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Removal of Achromatic Reflections from a Single Color Image1
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Abstract– In this paper we consider the problem of removing achromatic reflections from a picture of a scene
taken through a semi-transparent medium, assuming that the reflection pattern is due to a light source or
another object located in front of the object of interest. While other works assume the availability of multiple
observations, we consider the more challenging problem of having as data a single color image. We suppose a
data model where the virtual reflected image combines additively with the real transmitted image of the
object, through unknown coefficients. This highly underdetermined problem is handled by means of a blind
estimation technique that exploits the strict dependence of the gradients of the three color channels of the
ideal image, and their independence from the gradient of the grayscale reflected image. The model parame-
ters are estimated through independent component analysis, and then the component images are estimated
through a regularization technique. The whole algorithm is very fast, and its performance is quantitatively
evaluated on numerically generated images, and qualitatively tested on real images.
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1. INTRODUCTION

When we take a picture through a semi-transparent
medium, glass, resin or plastic, we observe an image
that often is a superposition of the image of the object
beyond the medium and the image of the scene or a
light source located in front of the object and reflected
by the medium. We call transmitted image the ideal
image of the object of interest, and reflected image, or
reflection, the image of this second object. The need
to remove the reflected image from the observed one
is common for both recreational and professional pur-
poses, either for improving the human vision or as a
first step for subsequent image processing tasks.
Figure 1 shows two examples of images with reflec-
tion. The first one is a picture of an outdoor scene
taken through a window glass, where the superposed
image is the reflection of a house furnishing. The sec-
ond one is the picture of a manuscript that reflects a
light source. This example is representative of pictures
taken in the field of Cultural Heritage, for digitization
purposes. Indeed, important historical artworks are
often conserved behind semi-transparent media. In
addition, in the past, in an attempt to preserve them,
manuscripts and drawings were covered with chemical
substances producing a sort of semi-transparent plas-
tic coat, which reflects light sources.

1The article is published in the original.

1.1. Related Works

Professional photographers use polarizing lens to
be rotated to reduce the intensity of the reflection.
Polarimetric imaging systems [1, 2], which incorpo-
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rate a polarizer directly in the optics, such as cameras
equipped with a liquid crystal polarizer [3], can even
totally eliminate reflection [4, 5]. However, this can be
achieved under a condition that is difficult to be satis-
fied, i.e., that the viewing angle is equal to the Brew-
ster angle [6]. In addition, although nowadays in the
most important museums, libraries and archives spe-
cialized digitization equipments are available, the use
of polarizers is not yet a common practice.

The majority of the proposed fully computational
approaches assume that the observed image can be
considered as a linear combination of the reflected
and transmitted images. That is, the observed image is
an unknown linear mixing of two unknown images.
This model was derived in [7], by analyzing optical
models. Mathematically, the problem of recovering
the transmitted image from the observed image is
highly ill-posed since also the coefficients of the linear
combination are unknown and the number of
unknowns is twice the number of equations. Blind sta-
tistical methods of independent components analysis
(ICA) can be used to handle this kind of underdeter-
mined problems. However, they need the availability
of as many mixtures as the number of components to
be separated. In some works ICA has been attempted
to remove reflection from pairs of images of a same
scene acquired with two different polarizations [7]. To
improve separation, sparse ICA (SPICA) has also
been used [8], which has the further ability to handle
multiple source images with different motions [9–11].
For example, in [12], the relative motion between the
two components in an image sequence is exploited,
together with sparsity and independence of the gradi-
ent fields, to decompose the transmitted and reflected
images. In [13] the physical properties of polarization
for a double-surfaced glass medium are exploited
within a multiscale scheme to separate the reflection
from the transmitted background scene, using three
polarized images, each captured from the same view
point but with a different polarizer angle separated
by 45°.

With these approaches satisfactory removal of
reflections has been obtained, however, as already
mentioned, they require two or more observations.
Instead, when only a single image is available, the
problem remains highly ill-posed, so that more strict
constraints on the problem formulation or in the com-
ponent images must be exploited.

In [14], for example, it is assumed that the single
acquired image is affected by shifted double reflec-
tions of the scene off a double-pane glass surface.
Thus, exploiting the asymmetry between the layers,
the ghosted reflection is modeled using a double-
impulse convolution kernel, and the spatial separation
and relative attenuation of the ghosted reflection com-
ponents is automatically estimated. To separate the
layers, an algorithm that uses a Gaussian Mixture

Model for regularization is proposed that only requires
a single input image.

In [15] the problem is handled using local features,
and, in [16], using priors describing sparsity and user
provided information. The dependency of the color
channels of the transmitted image, and their indepen-
dence from the achromatic reflection, is proposed
instead as constraint in [17], where a MAP estimation
approach is adopted, which takes also into account for
the regularity of the images.

In all the methods above the model adopted is sta-
tionary, that is the mixing coefficients are the same for
every pixel, which can be unrealistic in real-life sce-
narios. Thus, other methods consider spatially varying
mixtures. For the case of two views, in [18] the
reflected components are separated through informa-
tion exchange among the various components, and,
for a single view, in [19] information about the differ-
ences in the structure of the transmitted and the
reflected image has been added to the basic Bayesian
model of [17].

1.2. Our Contribution
In this paper, we assume the stationary linear mix-

ing model of [17], whose coefficients are unknown,
and, as done also elsewhere, that the reflection is an
achromatic, i.e., graylevel, image. The high under-
determination of the problem is overcome by making
use of reasonable constraints on the practical coinci-
dence of the gradients of the three color channels of
the normalized transmitted image, and the statistical
independence of those gradients from the gradient of
the normalized reflected image. We then propose a
very fast algorithm constituted of two subsequent
steps, both based on the above described constraints.
The first step estimates the model parameters through
an ICA algorithm. The second step, based on the now
determined data model, estimates the four component
images via regularization techniques.

Due to the permutation indetermination typical of
ICA, the output of the first step consists of two sets of
model parameters: in one the order of the coefficients
is correct, in the other is inverted, without any possi-
bility to discriminate them. Then, in the second step
regularization is applied twice, and two sets of solu-
tions are obtained. These solutions give rise to two
pairs of images, the transmitted image and the
reflected image. The correct pair of images is chosen
by visual inspection.

The overall method is sketched in the f low chart
shown in Fig. 2.

A shorter version of this work appeared in [20]. The
current version extends our conference version with
many further technical details, to make the method
more self-contained and easily interpretable. In addi-
tion, an exhaustively discussed numerical experiment
has been added, to quantitatively evaluate the method
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performance, and the comparison with the results of
the method in [19] has been included as well.

The paper is organized as follows. Section 2 is
devoted to the description of the model adopted, the
establishment and the justification of the a priori
assumptions to reduce the indeterminacy of the prob-
lem, and, finally, the definition of our estimation
strategy. Section 3 describes the method for estimating
the model parameters, whereas Section 4 details the
method to separate the reflected image and the trans-
mitted image from the observations. Section 5 is
devoted to the experiments, first quantitatively analyz-
ing a simulation example, and then discussing the
results obtained in the cases of real photographs of
scenes taken through a transparent medium. Finally,
Section 6 contains the conclusions and some ideas to
improve the method.

2. DATA MODEL AND ESTIMATION 
STRATEGY

According to [17], we adopt the following data
model:

(1)

where , , and , are the Red, Green, and
Blue color channels of the observed image at pixel ,
being  the total number of pixels in the image. At the
same pixel , , , and  are the ideal colors
in the transmitted source image, and  represents
the achromatic reflected component, respectively.
Coefficients , , indicate the transparency of
a semi-transparent medium to the different light col-
ors, whereas coefficients , , indicate the
percentage of the reflection affecting the measured
colors. By calling  the  matrix above, Eq. (1) can
be rewritten in vectorial form as:
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where  is a  matrix and  is a  matrix. For
subsequent use, Eq. (2) can be partitioned as:

(3)

with

(4)

(5)

where  means transposition.
The problem is thus to estimate the ideal transmit-

ted image  from the data . It is apparent that, hav-
ing more unknowns than data, this problem is under-
determined. Furthermore, also the imaging system
has to be identified, since the coefficients of the mix-
ing matrix  are unknown as well. To reduce this
severe ill-posedness and define a unique solution,
other works (e.g., [17]) already proposed to exploit the
statistical dependence/independence between the
intensities of the four component images. Here, we
assume instead that the normalized gradients of the
three color channels , , and  coincide in the prac-
tice, i.e., they are strictly statistically dependent,
whereas they are each independent of the normalized
gradient of .

Rather than jointly estimating all the unknown
sources and parameters, e.g., via Bayesian estimation,
we split the problem into two parts: we first estimate
the mixing coefficients, and then the four component
images. Both steps make use of the above mentioned
constraints on the normalized gradients, although
within an ICA approach in the first step and a regular-
ization approach in the second step.

Below we will give details on how the original data
model of Eq. (1) can be reformulated when the nor-
malized gradients of the sources are used instead of
their intensities.

To derive the gradient maps we apply a high-pass
filter  to the data, and then normalize them to unit
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Fig. 2. Flow chart of the overall method.
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variance by applying the two following diagonal matri-
ces  and :

(6)

being , , , and  the unknown standard devia-
tions of the high-pass filtered versions of , , , and

, respectively.

Calling  and  the normalized high-pass filtered
variables:

(7)

their relationships with the original variables are:

(8)

Hence, the high-pass filtered data  is given by:

(9)

where

(10)

and
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System of Eq. (9), in expanded form, is given by:
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In explicit form, Eq. (13), in view of Eq. (14), can
be rewritten as:
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The left hand side of Eq. (15), i.e., the symmetric
covariance matrix, has  coefficients that can be esti-
mated from the data, while the right hand side con-
tains the  unknown coefficients of matrices 
and , that is , , , , ,

, so that, from the above equation, these coeffi-
cients can be estimated, for example by least mean
squares and gradient descent algorithms.

We initially attempted this way, but observed a slow
convergence and not much precise estimates.

We then observed that, still exploiting the substan-
tial coincidence of the three gradients of the ideal
transmitted image, that is , and the inde-
pendence of  from  (as well as from  and ), the
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cients. Specifically, we employed the FastICA algo-
rithm, first proposed in [21]. In fact, to estimate all the

 coefficients, only two of the above equations are
needed, for example the first one, Eq. (16), and the
second one, Eq. (17). The inconvenience that, in this
way, coefficients  and  are estimated twice,
likely obtaining slightly different values, can be trivi-
ally overcome by retaining their average value as the
unique estimate. As well known, however, any ICA
algorithm provides solutions that are affected by more
important, intrinsic indeterminacies, the scale and
permutation indeterminacies. With respect to the scale
indeterminacy, possible negative values and multipli-
cative factors in the obtained coefficients can be
removed knowing that the coefficients must be posi-
tive and the estimated sources must be of unit variance
by definition.

Due to the permutation indeterminacy, the esti-
mated columns of the two mixing matrices of Eqs. (16)
and (17) can be occasionally and unpredictably
inverted, either within only one matrix or in both.
While the correct order of the columns cannot by no
means established without additional information, we
can at least assign the same order to the columns of the
two matrices, the right one in both or the inverted one
in both. This can be done arbitrarily assuming the
solutions of the first system as our reference, and per-
forming a similarity check between the first row of the
two estimated mixing matrices or between the corre-
sponding estimated source gradients.

Although the above mentioned strategies permit to
partially overcome the indeterminacies of ICA, two
extra indeterminacies are left. First of all, the  coeffi-
cients are estimated up to the unknown standard devi-
ations; second, since the columns of the matrices in
Eqs. (16) and (17), could have been estimated in an
inverted (although congruent to each other) order, we
cannot discriminate which source corresponds to the
red gradient  of the transmitted image and which one
to the reflection gradient . The first indeterminacy is
unavoidable, at least so far. As per the second indeter-
minacy, using the estimated coefficients, and how
described in the following section, we reconstruct two
different pairs of solution images assuming, the first
time, the columns as they are, and, the second time,
by inverting them. The two pairs of solutions are each
constituted of the supposed transmitted image
( , , ) and the supposed reflection . We can then
choose the correct pair by visual inspection.

4. REMOVAL OF REFLECTION: ESTIMATION 
OF THE TRANSMITTED AND REFLECTED 

IMAGE

Once the transparency coefficients has been esti-
mated up to the standard deviations with ICA, the data
system of Eq. (1) can be reformulated as:

6
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where we assume the order of the coefficients to be
correct. The linear system above has  equations and 
unknowns, so that it represents an ill-posed problem
with an infinity of solutions , , , and

. To find a unique solution, extra information
must be included into the problem.

To this end, we adopt constrained least squares,
where the constraints enforce the minimum distance
between the three pairs , ,
and  of the color channels of the trans-
mitted image, and the maximum orthogonality
between each of such channels and the achromatic
reflected image . We define an energy function
constituted of a data term, in the form of the squared
Euclidean norm of the difference between the left
hand side and the right hand side of Eq. (19), plus two
quadratic stabilizer terms expressing the two con-
straints above, weighted by two positive regularization
parameters  and , respectively.

Calling  the mixing matrix in Eq. (19) and  the
vector of the four unknown component images, the
energy function we adopt is:
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where

(24)

and

(25)

is the theoretical covariance of  normalized gradients
exactly satisfying the constraints above.

In the practice, in order to choose the optimal regu-
larization parameters, a suitable range for  and  is
empirically chosen, the corresponding  is
computed for each point of a grid in the range, according
to Eq. (22), and the values that minimize the cost func-
tion in Eq. (23) are selected as the optimal  and .

It is worth noting that the search for the optimal
regularization parameters is the most expensive part of
the entire algorithm, which is in any case very fast.

To obtain the final restored image we observe that,
equivalently, system of Eq. (19) can be partitioned as:

(26)

and then it is:
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Note that it is impossible to separate  and , that
is to recover the ideal transmitted image , unless
extra information on the scale of  is available. Thus,
we can only estimate the image free of ref lection, .
This results in the fact that we cannot expect a full
fidelity of the colors of the reconstructed image.

5. DISCUSSION OF THE EXPERIMENTAL 
RESULTS

Our algorithm has been designed for the general
problem of removing reflection from images of any
type. To quantitatively evaluate its performance, we
first analyze the results for a synthetically generated
image. Figure 3a shows the ideal transmitted image,
Fig. 3b shows the ideal reflection, whereas Fig. 3c
shows their linear mixing according to the model in
Eq. (1), by using the following mixing matrix:

(28)

In this case, the normalized gradients , , ,
and  of the ideal sources can be computed exactly
from the known sources, in such a way to verify that
the constraints we assume for our problem are feasible.
Indeed, Fig. 5 clearly shows that the behaviours of the
three gradients of the ideal transmitted image almost
coincide (top panel), whereas the behaviour of the
gradient of the reflection (bottom panel) is rather dif-
ferent.

Furthermore, the feasibility of the constraints
employed to estimate the optimal  and  (see
Eq. (23)) is proven by the covariance matrix of the gra-
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Fig. 3. Synthetic image with a reflection: (a) original transmitted image; (b) original reflection image; (c) linear mixing of the
images in (a, b) through the matrix of Eq. (28).
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dients , , , and , still computed from the
known sources as:

(29)

As explained in Section 3, with our algorithm the
indeterminacy on the correct order of transparency
coefficients estimated via ICA entails the reconstruc-
tion of two different pairs of solutions ( , , , ),
with each pair constituted of the three color channels
of the image assumed as the transmitted image plus
the grayscale removed reflection. The correct pair is
then chosen by visual inspection. Figure 4 shows the
two pairs, the inverted one (top panels) and the correct
one (bottom panel). These solutions have been
obtained by using , , and .
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Fig. 4. The two pairs of solutions obtained from a synthetic image with a reflection. (a, b) The inverted one; (c, d) the correct one.
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Fig. 5. Behaviours of the normalized gradients (value ver-
sus the pixel number): (a) three gradients of the ideal trans-
mitted image; (b) gradient of the reflection image.
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For the correct pair of solutions we computed the
Root Mean Square Error (RMSE) and the percentage
error (i.e., the ratio between the RMSE and the maxi-
mum value in the image) of the estimated images with
respect to the ideal ones. For the estimated transmit-
ted image we obtained an RMSE of , and a per-
centage error of . The relatively high RMSE
error is mainly concentrated in the Blue channel, and
this is reflected in the more “reddish” appearance of
the estimated transmitted image with respect to the
ideal one, especially in correspondence of the plum-
age of the hat. In other words, the Blue component of
the estimated transmitted image is too low. Presum-
ably, part of this Blue component has been retained by
the estimated reflection, which, indeed, appears
lighter than the ideal one, with an RMSE of  and
a percentage error of .

The estimated mixing matrix  (up to the gradient
standard deviations, and whose columns have been
arranged according to the identified correct pair of
solutions) is the following:

(30)

Since this time we known by construction the stan-
dard deviations, which amount to ,

, , and ,
respectively, we can derive the coefficients of the
related  matrix, which, as it can be easily verified,

.15 32
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.11 4%

σA
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35 4940 0 0 17 8170
0 24 3005 0 26 9555
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σ = .1 35 6870
σ = .2 36 1433 σ = .3 36 1674 σ = .4 43 1189

A

almost exactly coincide with the ideal mixing matrix in
Eq. (28).

As per real images, we first compare the perfor-
mance of our algorithm with that of the algorithm pro-
posed in [19], by applying it to one of the images pre-
sented in that paper. This image represents a toy stand-
ing behind a transparent CD box with achromatic
reflections occurring on the box surface. Figure 6a
shows the input image. The results of our algorithm
are shown in Figs. 6b, 6c, whereas Figs. 6d, 6e show
the results of the algorithm in [19]. Although the ideal
image of the toy free of reflection is not available, it is
apparent that our algorithm is able to remove the
reflection much better. With respect to color fidelity,
by comparing the areas free of ref lection of the input
image with the same areas in our reconstruction, we
might say that the color has been preserved as well.

It is worth noting again that our algorithm is very
fast, and in particular presumably much faster than the
algorithm in [19], which employs usually expensive
Monte Carlo methods.

Successively, we considered the application of the
algorithm to real images of artworks. We start with a
picture of a painting framed by a glass. Figure 7a shows
the acquired image where the reflection of a lamp is
well visible. Although separation of the two images has
not been completely achieved, as it can be noticed
from some residual patterns of the transmitted image
left in the reflected image of Figs. 7c, 7b shows the
transmitted image perfectly freed from reflection.
However, due to the imperfect separation, along with

Fig. 6. Removal of reflection from a real image acquired through a transparent plastic sheet: (a) original acquired image; (b) image
restored with our algorithm; (c) reflection separated with our algorithm; (d) image restored with the algorithm in [19]; (e) reflec-
tion separated with the algorithm in [19].

(a) (b) (c)

(d) (e)



PATTERN RECOGNITION AND IMAGE ANALYSIS  Vol. 27  No. 4  2017

REMOVAL OF ACHROMATIC REFLECTIONS 683

the above mentioned scale ambiguity of the solution,
the colors are not perfectly reproduced.

In a subsequent experiment, we show the results
obtained when the reflection affects a document
image. Figure 8a shows the image of a plastic coated
ancient manuscript. It is apparent that the light reflec-
tion prevents reading part of the text. With our algo-
rithm we have been able to separate the reflected
image in Fig. 8c, and recover the reflection-free image
of Fig. 8b. In this application, the loss of the true col-
ors of the transmitted image is a minor problem, since
the essential aspect is the possibility to recover the leg-
ibility of the text. Note indeed that the text under the
reflection is now well visible.

6. CONCLUSIONS

We proposed a method to remove a ref lection from
a single color image acquired through a semi-trans-
parent medium. The unwanted reflection, often

caused by a light source, is considered to be an achro-
matic image that combines additively with the real
transmitted image of the object of interest. Since the
mixing coefficients are unknown, we adopt a blind
source separation technique exploiting the substantial
coincidence of the gradients of the three color chan-
nels of the ideal image, and their independence from
the gradient of the reflected image. The algorithm acts
in two steps. In the first step, the model parameters are
estimated through ICA, whereas, in the second step,
the four component images are estimated via regular-
ization.

The efficiency of the algorithm is quantitatively
proven on a numerically generated image. As per the
performance of the method on real images, we com-
pared our results with those of a recently proposed
algorithm designed for a single input image, and pre-
sented the promising results of the application of the
method to the restoration of a real painting framed by

Fig. 7. Removal of reflection from the picture of a painting: (a) original acquired image; (b) restored image; (c) separated reflec-
tion.

(a) (b)

(c)
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a glass and a manuscript laminated for conservation
purposes.

Nevertheless, some aspects of the methods still
need to be investigated and improved. These mainly
regard the search for an efficient way to overcome the
permutation indeterminacy of ICA, and thus deter-
mine the correct order of the transparency coeffi-
cients, and the search for more effective constraints
about the component images, in order to be able to
estimate their scale and then, by discriminating 
from , to obtain a more faithful color of the recon-
structed images. Our future research plan regards also
the study of alternative data models that better adhere
to the physics of the phenomenon.
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