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Abstract– Locating the center of the eyes plays a significant role in many computer vision applications and
research, such as face alignment, face recognition, human-computer interaction, control devices for disabled
people, user attention and gaze estimation. The disturbances such as occlusions by eyelashes or eyelids,
uneven spots and spectacle frames of glasses affect the accuracy and stability of eye center location. This paper
presents a hybrid eye center locating methodology for infrared eye images. The pupil edge points are extracted
by Starburst algorithm, and when we get the position and the gradient of the edge points, the approximate
pupil boundary is determined by a convex region voting methods. After that, the boundary edge points are
iteratively optimized by fitting an ellipses modeling constraint. Finally, the pupil is located correctly. Exper-
iment shows that this algorithm has performance advantages compared with some state of the art approaches
in pupil localization accuracy, iteration times and their performance. This algorithm combining convex area
voting and model constraint has strong robustness, high accuracy and speed in real environments with occlu-
sions and distortion pupil.
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INTRODUCTION

Eye location and tracking are important tasks in
many computer vision applications. Some of the most
common examples are the application to face align-
ment, face recognition, user attention, and gaze (e.g.
driving and marketing), and control devices for dis-
abled people [1].

Unfortunately, the common problem of the above
techniques is the requirement of intrusive and expen-
sive sensors. For example, in face recognition, diffi-
culties arise from the fact that the face is a changeable
social organ displaying a variety of expressions, as well
as being an active three-dimensional (3-D) object
whose image varies with viewing angle, pose, illumi-
nation, accoutrements, and age.

The difficulties mainly come from two sources, the
first source is the appearance of the eye image is dis-
torted due to extreme head pose or eye rotations, thus
that pupil or iris region does not have a standard circle
boundary, while pupil size varies when light changes.
The second source comes from various disturbances
which includes partial occlusion by eye lashes or eye-
lids, image noise corruption by uneven illumination or
spots by spectacle frames of glasses.

1The article is published in the original.

In recent years, many algorithms have been pro-
posed in the study of pupil localization, such as the
pupil centering algorithm based on selective threshold
inversion and radial symmetry proposed by Zhao Yan-
tao et al. [2], the particle swarm algorithm proposed by
Zhang et al., the pupil accurate detection algorithm
combined by Hough transform and contour matching
proposed by Shunbing Mao et al. [3]. Su Yeong Gwon
et al have proposed an algorithm to locate the eye area
with Adaboost and SVM and determine the circular
pupil center with image binary operation [4]. Roberto
Valenti has proposed an accurate algorithm to locate
and track the center of eyes using contour feature [5].

Wang Zijing et al. proposed an arc length incre-
ment method based on a voting system to locate the
center of the pupil [6]. Hu Xu et al. proposed a fast
method of pupil and eye location based on gradient
feature reconstruction [7].

Above mentioned algorithms can correctly locate
center of the undeformed pupil in some kinds of ideal
circumstances, their robustness is not good in envi-
ronment of external interference. Above mentioned
algorithms can correctly locate the center of the pupil
as they assume for simplicity that the pupil are roughly
circular. To solve the fitting problem of deformed
pupil in the eye image, Daugman’s algorithm based on
Fourier series can locate the deformed pupil accu-
rately, but it needs a large amount of calculation [8]. Li
introduced a localization method based on ellipse
model. This method uses close headset system to track
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gaze and locates the pupil by five points RANSAC
(random sample consensus) algorithm. Since it fits an
ellipse by randomly sampled five points in each itera-
tion, the probabilities of invalid sampling and calcula-
tion are increased when noise-signal ratio increases
[9]. Based on Li’s method, Colombo applied an ellip-
tical constraint to filter out most of the noise points
and improved the efficiency and accuracy of the pupil
localization. But it still takes long time to calculate the
maximum consistent set with large interference due to
the inherent property of the RANSAC [10].

In this page, we propose a novel two-stage algo-
rithm to locate the eye center. The first stage convex
region voting attempts to remove noise rapidly from
various disturbances, the second stage then uses
model constraint to handle the deformed pupil issues.
More specifically, it starts from extracting the edge
points of pupil image with Starburst algorithm [9].
Then, it takes a vote with gradient vector for each edge
point. The convex region with high votes is segmented
to be the prospect pupil region. The edge points near
the convex region boundary are initially used to fit an
ellipse pupil model. Finally, it iteratively optimizes the
inlier point set with model constraint. The ellipse fit-
ting method is based on algebraic distance [11]. The
algorithm can quickly and effectively eliminate outli-
ers and improve the efficiency and accuracy of pupil
localization.

Contents of this paper are organized as follows,
Section 2 elaborates pupil localization algorithm, Sec-
tion 3 shows the experimental results and the relevant
comparative analysis, and finally, the paper ended by
a conclusion section.

CONVEX REGION VOTING AND MODEL 
CONSTRAINT ALGORITHM

We choose the pupil center as the eye center, as it is
stable and has geometry advantage in images than iris
center and are commonly used in eye localization
based applications [12]. Then our proposed algorithm
mainly consists of two stages: inliers extracting based
on convex region voting and inliers refinement based
on model constraint. The inliers are the pupil edge
points, while the outliers refer to the edges points in all
others parts of the images, such as the edge points of
the spots or eyelids. Before the voting stage, we apply
image pre-process operations, which include calculat-
ing the position and the gradient of the candidate edge
points.

Prospective Pupil Edge Points Extraction
The boundary of the pupil is crucial element to

locate the eye center; here feature-based methods are
used to extract feature points on this boundary. Figure
1a is an infrared pupil image. Traditional edge detect-
ing algorithms such as Sobel or Canny edge detector
are not suitable to eliminate noises, since those detec-

tors are sensitive to the image noise. Figure 1b shows
the result of the Sobel edge detector. It extracts many
spurious edge points around the eyelid and limbus,
although we can apply image filter such as Gaussian
filter to the original image, but this could also lose the
saliency feature around the pupil to get rid of noise
points and correctly detect the pupil contour, we
adopt the Starburst algorithm [9]. The algorithm casts
search rays outward from an initial seed point assumed
to lie within close proximity to the pupil, and then
casts back toward the center to generate additional
points; Fig. 1c shows the result. Compared with Fig.
1b, Starburst algorithm can effectively remove the
noisy points caused by the disturbances, while pre-
serving as much edge points around the pupil bound-
ary as possible. Though noise points are not totally
removed by Starburst algorithms, they will be elimi-
nated in further stages.

Inliers Extracting by Convex Region Voting

Li DongHeng’s Startburst algorithm uses
RANSAC to further eliminates the spurious points,
while we choose a voting based algorithm which is
already successfully used on grouping Nuclei in Breast
Histopathology Images [13]. The main reason is that
the pupil region (even deformed pupil) is approxi-
mately a convex image object, and once we find all the
prospective pupil edge points, we can find the sup-
porting lines (the line orthogonal to the gradient vec-
tor) around the convex region, and finally use a voting
algorithm to eliminates the noisy feature points. To get
all the supporting lines, the gradient vector should be
calculated at all the edge points location in Fig. 1c, the
result is shown in Fig. 2. The hollow points indicate
the edge points, and the arrows are the gradient vec-
tors, large arrow length means there is a strong gradi-
ent vector around the edge point. For a point with
pixel coordinates (x, y) in the image I, its pixel inten-
sity value is I(x, y), the gradient vector can be con-
structed by partial derivative of the I on x and y direc-
tions. The vector function G is defined as

. The gradient vector always points

along the direction of largest change of image intensi-
ties. It is tangent to the edge curve and directs from the
darkest side to the brightest side.

Voting Process

We first give a simple voting demo image to show
how voting process works, and then we show the vot-
ing result of the pupil image. The convex region voting
algorithm is divided into four steps:

Step 1. Initialize an empty accumulator I' which
has the same size of the pupil image I, and all the pix-
els in the image have initially zero pixel values. The
pixel values are used to accumulate the votes.

⎡ ⎤∂ ∂= ⎢ ⎥∂ ∂⎣ ⎦
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Step 2. For each gradient vector, find its supporting
line. The supporting line simply divides the whole vot-
ing image I' into two half-planes. All the pixels in the
half-plane where the vector resides keep the same vote
value, while all pixels in the other half-plane are
increased by one.

The voting rule is depicted by Fig. 3a, the ellipse
denotes a simplified pupil,  is a gradient vector point-
ing downward, line l is the convex supporting line. In
the upper half-plane, all the pixels have vote value 1,
and in the lower half-plane, all the pixels’ value
remains 0. To determine whether a single pixel need to
add 1 or not, we use the inner product of the two vec-
tors. One vector is the gradient vector , the other one
is the displacement vector starting from the edge point
to the current voting pixel, in Fig. 3a, the  and  are
displacement vectors. In the Fig. 3a, the inner product
of  and  is negative, so the pixel value in accumula-

e

e

m n

n e

tor image pointed by n should increase by 1, while the
product of  and  is positive, the pixel pointed by 
remains unchanged. Figure 3b shows the accumulator
image of seven edge points vote, the convex region
(brightest area in the image) bounded by seven sup-
porting lines has the largest vote value 7, the shape of
the region is a convex polygon which approximates to
an ellipse. The more gradient vectors used for voting,
the region with high votes are more approximating to
the pupil area. Figure 3c shows the pixels values of the
accumulator image as a 3D surface. The voting process
described here is quite similar to the voting scheme
used in Hough line detection, where the largest peak
values in the accumulator images are the detected
Hough lines.

Step 3. After applying the voting algorithm on a
real pupil image, the accumulator image I' is normal-
ized (we cast the vote value to the range from 0 to 255)
and shown in Fig. 4. The accumulator image was plot-
ted in the XY plane, and the 3D surface graph is the
vote on each image location. The X and Y axes are the
coordinates of the image, the Z axis denotes the nor-
malized vote. The peek in the 3D graph corresponds to
the brightest region in the accumulator image in XY
plane, which is the pupil region. The approximate
pupil region is segmented by Otsu’s threshold method.
After that, we get the centroid Pc of the extracted pupil
region with weighted average method, Pc is calculated
by the first moment of the segmented region as the
centroid. The votes on the accumulator image caused
by noise edges are randomly scattered, so they do not
affect the localization of the pupil region.

Step 4. In this step, we try to extract edge points
near the pupil boundary, and exclude edge points far
from the boundary. We build a data set M whose ele-
ments are the distances from the edge points to the
centroid point Pc in the extracted convex region. The
distance histogram is shown in Fig. 5. Horizontal axis
is the distance (length in pixels), the vertical axis is the
number of edge points fall in a specific distance bin.
We find that the two valleys to the neighborhood of the
peak value by balanced histogram algorithm. For
example, in the Fig. 5, the two valleys have X coordi-

m e m

Fig. 1. The result of the extracting edge points with differ-
ent algorithms. (a) pupil image; (b) the result of the
extracting edge points with Sobel algorithm; (c) the result
of the extracting edge points with Starburst algorithm.

(a)

(b)

(c)

Fig. 2. Gradient vector fields in the pupil image.
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nates Rin = 38 and Rout = 49. Edge points whose dis-
tances to the centroid fall into the interval from 38 to
49 pixels are marked as inliers, other edge points are
marked as outliers.

As shown in the Fig. 6, a ring area is drawn, with
its center point Pc. The ring’s inner radius is Rin and
outer radius is Rout. The edge points marked with

solid black dots are inliers which are locating inside
the ring area, while other edge points marked with
hollow dots are outliers.

Inlier Refinement Based on Model Constraint
The convex region voting algorithm can effectively

eliminate many outliers, but there are still some noise

Fig. 3. The accumulator image of convex region voting algorithm. (a) one edge point voting; (b) seven edge points voting; (c) the
vote of the accumulator image in 3D view.

n→

m→

e

l

→

(a)

(c)

(b)

10

8
15

15
10

105
5

0

2
4
6
8

Vo
te

y

x

Fig. 4. The normalized accumulator image after convex
region voting in 3D view.
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points close to the pupil boundary, which are difficult
to remove. For example, in Fig. 6, a few points marked
with black solid dots on the ring do not belong to the
real pupil edge, but these points are incorrectly classi-
fied as inliers in the previous voting stage. Therefore,
inlier points need to be refined, we use an iterative
algorithm based on the model constraint to eliminate
outliers of this type. An ellipse model has to be fitted
with the current inliers. Then we calculate the average
deviation of the model and all the distances from edge
points to the model. Further, we iteratively eliminate
ones whose distances to the fitted model exceed a
threshold. The refinement runes iteratively until the
inliers set becomes stable. It can even retrieve misclas-
sified inliers, whose are the true pupil edge points
excluded by the previous voting stage. Pseudo-code is
listed in Fig. 7.

The inlier points refinement algorithm has follow-
ing four steps:

Step 1, fit a model E with ellipse fitting method [11]
to the inliers selected by the area voting inliers detec-
tion algorithm.

Step 2, test all the edge points with respect to E,
and classify the edge points whose distances exceed a
threshold (we choose three times of the standard devi-
ation as the threshold, but a minimal error is used here
to avoid over convergence) as outliers, the remaining
edge points are marked as inliers. Update the inliers
set. In our experiment, we set the e = 2.

Step 3, refit model E based on the updated inliers.

Step 4, repeat step 2 and step 3 until inlier point set
gets stable.

Figure 8 shows refined inliers by this stage. Com-
paring with Fig. 6, the points marked with star in Fig.
8 are edge points newly added into the refined inlier
set. The points marked with triangle are edge points
removed from the inlier set after the inliers refine-
ment.

The final inliers are used to compute pupil local-
ization with the ellipse fitting method after convex
region voting and model constraint. Figure 9 visualizes
the result; the white ellipse is the final estimated out-
line of pupil, thus the center of the ellipse is the pupil
center.

Fig. 6. Inliers extracted based on convex region voting.

Fig. 7. Pseudo-code of inlier points refinement algorithm based on the model constraint.
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EXPERIMENTAL RESULTS AND ANALYSIS
Experimental Data and Evaluation Method

An evaluation is made on images from the Iris
Image Database Version 4.0 released by CASIA (Cen-
ter for Biometrics and Security Research of Chinese
Academy of Sciences). The image database contains
images from CASIA-Iris-Thousand, CASIA-Iris-
Syn, CASIA-Iris-Lamp, CASIA-Iris-Twins four
groups, 200 images are used in our tests. The image
size is 640 × 480 pixels, and the types of interference
are different luminance, undesired reflection, eye-
lashes, eyeglass frame and eye motion blurring. The
test program was written in C++ language, and is
based on OpenCV library. An Intel Core-i5 3.3G Hz
CPU with 4Gb memory is used for running the tests.
Since it is hard to find the true pupil center in the
image, we have manually calibrated. The center and
corner parameter of the eye manually calibrated are
treated as the experimental standard values. The nor-
malized error is adopted as the accuracy measure for

the found eye locations. It is defined as: , where

the d is the Euclidean distance between the pupil cen-
ter calculated and manually calibrated, and w is the
Euclidean distance between the inner and outer cor-
ners of the eye manually calibrated. In our measure,
smaller normalized error means more accurate local-

= de
w

ization result. After the experiment, we list the per-
centages of images their normalized errors is less than
4 and 10%.

Experimental Comparison

To verify the efficiency of proposed strategy, the
experiments have been made by comparing three other
methods in the fields. Those methods include pupil
localization method based on Invariant Isocentric
Patterns (IIP) [5], the method combing RANSAC and
ellipse constraint (REC) [10], and the mean of the
gradient (MOG) [14]. Our proposed method shares
the image preprocessing stage on the original image
with REC to get candidate edge points by Starburst
algorithm. Pupil localization accuracy, iteration times
and their performance are compared. The results are
listed in the table. The left part of the table contains
results of normal pupil images, and the right part
shows results with eye images containing several kinds
of interferences. In the column labeled “time (ms)”,
we list two time components used in two stages (con-
vex region voting and model constraint) separately, so
the total time of our proposed method are their sum-
mation.

Table shows that MOG’s accuracy decreased dra-
matically from a performance of 81.82% for e≤4% to a
performance of 59.49% for e≤10% when image has
inferences. Further investigation shows that when
inferences contains some non-circular black blobs, the
gradient vectors is largely attracted, then the result is

Fig. 8. Inliers refinement based on model constraint.

Fig. 9. The result of the pupil localization.

Table 1. Experimental comparison

Method
Eye image without disturbance Eye image with disturbance

iteration 
times time(ms) Accuracy(%)

(e < 4%/10%)
iteration 

times time(ms) Accuracy(%)
(e < 4%/10%)

IIP 0 20.3 92.60/100 0 42.2 82.67/92.94
MOG 0 22.8 72.00/98.12 0 14.1 59.49/81.82
REC 11 69.4 92.45/100 25 170.5 84.87/93.73
Proposed 5 4.0+1.2 96.30/100 5 8.4+0.8 90.61/94.26
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far from the real pupil. So, MOG is sensitive on noise
from gradient. IIP partially solved this issue by using
gradient and curvature, besides that, it sets threshold
on radius of edge curvatures and only meaningful parts
of the curvatures are used. Both the MOG and IIP use
accumulated images to hold the votes, and then pick
the peak vote location as pupil center directly. While
the REC and our proposed method utilize selectively
edges to fit an ellipse, and locate the pupil as ellipse
center, thus the latter two are more robust to image
distortion, such as if the pupil image is captured from
the side view of the head. Figure 10 shows comparing
result of four different pupil localization methods. It
shows that our proposed method behaves quite well in
location accuracy. Especially, when the disturbances
occur, the accuracy of the REC and MOG method
decrease significantly and their centers are far from the
point manually calibrated, only the IIP and our
method can locate the center close to the point manu-
ally calibrated and remain the higher accuracy, which
explains the robustness of our algorithm.

In addition, our proposed method has highest per-
formance among all the four methods. In fact, each

method uses some kinds of iterative calculations. IIP
and MOG need to iterate through all the pixels of the
image to find the estimated pupil center. Its computa-
tion complexity is O(n2) where n is the size of the
image. So we rescaled the original image to 160 × 120
before applying the IIP and MOG, this doesn’t
decrease the accuracy much compared with the origi-
nal image but massively reduce the computing time.
On the other hand, REC and our proposed methods
only need to iterate on the edge points from the Star-
burst algorithm. But in our method, most of the valid
inliers have been classified by convex region voting
stage, thus the initial iteration of the model is already
close enough to the true pupil model. The RANSAC
in REC method take randomly samples from all the
edge points set, and takes much time to converge.

Although REC is a robust model based algorithm,
it has slow performance for pupil images with large
disturbances and does not meet the real-time require-
ments of gaze positioning system because of the inher-
ent property of the RANSAC. For example, a edge
point data set including a number of noise points, it

Fig. 10. Experimental comparison of four methods with different disturbances. The calibrated pupil center is marked as a cross
symbol, the result of IIP is marked with plus sign, while MOG is marked with triangle, and REC is marked with star (contour as
dotted ellipse), and the result of our proposed method are solid dot (contour as solid ellipse). Each image is a sub region of the
whole eye image demonstrated in its top left corner. (a) pupil image without disturbance, (b) pupil image with glasses reflection,
(c) pupil image with shield, (d) pupil image with the distortion.

(a) (b)

(c) (d)
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assumes that the probability of randomly sampling
non-noise point from the data set is w. If estimation of
model parameters needs k samples (usually, k is the
number of the minimum sample required to fit a
model), the probability of obtaining an effective
model parameter after s samples is p = 1 – (1 – wk)s

[15]. If a relatively large number of noise points are in
the pupil image and w is small, in order to obtain a
larger value of p, s should be sufficiently large due to
the exponential relationship between k and s. Now, if
the rate of interference points is large, for example w =
50%, which means that half of all the edge points in
pupil images are noise points, it needs s = 146 samples
to make the p up to 0.99. To fit the partial pupil con-
tour under occlusion, w becomes smaller, and more
samples are needed to calculate the model parameter.
Although add the ellipse constraints when need sam-
ples, the computation of this algorithm is still too large
compared with our proposed method.

CONCLUSION
The pupil localization algorithm based on area vot-

ing and model constraint is proposed, it has some
improvements from the traditional algorithms, which
only use the location information of the feature points
to locate the pupil. We utilize both the location infor-
mation and gradient information of edge points to
remove noise points. This means the proposed
method mines more information from the image. The
algorithm can effectively remove outliers caused by
interference in the pupil image; quickly and accurately
locate the pupil. Accuracy and stability of gaze point
localization are guaranteed. Experimental results
show that our algorithm has certain advantages in
robustness and speed. Further research could focus on
how to accelerate the voting process in order to
improve the performance of the algorithm.
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