
estimated as  and its time complexity is
pseudopolynomial.

In the present paper, we construct an approxima-
tion algorithm for Problem 1. Given a relative error ,
this algorithm allows us to find an -approximate

solution of the problem in  time. In

the case of the space dimension  bounded by a con-
stant, the runtime of the algorithm is estimated as

 and it implements an FPTAS.

2. GEOMETRIC FOUNDATIONS 
OF THE ALGORITHM

In order to substantiate the algorithm we need sev-
eral basic statements.

The following two lemmas are well-known. Their
proofs are presented in many publications (see, for
example, [20, 21]).

Lemma 1. For an arbitrary point  and a finite
set , we have the equality

where  is the centroid of the set .
Lemma 2. Let the conditions of Lemma 1 hold. If

some point  lies closer (in the distance sense) to the
centroid  of the set  than any point of this set, then

Hereinafter, we use  to denote the function
 provided that the argument  of this function

is fixed; the notation  has the analoguous sense.
The following two lemmas were proved in [1].

Lemma 3. Let
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where  is the input set of points in Problem 1. Then the
following equality holds:

Lemma 4. Let the conditions of Lemma 3 hold. Then
the following assertions are valid for the conditioinal
minima of function (2):

(1) for each nonempty fixed subset , the mini-
mum of the function  over  is attained at the

point  =  =  and is equal to ;

(2) if , then, for every fixed point

, the minimum of the function  over 
satisfied the equality

where

(3)

; (4)

moreover,

and the set consists of those  points of the set  at
which the function  takes the smallest values.

Lemma 5. Let the conditions of Lemma 4 hold and let
 be the optimal solution of Problem 1. Then, for a fixed

point , the value  on the set  satisfies
the bound

Proof. From definitions (1) and (2) and Lemma 1,
we obtain

(5)

In addition, Lemma 3 for the right-hand side of (5)
implies the equality

(6)

Combining (5) and (6) yields the statement of the
lemma. The lemma is proved.

Lemma 6. Suppose that the conditions of Lemma 5
hold and t =  is the point of the set

 nearest to its centroid. Then the squared distance
from the point t to the centroid of the subset  satisfies
the bound

(7)

=

, = + − .# # # #
2 2( ) ( ) ( )S x F x y

⊆# =

#( )S x ∈R
qx

x #( )y
∈∑ ##

1
y

y #( )F

= =# M const

∈R
qx #( )xS ⊆# =

⊆ ⊆
= ,

# = # =
# #arg min ( ) arg min ( )x xS G

∈
= ,∑

#

#( ) ( )x x

y

G g y

= − − , , ∈ =
2( ) (2 ) 2xg y M N y M y x y

⊆
∈

= ,∑
# =

@

#min ( ) ( )
x

x x

y

G g y

@
x M =

( )xg y

#*

∈R
qx #( )F =# @

x

≤ + −@ # #
22( ) ( *) ( *) .xF F M x y

= ≤ ≤@
@ @ @ #

( )( ) ( ) ( ) ( *).
xx y x x x xF S S S

= + − .# # #
22( *) ( *) ( *)xS F M x y

∈
−

#
#

2

*
arg min ( *)

y
y y

#*
#*

− ≤ ,# @
2

2
1( *) ( )tt y F

M

where  is the set defined in Lemma 4 for .
Proof. By the definition of the point , we have the

inequality

for each point . Summing up this inequality
over all , we obtain

(8)

Furthermore, since the subset  is optimal, we
have the bound

(9)

and definition (1) implies the inequality

(10)

Combining (8), (10), and (9), we obtain

The lemma is proved.
Lemma 7. Let the conditions of Lemma 6 hold. If, for

arbitrary  and a point , the inequality

(11)

is valid, then the subset  defined in Lemma 4 is an
-approximate solution of Problem 1.

Proof. From (1), Lemma 4, and the definition of
the point , we have

(12)

Further, applying Lemma 2 to the set  and
the point , we obtain

Using this inequality and definition (2), we find
the estimate for the right-hand side of (12):

(13)

Combining (11), (12), and (13), we obtain
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Finally, from Lemma 5 and (14), we find the fol-
lowing estimate for the value of the objective function
(1) on the subset :

The resulting estimate means that the subset  is
a -approximate solution of Problem 1. The
lemma is proved.

3. APPROXIMATION ALGORITHM
The main idea of the proposed approach to the

search for an approximate solution of the problem is as
follows. For each point of the input set, we construct a
domain (of cubic form) so that at least one of these
domains would necessarily contain the centroid of the
desired subset. Given a required relative error of the
solution in the input, a lattice is constructed that dis-
cretizes this domain with a uniform step in all the
coordinates. The lattice size and step are calculated
adaptively (see below) for each of the input points. For
each node of the lattice, we form a subset of M points
of the input set at which function (4) has the smallest
values and the minimum of the auxiliary objective
function (3) is attained. The formed set is declared as
a candidate for the solution. The subset of the con-
structed family that minimizes the objective function
of Problem 1 is taken to be the final solution.

This inherently adaptive grid approach was previ-
ously used in [21] and [22] to solve related strongly
NP-hard clustering problems. In these reference
papers, the auxiliary objective functions differ from
(3) since the structure of the optimal solutions of the
above related problems is different from the structure
of the optimal solution of Problem 1 stated in Lemma
4. It is these differences that determine the features of
the adaptive grid computations in the algorithm pro-
posed below. The present paper demonstrates the
effectiveness of the adaptive grid approach to solving
Problem 1 under consideration.

For an arbitrary point  and positive numbers
 and , we define the set of points

(15)

which is a multidimensional cubic lattice of size 
centered at point x with coordinate-wise spacing 
between the nodes.

Remark 1. For arbitrary points  and  from 
such that , the distance from the point  to
the nearest node of the lattice  obvi-

ously does not exceed .

The cardinality of the lattice satisfies the estimate
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for each point .
To construct an algorithmic solution, we should

adaptively determine the half-size  of the lattice and
its step  for each point  of the input set  so that the
domain of the lattice would necessarily contain the
centroid of the desired subset, while the step of the lat-
tice is defined by the given relative error . For this
reason, we define the functions

(17)

(18)

where the set  is defined in Lemma 4 for .
Note that all calculations in the algorithm

described below are based on constructing a feasible
(approximating) solution of Problem 1 in the form of
a subset  (defined in Lemma 4) for a certain point

of the support set of points. As a support set, we con-
sider the input set  and the set of nodes of the lattice

 centered at point , which is adap-
tively calculated by (17) and (18) for each input point

. The accuracy of the found solution is estimated
using the basic statements in Section 2.

Remark 2. For an arbitrary point , the cardi-
nality  of the lattice does not exceed
the quantity

by (16), (17), and (18).
Let us give the step-by-step description of the algo-

rithm.
Algorithm .
Input of the algorithm: a set  and numbers  and

.
For each point , perform Steps 1–6.

Step 1. Compute the values , , by for-
mula (4); find the subset  with the  smallest
values , and compute the value  by formula
(1).

Step 2. If , then put ; Exit.
Step 3. Compute  and  by formulae (17) and

(18), respectively.
Step 4. Construct the lattice  by

formula (15).
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Step 5. For each node  of the lattice
, compute the values , , by

formula (4) and find the subset  with the 
smallest values . Compute the value  by
formula (1) and remember this value and the set .

Step 6. If , then put ; Exit.

Step 7. In the family ,
 of feasible sets constructed at Steps 1–6,

choose as the solution  the set  for which 
is minimal.

Output of the algorithm: the set .
Theorem 1. For any fixed , Algorithm  finds

an -approximate solution of Problem 1 in

 time.

Proof. Let us estimate the accuracy of the algo-
rithm. Consider the case when the condition

 holds at Step 2 for some input point .
In this case, the subset  is an optimal solution
of Problem 1, since, for any set , we have

. We obtain a similar optimal result at Step 6.

Consider the case when  is not fulfilled
at Step 2. It is obvious that, while running, the algo-
rithm finds a point among all points of the set  that
is nearest to the centroid of the optimal set, i.e., a
point  such that t = . By
Lemma 6, inequality (7) holds for this point. This
means, according to (17), that ; i.e.,
the centroid of the optimal subset lies within the lattice
with the edge  and the center at the point .

Let  be a node of

the lattice , nearest to the centroid of
the optimal subset. According to Remark 1, the
squared distance from the optimal centroid  to

the nearest node  of the lattice does not exceed .

Therefore, by the definition of the point , we obtain

This estimate means that the point  meets the
conditions of Lemma 7 and the corresponding subset

 is an -approximate solution of Problem 1.

It is clear that any subset  in the family of feasi-
ble solutions constructed by the algorithm for a node

 such that  ≤  also guaran-
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tees an approximation with relative error not exceed-
ing .

Let us evaluate the time complexity of the algo-
rithm.

At Step 1, it takes at most  operations to
compute the values . Finding the  smallest ele-
ments in the set of  elements requires  opera-
tions (for example, by using the algorithm for finding
the th smallest value in a unordered array (heap)
[24]). The computation time of the value  is

.

Steps 2, 3, and 6 are executed in a constant time
O(1). The construction of the lattice at Step 4 requires

 operations (by Remark 2).

At Step 5, the computation of the elements of the
set  for each node  of the lattice is done in 
time, and the same is true for the computation of the
value  (by analogy with the computations at
Step 1). Therefore, the total computational time for all
nodes of the lattice at this step equals .

Since Steps 1–6 are executed  times, the time
complexity of these steps is . The time com-
plexity of Step 7 is estimated by , while the total
costs of all steps are equal to . Therefore, the
time complexity of the algorithm  equals

. The theorem is proved.

Remark 3. In the case when the dimension  of the
space is bounded by a constant and , we have
the estimate

which means that Algorithm  implements an
FPTAS.

Remark 4. It is clear that the constructed algorithm
can be applied to solve a problem in which the cardi-
nalities of the desired clusters are unknown. For this
purpose, it suffices to solve Problem 1  times with
the help of Algorithm  for each  and
then choose the best of the found solutions according
to the minimum of the objective function. The time
complexity of this algorithmic solution is obviously

equal to . However, it is interesting to

construct less time-consuming algorithms without
searching  admissible values of the cardinality  of
the desired subset.
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CONCLUSIONS
In the paper, we have constructed an approxima-

tion algorithm for the strongly NP-hard quadratic
Euclidean problem of partitioning a finite set of points
into two clusters. It has been shown that the algorithm
is a fully polynomial-time approximation scheme if
the dimension of the space is bounded by a constant.

The considered problem is among the discrete
optimization problems poorly studied in the algorith-
mical sense. Therefore, it seems relevant to continue
the study of the algorithmic approximability of the
problem. An important direction is the construction of
fast randomized algorithms that provide a solution
with probabilistic guarantees in linear and sublinear
time.

ACKNOWLEDGMENTS
The authors are grateful to V.V. Shenmaier for valu-

able comments and suggestions on the strengthening
and generalization of the obtained result.

This work was supported by the Russian Founda-
tion for Basic Research, project nos. 15-01-00462, 16-
07-00168, 16-31-00186-mol-a, and 18-31-00398-
mol-a.

REFERENCES
1. A. V. Kel’manov and A. V. Motkova, “Exact pseudo-

polynomial algorithms for a balanced 2-clustering
problem,” J. Appl. Indust. Math. 10 (3), 349–355
(2016).

2. A. V. Kel’manov and A. V. Pyatkin, “NP-hardness of
some quadratic Euclidean 2-clustering problems,”
Dokl. Math. 92 (2), 634–637 (2015).

3. A. V. Kel’manov and A. V. Pyatkin, “On the complexity
of some quadratic Euclidean 2-clustering problems,”
Comput. Math. Math. Phys. 56 (3), 491–497 (2015).

4. C. C. Aggarwal, Data Mining: The Textbook (Springer
International Publishing, 2015).

5. C. M. Bishop, Pattern Recognition and Machine Learn-
ing (Springer Science + Business Media, New York,
2006).

6. R. O. Duda and P. E. Hart, Pattern Classification and
Scene Analysis (John Wiley & Sons, New York, 1973;
Mir, Moscow, 1976).

7. K. Fukunaga, Introduction to Statistical Pattern Recogni-
tion, 2nd ed. (Academic Press, New York, 1990).

8. T. Hastie, R. Tibshirani, and J. Friedman, The Elements
of Statistical Learning: Data Mining, Inference, and Pre-
diction, 2nd ed. (Springer-Verlag, New York, 2009).

9. A. K. Jain, “Data clustering: 50 years beyond -
means,” Pattern Recogn. Lett. 31 (8), 651–666 (2010).

10. G. James, D. Witten, T. Hastie, and R. Tibshirani, An
Introduction to Statistical Learning: with Application in R
(Springer Science + Business Media, New York, 2013).

11. T.-C. Fu, “A review on time series data mining,” Eng.
Appl. Artif. Intell. 24 (1), 164–181 (2011).

k

12. J. T. Tou and R. C. Gonzalez, Pattern Recognition Prin-
ciples (Addison-Wesley, Reading, MA, 1974; Mir,
Moscow, 1978).

13. P. Brucker, “On the complexity of clustering prob-
lems,” in Optimization and Operations Research: Proc. of
the Workshop Held at University Bonn (Bonn, Germany,
October 2–8, 1977), Lecture Notes Econom. Math.
Syst. 157, 45–54 (1978).

14. S. Sahni and T. Gonzalez, “P-complete approximation
problems,” J. ACM. 23 555–566 (1976).

15. S. Hasegawa, H. Imai, M. Inaba, N. Katoh, and
J. Nakano, “Efficient algorithms for variance-based -
Clustering,” in Proc. 1st Pacific Conf. on Computer
Graphics and Applications (Seoul, Korea, August 30–
September 2, 1993), Vol. 1 (World Scientific, River
Edge, NJ, 1993), pp. 75–89.

16. M. Inaba, N. Katoh, and H. Imai, “Applications of
weighted Voronoi diagrams and randomization to vari-
ance-based -clustering: (extended abstract),” in Proc.
10th ACM Symposium on Computational Geometry
(Stony Brook, New York, USA, June 6–8, 1994), (ACM,
New York, 1994), pp. 332–339.

17. F. de la Vega, M. Karpinski, C. Kenyon, and Y. Rabani,
“Polynomial time approximation schemes for metric
min-sum clustering,” Electronic Colloquium on Compu-
tational Complexity (ECCC), Report No. 25 (2002).

18. F. de la Vega and C. Kenyon, “A randomized approxi-
mation scheme for metric max-cut,” J. Comput. Syst.
Sci. 63, 531–541 (2001).

19. M. R. Garey and D. S. Johnson, Computers and Intrac-
tability: A Guide to the Theory of NP-Completeness
(W. H. Freeman and Co., San Francisco, 1979; Mir,
Moscow, 1982).

20. A. V. Kel’manov and S. M. Romanchenko, “An
approximation algorithm for solving a problem of
search for a vector subset,” J. Appl. Indust. Math. 6 (1),
90–96 (2012).

21. A. V. Kel’manov and S. M. Romanchenko, “An
FPTAS for a vector subset search problem,” J. Appl.
Indust. Math. 8 (3), 329–336 (2014).

22. A. V. Kel’manov and V. I. Khandeev, “Fully polyno-
mial-time approximation scheme for a special case of a
quadratic Euclidean 2-clustering problem,” Comput.
Math. Math. Phys. 56 (2), 334–341 (2016).

23. A. V. Kel’manov and A. V. Motkova, “A fully polyno-
mial-time approximation scheme for a special case of a
balanced 2-clustering problem,” in Discrete Optimiza-
tion and Operations Research: Proc. 9th Intern. Conf.
DOOR 2016 (Vladivostok, Russia, September 19–23,
2016), Lecture Notes Comp. Sci. 9869, 182–192
(2016).

24. N. Wirth, Algorithms + Data Structures = Programs
(Prentice Hall, New Jersey, 1976; Mir, Moscow, 1985). 

Translated by I. Tselishcheva

k

k



PATTERN RECOGNITION AND IMAGE ANALYSIS  Vol. 28  No. 1  2018

APPROXIMATION SCHEME 23

Alexander Vasilyevich Kel’manov.
Born 1952. Graduated from Izhevsk
State Technical University in 1974
with specialty in Applied Mathemat-
ics. Received Candidate’s Degree in
Engineering Cybernetics and Infor-
mation Theory in 1980 and Doctor
of Sciences degree in Physics and
Mathematics in 1994. Currently
with Sobolev Institute of Mathemat-
ics, Siberian Branch of the Russian
Academy of Sciences, head of Data
Analysis Laboratory. Scientific in-

terests: data analysis, data mining, pattern recognition,
clusterization, discrete optimization, NP-hard problems,
efficient algorithms with performance guarantees. Author
of more than 200 publications.

Anna Vladimirovna Motkova. Born
1993. Graduated from Novosibirsk
State University in 2017 with spe-
cialty in Mathematics. Currently
with Sobolev Institute of Mathemat-
ics, Siberian Branch of the Russian
Academy of Sciences, Ph.D. student
in Data Analysis Laboratory. Scien-
tific interests: data analysis, pattern
recognition, clustering, discrete op-
timization, NP-hard problems, effi-
cient algorithms with performance
guarantees. Author of 8 publications.


